1998 SPRING BREAKUP AND HYDROLOGIC ASSESSMENT

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Prepared for:

BP Exploration (Alaska) Inc. P.O. Box 196612 Anchorage, Alaska 99519-6612

Michael Baker Jr., Inc., 100 Cushman Street, Suite 201 Fairbanks, AK 99704

TABLE OF CONTENTS

			Page
1.0	Intro	duction	1
2.0	Desc	ription of 1998 Breakup	4
	2.1	General Hydrologic Observations	
	2.2	1998 Spring Breakup	4
	2.3	Pipeline Crossing Data	5
	2.4	Staines/Canning River Reconnaissance	8
3.0	Pipel	line Alignment Considerations	9
	3.1	Pipeline Crossing PLX 01	9
	3.2	Pipeline Crossing PLX 28	

LIST OF APPENDICES

Appendix A: Summary Tables Appendix B: Location Map Appendix C: General Photographs Appendix D: PLX 01 Appendix E: PLX 02 Appendix F: PLX 03 Appendix G: PLX 04 Appendix H: PLX 05 Appendix I: PLX 06 Appendix J: PLX 07 Appendix K: PLX 08 Appendix L: PLX 09 Appendix M: PLX 10 Appendix N: PLX 11 Appendix O: PLX 12 Appendix P: PLX 13 Appendix Q: PLX 14 Appendix R: PLX 15 Appendix S: PLX 16 Appendix T: PLX 18 Appendix U: PLX 19 Appendix V: PLX 20, 20A And 20B Appendix W: PLX 21 Appendix X PLX 22 Appendix Y: PLX 23 Appendix Z PLX 24 Appendix AA: PLX 25 Appendix BB: PLX 26 Appendix CC: PLX 27 Appendix DD:PLX 28

Appendix EE: PLX 29

1998 SPRING BREAKUP AND HYDROLOGIC ASSESSMENT SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

1.0 INTRODUCTION

This data report summarizes the observations and measurements made during the 1998 spring breakup at streams along the proposed pipeline route (Figure B-1, Appendix B). The purpose of the project was to collect baseline hydrologic and hydraulic data that could be used for pipeline design and environmental assessment. The field work was conducted between 21 May and 12 June 1998.

As shown on the Location Map (Figure B-1, Appendix B), the project is located east of Deadhorse, between the Staines River and Badami Camp, on the North Slope of Alaska. At the beginning of the field effort, the project was still in the conceptual stages of design. At that time, the project was expected to consist of an export pipeline between approximately the Point Thompson West site and Badami Camp. Infield pipelines and a road were expected to connect the Sourdough #3 site, the North Staines River #1 site and the Point Thompson Unit #3 site with the Point Thompson West site.

Prior to the field work, a review was made of the available maps and aerial photographs in order to identify streams crossing the proposed pipelines. Once the field crew arrived on site, the streams were assessed as to their significance with regard to pipeline design, and placed into one of two categories. Category I streams are minor streams having poorly defined channels and drainage areas, while Category II streams have definable channels and drainage areas. The information collected differed between the two categories of streams. At Category I streams the information collected generally included visual estimates of the:

- (1) width of the flow at the 1998 peak water surface elevation,
- (2) maximum depth of water at the 1998 peak water surface elevation, and
- (3) mid channel velocity at the 1998 peak water surface elevation.

At Category II streams the information collected generally included the information for Category I streams plus:

- the peak water surface elevation during the 1998 spring breakup at the proposed pipeline crossing and at one other cross section located either upstream or downstream from the proposed pipeline crossing;
- (2) a discharge measurement made as close to the flood peak as possible, including water surface elevation measurements at both cross sections at the time of the discharge measurement;
- (3) a survey of the two cross sections described in item 1 above, and the length of the thalweg between the two cross sections, based on (a) a three dimensional coordinate system and (b) a primary temporary bench mark (TBM) having an assumed elevation of 100.00 feet, an assumed Northing of 5,000 feet and an assumed Easting of 5,000 feet; and
- (4) notes regarding the width of gravel in the stream bed at each cross section.

At selected Category II streams, bed material samples were collected and the gradation measured.

Proposed pipeline crossings of Category I streams include: PLX 05, PLX 13, PLX 14, PLX 18, PLX 19, PLX 20, PLX 20A, PLX 20B, PLX 21, and PLX 25. Proposed pipeline crossings of Category II streams include: PLX 01 (West Badami Creek), PLX 02 (Middle Badami Creek), PLX 03 (East Badami Creek), PLX 04, PLX 06, PLX 07, PLX 08, PLX 09, PLX 10, PLX 11, PLX 12, PLX 15, PLX 16, PLX 22, PLX 23, PLX 24, PLX 26, PLX 27, PLX 28, and PLX 29. The stream associated with proposed pipeline crossing PLX 17 was not identifiable in the field and was dropped from further consideration.

It should be noted that a survey of the proposed pipeline route had not been undertaken prior to the field work. Thus, the proposed pipeline crossings were located based on a hand held global positioning system (GPS) and coordinates taken from the mapping available at the start of the project.

2.0 HYDROLOGIC OBSERVATIONS

2.1 General Hydrologic Observations

Watersheds within the project area range in size from approximately 1 to 90 square miles (Table 1). Several of the watersheds are without clearly defined boundaries or drainage channels, while other watersheds contain well-established stream channels. Typically, the watersheds over 10 square miles in size are long and narrow.

Stream channel characteristics range from shallow grass lined swales to incised channels with gravel beds. The maximum size of the gravel was generally less than 3 inches. Many of the streambeds are composed of a combination of grass and gravel.

2.2 1998 Spring Breakup

The 1998 spring snowmelt progressed from south to north during the early stages (Photo C-1), and then combined with a general melt 5 to 10 miles from the coast. The narrowness of many of the watersheds resulted in a short time of concentration and a rapid rise and recession in the water surface elevation.

The first observed indication of runoff occurred on the afternoon of 25 May 1998. Approximately 25 miles southeast of Badami, water was flowing over snow-filled channels in East Badami Creek (PLX 03), and the ponds were beginning to collect water. North of this area the ground was more than 90 percent snow covered with little evidence of saturation.

By mid-afternoon on 26 May 1998, the leading edge of the flow had moved 3 to 4 miles downstream. Within the next 24 hours most of the streams between Badami Camp and 12 miles east were flowing. From about 12 miles east at PLX 12 to 23 miles east of Badami Camp no flow was observed.

Streams west of PLX 12 were flowing mostly out of banks with channels 50 to 80 percent snow filled on the afternoon of 28 May 1998. East of PLX 12 similar conditions did not develop until 29 May.

Throughout the project area, the peak water surface elevation occurred between 29 and 31 May 1998. In general the streams with the larger watersheds crested earlier than those draining smaller areas. Dense snowdrifts located within the channels affected most of the crest elevations. Snow blockage was estimated to range from 10 to 80 percent.

As snowmelt progressed, and the rate of flow increased, the snow within the channels was rapidly cleared. In most cases the peak discharge probably occurred at a slightly lower stage (0 to 1 foot, about 0.4 feet on average) and shortly after the peak water surface elevation (usually within hours).

Snowmelt in the general vicinity of the project occurred rapidly. On 28 May it was estimated that the ground was 60 to 80 percent snow covered. On 29 May only an estimated 20 percent of the snow cover existed. By 1 June all of the streams were in recession. However, areas of indefinite channels and ponded or sheet flow had not started to recede by 1 June.

Although slush and snow floes were observed in the streams, no solid ice floes were observed.

1998 EVENT WAS PROBABLY ABOUT 2 YR BVENT.

Based on the 3 streams monitored by the USGS in the vicinity of Deadhorse and Pump Station 3, it appears that the 1998 spring breakup flood peak generally had a reoccurrence interval of 2 to 5 years. It is likely that the streams monitored for this project experienced floods with similar recurrence intervals.

EAST CR ($DA = \frac{1}{3} Sm$) 1998 $Q_{p} = \frac{5}{3} \frac{30}{5} \frac{C}{5} \frac{R}{5} \frac{$

 $\frac{\text{KUMRUK R (DA 3130 sm) 1998 } \Phi_{p} = 3130 \text{ efs } R.P. = 2.3 \text{ yr.}}{\text{NUNAVAK CR (DA 2.8)} 1998 } \Phi_{p} = 25 \text{ efs } R.P. = 1.3 \text{ yr.}}$ 2.3 Pipeline Crossing Data SAGR. TRIB (DA 12) 1998 $\Phi_{p} = 85 \text{ efs } R.P. = 2.4 \text{ yr.}}$

A summary of the data collected at each stream is presented in Table A-1 (Appendix A), and includes:

- (1) the spring peak water surface elevation, velocity, width, depth, water surface slope, and date of occurrence;
- (2) a preliminary estimate of the bankfull elevation, width, and depth;
- (3) the width of the gravel bottom; a summary of the discharge measurement, where one was made; and
- (4) a summary of other miscellaneous measurements, where such were made.

A summary of the locations and elevations of the temporary bench marks used in the survey is presented in Table A-2 (Appendix A).

A photograph showing the typical size of the gravel exposed in many of the channel bottoms is presented in Photo C-2 (Appendix C). Photographs of the typical vegetal conditions within the channels and along the floodplain are presented in Photos C-3 through C-5 (Appendix C).

Additional information concerning specific pipeline crossings is presented in the appendices. For Category I streams, photographs of the streams are presented. For Category II streams, plan and profiles of the survey data, bed material gradations where available, photographs, discharge measurements where available, and a summary of the survey data are presented. Discharge measurements were made on all Category II streams except PLX 01, PLX 02, PLX 23, PLX 26 and PLX 29. Bed material gradations are provided for streams PLX 03, PLX 06, PLX 09, PLX 15, PLX 16, PLX 24, and PLX 28. A description of the water surface elevations measured at times other than the peak water surface elevation or the discharge measurement, and the portion of the channel covered with gravel, are presented on the cross section plots.

The requirement for valve locations for the crude oil transmission pipeline is governed by the Code of Federal Regulations Part 195 (CFR 195), "Transportation of Hazardous Liquids by Pipeline". The regulations would cover the crossings labeled PLX01 through PLX22, based on the preliminary alignment used for this study. CFR 195.260 states:

195.260 Valves:location.

- "A valve must be installed at each of the following locations: ...
- (e) On each side of a water crossing that is more than 100 feet wide from high-water mark to high-water mark unless the Administrator finds in a particular case that valves are not justified."

The "high water mark" referenced in the above regulations is interpreted as being the "Bankfull" condition reported in this initial study. From Table A-1, it is clear that East Badami Creek is well over 100 feet at the preliminary crossing location and would require consideration of valving.

Four other crossings exceed a bankfull width of 100 feet directly at the proposed crossings – PLX07, PLX09, PLX16 and PLX22. However, all of these streams show a width of less than 100 feet at the "Other" cross sections reported in Table A-1. The data show that the bankfull width is variable for these streams, and pipeline reroutes can reduce the estimates of bankfull width to less than 100 feet at all of these crossings if required to show agreement with the stipulated language. In addition PLX22 is located close to the facility and the valve at facility discharge should suffice for this crossing in any case.

On the other hand, intermediate valves and/or other leak control measures along the alignment are prudent in any case. For planning purposes, valves or other leak control measures (e.g. vertical loops) are recommended to be included for design consideration at PLX09 and PLX16, which are roughly the one-third points of the 22 mile pipeline from the planned CPF to the Badami facilities. These crossings are in addition to the East Badami Creek crossing. From photo PLX 07-1 as well as from the data in Table A-1, a minor reroute upstream will satisfy the stipulations at this location and should be included in further preliminary route descriptions.

2.4 Staines/Canning River Reconnaissance

A very brief reconnaissance of the Staines/Canning Rivers was made on 2 June 1998. The purpose of the reconnaissance was to look for signs that the west bank had been overtopped by floodwaters.

Between 19 and 16 miles upstream from the Sourdough #3 site, visual estimates of the bank height suggest that it ranges from approximately 50 to 8 feet. Within this reach the Canning River is confined to nearly a single channel with high banks.

Between 11 and 6 miles upstream from the Sourdough # 3 site, visual estimates suggest that the bank height ranges from approximately 12 to 3 feet. Within this reach, flood debris was estimated to lie 6 to 4 feet below the top of the bank.

Approximately 1 mile upstream from the Sourdough #3 site, visual estimates of the bank height suggest that it is about 5 feet high. Visual estimates also suggest that the ground rises approximately 5 feet between the top of the bank and the Sourdough #3 site.

Throughout the reach of the Staines/Canning Rivers investigated, no flood debris was observed at the top of the west bank. However, it is rare to find evidence of a flood that is more than about 25 years old on the North Slope. Another complicating factor is the large areas of aufeis that form in the Staines/Canning Rivers. Therefore, in order to estimate the likelihood of a large flood (on the order of a 100- to 200-year flood) overtopping the west bank and contributing to flooding within the project area, it will probably be necessary to perform at least preliminary hydraulic computations. Ideally, data describing the extent and thickness of the icings would also be available at the time of the computations.

3.0 PIPELINE ALIGNMENT CONSIDERATIONS

The proposed pipeline crossings discussed in this report were selected prior to the field program, based on an office reconnaissance of the available maps and aerial photographs. While in the field, a brief assessment of the desirability of the proposed crossing locations was made. In considering the desirability of the proposed crossing locations, it was assumed that shifts of less than 100 feet would be better addressed during the pipeline route survey. Additionally, it was assumed that the pipeline would generally not be moved a great distance from the original location due to other alignment considerations. Based on these criteria, two of the proposed pipeline crossings were identified as candidates for a possible shift in location.

3.1 Pipeline Crossing PLX 01

The proposed crossing at PLX 01 is located about 1200 feet upstream from the road that connects the Badami airstrip with the Badami Camp. At the peak water surface elevation of the 1998 spring breakup flood, the water surface was 460 feet wide at the proposed crossing. The right bank is relatively low. It was about 2 feet under water at the peak of the 1998 spring breakup flood. The right floodplain also contains a pond that is 240 feet wide, in the direction of the crossing.

Approximately 400 feet upstream from the proposed pipeline crossing the channel has higher banks and the flow area is more uniformly distributed. Thus, consideration should probably be given to moving the pipeline crossing upstream.

3.2 Pipeline Crossing PLX 28

At the proposed PLX 28 crossing, the channel is wide and shallow. At the peak of the 1998 spring breakup flood the water surface width was 284 feet. A 66-foot wide flat bench forms part of the left floodplain, while the main channel has a width of 115 feet.

Upstream from the proposed pipeline crossing, approximately 200 to 500 feet, the banks are higher and the water surface width at the peak of the 1998 spring breakup flood was

narrower. Thus, consideration should probably be given to moving the pipeline crossing to this reach of the river.

Another possibility is to eliminate the PLX 28 crossing. If the pipeline coming into the PLX 28 crossing were routed to the PLX 29 crossing and joined to the pipeline at PLX 29, approximately 2200 feet of pipeline would be eliminated. Alternatively, the pipeline coming into PLX 29 could be routed to a location 200 to 500 feet upstream from the present PLX 28 pipeline and joined to the PLX 28 pipeline at that location. This option would also eliminate approximately 2200 feet of pipeline.

APPENDIX A: SUMMARY TABLES

TABLE OF CONTENTS

Table A-1: Summary of Selected Hydrologic Parameters

Table A-2: Temporary Bench Mark Locations

工 工

Table A-1: Summary Of Selected Hydrologic Parameters West Middle East 工 兀 亚 Badami Cr. Badami Cr. Badami Gr PLX 02 PLX 01 PLX 02 PLX 04 PLX 05 PLX 06 Stream Crossing Designation Drainage Area (sm) 40.3 31.5 88.7 7.49 23.8 1998 Spring Peak Stage At Proposed Crossing 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 5/29/98 Date Water Surface Elev. (ft) (25) 97.78 101.87 99.59 99.35 98.61 < 2.0 < 2.0 ≥ 5.0 < 2.5 < 2.0 Velocity (fps) Surface Width (ft) 459 358 276 200 12 335 Max Depth (ft) 8.6 10.9 6.0 4.0 2.5 5.8 Water Surface Slope (ft/ft) 0.0009 0.0005 0.0009 0.0017 0.0023 1, 7, 23 2, 23, 31 3 . See Notes Approximate Bankfull Conditions At Proposed Crossing 94.0 94.5 98.8 97.2 Elevation (ft) (25) 96.5 Surface Width (ft) 58 45 220 58 12 56 Max Depth (ft) 4.8 3.6 5.2 1.8 2.5 3.7 30 Gravel Bed Width (ft) 4 143 36 0 12 See Notes At Other X-Sec 2002 u/s Location 1132 d/s 1387 u/s 337 w/s 897 u/s Elevation (ft) (25) 97.4 82.2 99.0 98.2 98.0 Surface Width (ft) 91 56 330 41 66 3.6 4.2 3.0 3.4 3.2 Max Depth (ft) Gravel Bed Width (ft) 56 13 301 14 24 31 See Notes Discharge Measurement 6/1/98 5/30/98 6/1/98 Date Water Surface Elev. (ft) (25) 96.71 98.28 96.50 596 225 207 Discharge (cfs) Average Velocity (fps) 1.94 1.63 2.47 Max Mean Velocity In Any Vertical 2.87 3.31 3.31 Surface Width (ft) 143 132 56.0 2.7 Max Depth (ft) 3.2 3.4 0.0007 0.0023 0.0028 Water Surface Slope (ft/ft) See Notes 19 19 Miscellaneous Observations At Proposed Crossing 5/30/98 5/30/98 6/1/98 97.16 Water Surface Elev. (ft) (25) 100.14 96.71 0.0007 Water Surface Slope (ft/ft) 0.0009 0.0011 Water Depth (ft) max 3.2 1.94 Velocity (fps)

19

See Notes

19

19

X-S

11

	工	工	亚	工	I	7
Stream Crossing Designation	PLX 07	PLX 08	PLX 09	PLX 10	PLX 11	PLX 12
Drainage Area (sm)	3.46	1.35	41.4	11.3	4.87	13.
1998 Spring Peak Stage						
At Proposed Crossing						
Date	5/29/98	5/29/98	5/29/98	5/29/98	5/29/98	5/29/9
Water Surface Elev. (ft) (25)	99.04	99.06	99.34	98.84	98.59	99.1
Velocity (fps)			>5	> 3	> 1	>:
Surface Width (ft)	168	80	290	~440	~304	20:
Max Depth (ft)	· 5.2	1.6	5.3	5.2	4.2	5.
Water Surface Slope (ft/ft)	0.0004	0.0033	0.0003	0.0021	0.0022	0.001
See Notes	5	5	4	6	5, 22, 23	
Approximate Bankfull Conditions						
At Proposed Crossing						
Elevation (ft) (25)	98.2	98.7	98.0	97.0	97.1	96.
Surface Width (ft)	107	74	145	89	57	6
Max Depth (ft)	4.3	1.4	4.0	3.4	2.7	3.
Gravel Bed Width (ft)	5 & 28	0	16	5.	13	5
See Notes	(21)		•	•	,	
At Other X-Sec						
Location	747 u/s	391 u /s	1027 u/s	800 u/s	507 u∕s	560 d
Elevation (ft) (25)	98.1	99.8	99.0	98.8	98.2	95.
Surface Width (ft)	93	40	85	54	35	6
Max Depth (ft)	3.6	1.5	4.7	2.2	4.5	2.
Gravel Bed Width (ft)	4	0	18	10	11	4
See Notes						•
Discharge Measurement						
Date	6/1/98	6/1/98	5/30/98	6/1/98	6/1/98	6/1/9
Water Surface Elev. (ft) (25)	95.62	98.24	96.85	97.03	97.56	97.0
Discharge (cfs)	82.3	13.0	~600	176	65.2	24
Average Velocity (fps)	2.00	0.93	~3.9	2.30	0.98	1.7
Max Mean Velocity In Any Vertical	3.28	1.06	~5.5	4.28	2.22	2.2
Surface Width (ft)	52.0	23	~97	73	64.0	93.
Max Depth (ft)	1.3	0.90	2.3	2.2	3.0	3.
Water Surface Slope (ft/ft)	0.0026	0.0047	0.0018	0.0023	0.0027	0.001
See Notes	0.0020	29	20,22,26	19	19	1
Miscellaneous Observations At Proposed C	rossing	23	20,22,20		1,9	•
Date	6/1/98					
Water Surface Elev. (ft) (25)	95.59					
Water Surface Slope (ft/ft)						
• • •	0.0027					
Water Depth (ft) max						
Velocity (fps) See Notes	19					

Table 71-1. Dummary Of Defected 11.	, diologic 1	`				
	エ	工	I	I	,	エ
Stream Crossing Designation	PLX 13	PLX 14	PLX 15	PLX 16	PLX 17	PLX 18
Drainage Area (sm)	6.82		5.41	32.1		1.75
1998 Spring Peak Stage						
At Proposed Crossing						
Date	5/30,31	5/30,31	5/29/98	5/29/98		5/30,31
Water Surface Elev. (ft) (25)			98.96	97.53		
Velocity (fps)	<u>≤</u> 1.5	≤ 1.0	> 3.5	> 5.0		
Surface Width (ft)	≤ 800	<u>≤</u> 30	243	101		≤ 90
Max Depth (ft)	<u>≤</u> 1.5	<u>≤</u> 1.5	6.6	3.2		≤ 1.1
Water Surface Slope (ft/ft)			0.0022	0.0014		<u>≤1.0</u>
See Notes		13	4, 22	9	14	15
Approximate Bankfull Conditions			·			
At Proposed Crossing						
Elevation (ft) (25)			97.6	98.4		
Surface Width (ft)			51	111		
Max Depth (ft)			5.2	4.1		
Gravel Bed Width (ft)			13	18		
See Notes						
At Other X-Sec						
Location			403 d/s	1211 u/s		
Elevation (ft) (25)			98.0	97.1		
Surface Width (ft)			56.0	93		
Max Depth (ft)			2.4	4.1		
Gravel Bed Width (ft)			16	19		
See Notes						
Discharge Measurement						
Date			6/3/98	5/30/98		
Water Surface Elev. (ft) (25)			95.92	96.64		
Discharge (cfs)			48.8	~254		
Average Velocity (fps)			1.07	~4.1		
Max Mean Velocity In Any Vertical			1.34	~5		
Surface Width (ft)			27.0	38.0		
Max Depth (ft)			3.5	~2.6		
Water Surface Slope (ft/ft)			0.0016	0.0019		
See Notes			0.0010	3, 20		
Miscellaneous Observations At Proposed Co	roccina			3, 20		
Date	OSSILIE		6/1/98			6/3/98
Water Surface Elev. (ft) (25)			96.69			0/3/70
Water Surface Slope (ft/ft)			0.0021			
Water Depth (ft) max						1.1
Velocity (fps)						0.7 (s)
See Notes						24

ر 20

			continuea)			
	工	工	工	工	工	工
tream Crossing Designation	PLX 19	PLX 20	PLX 20A	PLX 20B	PLX 21	PLX 22
Drainage Area (sm)		3.29			8.24	3.00
998 Spring Peak Stage						
At Proposed Crossing						
Date		5/30,31	5/30,31	5/30,31	5/30,31	5/29/98
Water Surface Elev. (ft) (25)						97.87
Velocity (fps)	≤ 2.5	≤ 2.0	≤ 1.5	< 1.0	≤ 1.5	< 2.5
Surface Width (ft)	<u><</u> 200	~200	~800	≤ 30	≤ 30	~204
Max Depth (ft)	<u>≤</u> 1.0	<u>≤</u> 1.0	≤ 1.0	≤ 1.0	<u><</u> 1.5	5.5
Water Surface Slope (ft/ft)						0.0017
See Notes	16	17	17	18	18	10, 22
Approximate Bankfull Conditions						
At Proposed Crossing						
Elevation (ft) (25)						96.0
Surface Width (ft)				6	≤ 30	104
Max Depth (ft)				0.5	≤ 1.0	3.6
Gravel Bed Width (ft)				0	0	13
See Notes						
At Other X-Sec						
Location						736 d/s
Elevation (ft) (25)						96.0
Surface Width (ft)						46
Max Depth (ft)						2.5
Gravel Bed Width (ft)						11
See Notes						
Discharge Measurement						6121.00
Date (2) (25)						5/31/98
Water Surface Elev. (ft) (25)						96.64
Discharge (cfs)						117
Average Velocity (fps)						1.36 2.3
Max Mean Velocity In Any Vertical						78.0
Surface Width (ft)						2.3
Max Depth (ft)						0.0016
Water Surface Slope (ft/ft) See Notes						1:
Aiscellaneous Observations At Proposed Cr	acein a					1.
-	6/3/98	6/3/98	6/3/98	6/3/98		
Date Water Sturfage Flow (4) (25)	0/3/30	0/3/30	0/5/70	0/3/96		
Water Surface Elev. (ft) (25)						
Water Surface Slope (ft/ft)	0.7	0.5	0.7	0.5	0.8	
Water Depth (ft) max		I.38 (s)	1.3 (s)	0.35 (s)	1.03 (s)	•
Velocity (fps) See Notes	2.2 (s) 24	1.38 (S) 24	1.3 (S) 24		1.03 (S) 24	

	I	亚	工	亚	-TT	
Street Creating Decimation	PLX 23	PLX 24	PLX 25	PLX 26	工厂 PLX 27	正
Stream Crossing Designation	FLA 23		FLA 23	PLA 20		PLX 28
Drainage Area (sm)		12.9			1.61	18.
1998 Spring Peak Stage						
At Proposed Crossing	5/00.20	£ (00 (00	e 100 / E 100	5 /00 /00	5/20/20	- 1-0 10
Date (0) (25)	5/29,30		5/29/,5/30	5/29/98	5/30/98	5/29/9
Water Surface Elev. (ft) (25)	96.07	95.96		97.36	93.08	97.0
Velocity (fps)	< 2.5	< 3.0	≤ 1.5	< 2	< 3	3.
Surface Width (ft)	60	202	~250	260	101	28
Max Depth (ft)	2.0	7.8	≤ 1.5	3.9	2.8	5.
Water Surface Slope (ft/ft)	0.0025	0.0009		0.0027	0.0043	0.000
See Notes	10	6, 23	13,14,22	6	7	12, 2
Approximate Bankfull Conditions						
At Proposed Crossing						
Elevation (ft) (25)	96.1	94.7		96.4	92.3	94.
Surface Width (ft)	60	101		_68	79	12
Max Depth (ft)	2.0	6.5		2.9	2.0	3.
Gravel Bed Width (ft)	6	60		0	64	11-
See Notes				18		
At Other X-Sec						
Location	583 u∕s	334 u/s		717 u/s	984 u/s	512 u/
Elevation (ft) (25)	97.6	94.8		98.2	92.3	96.
Surface Width (ft)	39	₁109		46	41	7
Max Depth (ft)	2.0	5.7		4.4	3.2	5.
Gravel Bed Width (ft)	0	18		26	18	2
See Notes						
Discharge Measurement						
Date		5/31/98			5/31/98	5/31/9
Water Surface Elev. (ft) (25)		91.35			92.88	96.3
Discharge (cfs)		271			80.6	39
Average Velocity (fps)		2.86			1.71	3.3
Max Mean Velocity In Any Vertical		3.89			2.44	5.0
Surface Width (ft)		74.0			37	74.
Max Depth (ft)		2.7			2.4	2.
Water Surface Slope (ft/ft)		0.0021			0.0011	0.001
See Notes		8			19,30	27, 3
Miscellaneous Observations At Proposed C	Crossing				_	-
Date	5/31/98		6/4/98	5/31/98		
Water Surface Elev. (ft) (25)	95.78			95.06		
Water Surface Slope (ft/ft)	0.0024			0.0020		
Water Depth (ft) max			0.5			
Velocity (fps)	< 2.5		V. J	< 2.0		
See Notes	ب.ب			19		

	工				
Stream Crossing Designation	PLX 29	<u></u>			
Drainage Area (sm)	17.7				
1998 Spring Peak Stage					
At Proposed Crossing					
Date	5/29/98				
Water Surface Elev. (ft) (25)	96.93				
Velocity (fps)		•			
Surface Width (ft)	210				
Max Depth (ft)	9.5				
Water Surface Slope (ft/ft)	0.0014			•	
See Notes	11, 23				
Approximate Bankfull Conditions					
At Proposed Crossing					
Elevation (ft) (25)	93.6				
Surface Width (ft)	49				
Max Depth (ft)	6.2				
Gravel Bed Width (ft)	25				
See Notes					
At Other X-Sec					
Location					
Elevation (ft) (25)					
Surface Width (ft)					
Max Depth (ft)			•		
Gravel Bed Width (ft)					
See Notes Discharge Measurement					
Date Date					
Water Surface Elev. (ft) (25)					
Discharge (cfs)					
Average Velocity (fps)					
Max Mean Velocity In Any Vertical					
Surface Width (ft)					
Max Depth (ft)					
Water Surface Slope (ft/ft)					
See Notes					
Miscellaneous Observations At Proposed C	Crossing				
Date	6/3/98				
Water Surface Elev. (ft) (25)	90.00	•			
Water Surface Slope (ft/ft)	0.0020				
Water Depth (ft) max					
Velocity (fps)					
See Notes					
4					

Notes:

- 1. The downstream culvert was 80 percent plugged by snow.
- 2. Channel was approximately 30 percent blocked by snow at the time of the event.
- 3. Channel was approximately 10 percent blocked by snow at the time of the event.
- 4. Channel was approximately 10 20 percent blocked by snow at the time of the event.
- 5. Channel was approximately 20 30 percent blocked by snow at the time of the event.
- 6. Channel was approximately 10 30 percent blocked by snow at the time of the event.
- 7. Channel was approximately 30 50 percent blocked by snow at the time of the event.
- 8. Channel was less than 10 percent blocked by snow at the time of the event.
- 9. Channel was approximately 20 percent blocked by snow at the time of the event.
- 10. Channel was less than 20 percent blocked by snow at the time of the event.
- 11. Channel was approximately 30 percent blocked by snow at the time of the event.
- 12. Channel was approximately 50 percent blocked by snow at the time of the event.
- 13. There were numerous small channels at this location.
- 14. There was no definable drainage at this location.
- 15. There was a broad area of sheet flow at this location.
- 16. The water at this site was flowing in numerous small polygon troughs.
- 17. This stream channel was broad and flat.
- 18. This channel was grass lined.
- 19. The channel was clear of snow at the time of this event.
- 20. Discharge was partially measured and partially estimated.
- 21. There are two gravel channels at this location.
- 22. Width was partially measured and partially estimated.
- 23. The water was flowing on the top of the snow, and the water depth represents the depth of the water and the depth of the snow to the bottom of the channel.
- 24. An "(s)" next to the velocity means the velocity is a surface velocity.
- 25. Elevation is based on an arbitrary elevation at a single temporary bench mark established at each crossing.
- 26. Velocity was partially measured and partially estimated.
- 27. There was snow in the channel at the time the discharge measurement was made.
- 28. The values presented in this table are preliminary and subject to revision at the time the 1998 spring breakup report is prepared.
- 29. This discharge made 60 feet upstream from pipeline crossing.
- 30. This discharge measurement made at upstream cross section.
- 31. Water surface elevations, widths and depths are provisional and subject to verification of the survey data.
- 32. This discharge measurement was made 500 feet upstream from the upstream cross section.

file: table la.xls

Table A-2: TEMPORARY BENCH MARK LOCATIONS

Stream	Latitude	Longitude	Elevation (ft)	Description	Survey Point Number
PLX 01	N 70° 08' 02.4"	W 147° 03' 29.7"	100.00 100.36 97.30	Primary Temporary Bench Mark for PLX 01 and PLX 02 (TBM1A) Temporary Bench Mark (TBM1B) Temporary Bench Mark (TBM 1C)	1 2 178
LX 02	N 70° 08' 02.4"	W 147° 03' 29.7"	100.00	Primary Temporary Bench Mark for PLX 01 and PLX 02 (TBM1A)	1
	N 70° 07' 57.7"	W 147° 02' 29.8"	98.76 95.61	Temporary Bench Mark (TBM2A) Temporary Bench Mark (TBM2B)	53 222
LX 03	N 70° 08' 22.2"	W 146° 59' 58.9"	100.00	Primary Temporary Bench Mark (TBM3A)	1
	N 70° 08' 10.6"	W 146° 59' 59.5"	105.59	Temporary Bench Mark (TBM3B)	2
LX 04	N 70° 08' 24.7"	W 146° 56' 39.4"	100.00	Primary Temporary Bench Mark (TBM4A)	1
	N 70° 08' 23.0"	W 146 ° 56' 26.8"	99.26	Temporary Bench Mark (TBM4B)	18
	N 70° 08' 25.9"	W 146 ° 56' 38.7"	99.53	Temporary Bench Mark (TBM4C)	2
LX 06	N 70° 08' 53.7"	W 146° 52' 05.1"	100.00	Primary Temporary Bench Mark (TBM6A)	1
	N 70° 08' 47.9"	W 146° 51' 56.1"	101.45	Temporary Bench Mark (TBM6B)	2
LX 07	N 70° 08' 57.2"	W 146° 50' 13.0"	100,00	Primary Temporary Bench Mark (TBM7A)	1
	N 70° 08' 55.0"	W 146° 50′ 11.4″	99.10	Temporary Bench Mark (TBM7B)	2
	N 70° 09' 01.7"	W 146° 50' 08.4"	98.52	Temporary Bench Mark (TBM7C)	17
LX 08	N 70° 09' 15.4"	W 146° 47' 48.6"	100.00	Primary Temporary Bench Mark (TBM8A)	1
	N 70° 09' 14.7"	W 146° 47' 45.5"	99.86	Temporary Bench Mark (TBM8B)	2
	N 70° 09' 15.4"	W 146° 47' 54.9"	99.85	Temporary Bench Mark (TBM8C)	13
LX 09	N 70° 09' 17.5"	W 146° 45' 45.1"	100.00	Primary Temporary Bench Mark (TBM9A)	1
	N 70° 09' 16.2"	W 146° 45' 47.6"	98.10	Temporary Bench Mark (TBM9B)	80
	N 70° 09' 10.7"	W 146° 45' 23.7"	102.09	Temporary Bench Mark (TBM9C)	2
LX 10	N 70° 09' 35.5"	W 146°41' 12.5"	100.00	Primary Temporary Bench Mark (TBM10A)	1
	N 70° 09' 32.9" N 70° 09' 39.4"	W 146° 41' 11.6" W 146° 41' 13.8"	99.54 98.92	Temporary Bench Mark (TBM10B) Temporary Bench Mark (TBM10C)	18

Table A-2: TEMPORARY BENCH MARK LOCATIONS (continued)

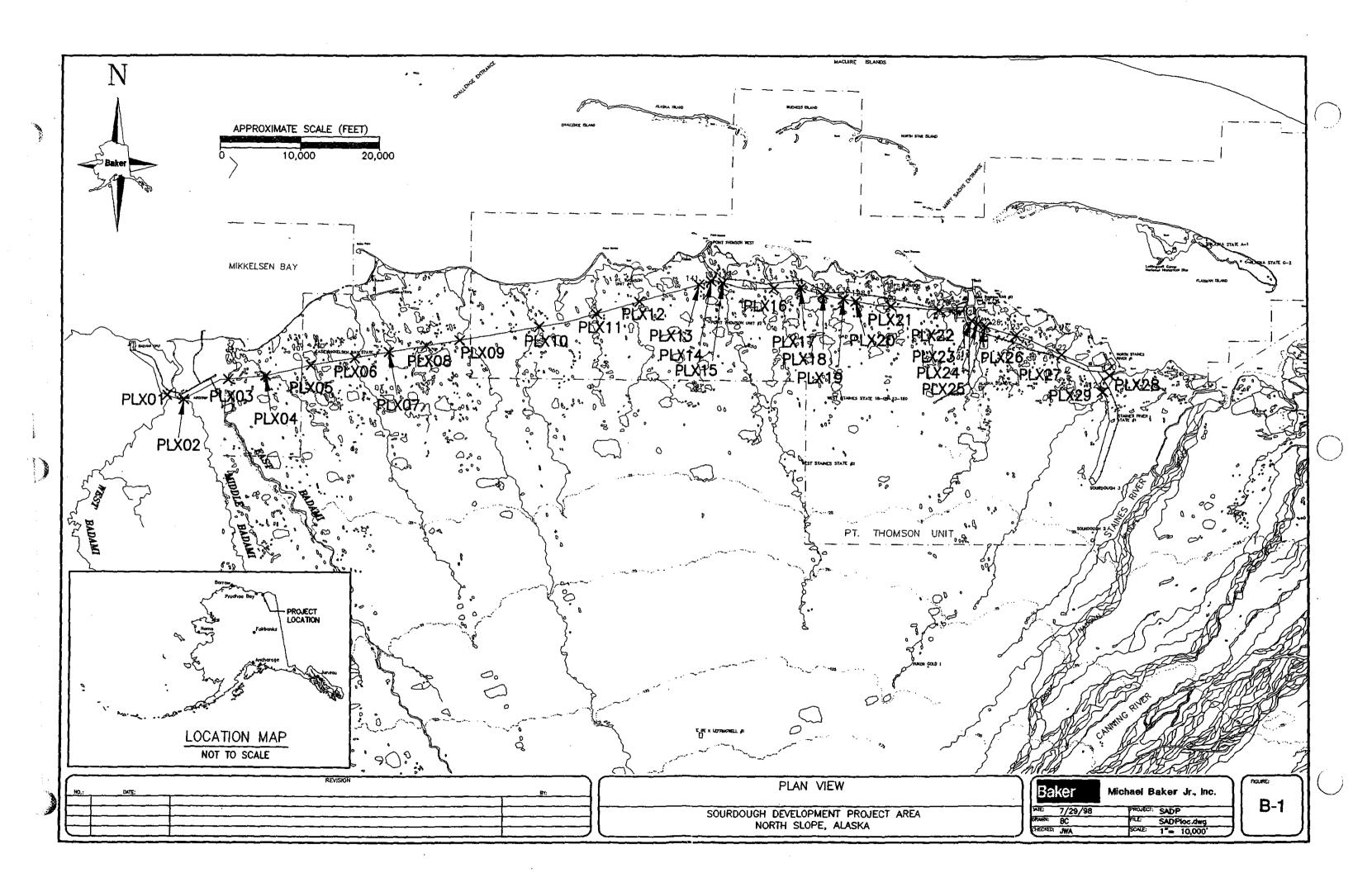
Stream	Latitude	Longitude	Elevation	Description	Survey Point
			(ft)		Number
PLX 11	N 70° 09' 46.8"	W 146° 37' 51.0"	100.00	Primary Temporary Bench Mark (TBM11A)	1
	N 70° 09' 48.6"	W 146° 37' 47.1"	99.15	Temporary Bench Mark (TBM11B)	2
	N 70° 09' 44.4"	W 146° 37' 42.5"	99.20	Temporary Bench Mark (TBM11C)	76
PLX 12	N 70° 10' 10.1"	W 146° 35' 10.1"	100.00	Primary Temporary Bench Mark (TBM12A)	1
	N 70° 10' 09.3"	W 146° 35' 14.0"	94.64	Temporary Bench Mark (TBM12B)	2
	N 70° 10' 13.6"	W 146° 35' 09.0"	97.59	Temporary Bench Mark (TBM12C)	90
PLX 15	N 70° 10' 35.1"	W 146° 29' 54.8"	100.00	Primary Temporary Bench Mark (TBM15A)	1
	N 70° 10' 31.7"	W 146° 30" 00.0"	98.35	Temporary Bench Mark (TBM15B)	29
	N 70° 10' 36.1"	W 146° 29' 58.4"	98.58	Temporary Bench Mark (TBM15C)	2
PLX 16	N 70° 10' 25.7"	W 146° 26' 52.7"	100.00	Primary Temporary Bench Mark (TBM16A)	1
	N 70° 10' 20.4"	W 146° 26' 48.8"	101.08	Temporary Bench Mark (TBM16B)	2
PLX 22	N 70° 10' 06.2"	Ŵ 146° 17' 19.3"	100.00	Primary Temporary Bench Mark (TBM22A)	1
	N 70° 10' 09.9"	W 146° 17" 15.6"	98.25	Temporary Bench Mark (TBM22B)	2
<u> </u>	N 70° 10' 04.3'	W 146° 17' 19.0"	96.91	Temporary Bench Mark (TBM22C)	162
PLX 23	N 70° 09' 41.4"	W 146° 14' 50.4"	100.00	Primary Temporary Bench Mark for PLX 23 and PLX 24 (TBM24A)	1
	N 70° 09' 45.1"	W 146° 15' 20.5"	96.92	Temporary Bench Mark (TBM23A)	101
	N 70° 09' 46.9"	W 146° 15' 04.3"	95.53	Temporary Bench Mark (TBM23B)	175
PLX 24	N 70° 09' 41.4"	W 146° 14' 50.4"	100.00	Primary Temporary Bench Mark for PLX 23 and PLX 24 (TBM24A)	1
	N 70° 09' 40.2"	W 146° 14' 47.8"	95.56	Temporary Bench Mark (TBM24B)	78
ļ	N 70° 09' 42.9"	W 146° 14' 43.2"	96.21	Temporary Bench Mark (TBM24C)	2
PLX 26	N 70° 09' 25.2"	W 146° 12' 26.1"	100.00	Primary Temporary Bench Mark (TBM26A)	1
	N 70° 09' 21.8"	W 146° 12' 21.5"	98.68	Temporary Bench Mark (TBM26B)	40
	N 70° 09' 27.8"	W 146° 12' 23.9"	97.82	Temporary Bench Mark (TBM26C)	2

(continued on next page)

Table A-2: TEMPORARY BENCH MARK LOCATIONS (continued)

Stream	Latitude	Longitude	Elevation (ft)	Description	Survey Point Number
PLX 27	N 70° 09' 02.9"	W 146° 09' 25.8"	100.00	Primary Temporary Bench Mark (TBM27A)	t
	N 70° 09' 06.2"	W 146° 09' 24.4"	100.23	Temporary Bench Mark (TBM27B)	36
	N 70° 08' 58.6"	W 146° 09' 38.9"	93.38	Temporary Bench Mark (TBM27C)	2
PLX 28	N 70° 08' 37.8"	W 146° 06' 46.3"	100.00	Primary Temporary Bench Mark (TBM28A)	t
	N 70° 08' 38.8"	W 146° 06' 39.4"	95.70	Temporary Bench Mark (TBM28B)	2
PLX 29	N 70° 08' 15.5"	W 146° 06' 57.3"	100.00	Primary Temporary Bench Mark (TBM29A)	1
	N 70° 08' 06.3"	W 146° 07' 10.7"	100.33	Temporary Bench Mark (TBM29B)	2

Note:


- 1. The primary temporary bench mark was assumed to have (1) an elevation of 100.00 feet, (2) a Northing of 5,000 feet, and (3) an Easting of 5,000 feet. The primary temporary bench mark at each stream provided the vertical and horizontal control for that stream.
- 2. The latitude and longitude are based on North American Datum 1927.
- 3. Temporary bench marks consist of a 0.5 inch diameter rebar driven into the ground.
- 4. The latitude and longitude were estimated with a Garmin II Plus hand held Global Positioning System.

file: tableA2.xls

APPENDIX B: LOCATION MAP

TABLE OF CONTENTS

Figure B-1: Location Map

APPENDIX C: GENERAL PHOTOGRAPHS

TABLE OF CONTENTS

Photo C-1:	The Leading Edge Of The Snowmelt Runoff.
Photo C-2:	Typical Bed Material Within The Gravel Bed Streams Of This Area
Photo C-3:	Typical Tundra Vegetation.
Photo C-4:	Typical Vegetation In Grass Covered Channel With Low Flow.
Photo C-5	Typical Grass And Gravel Channel With Medium Flow

Photo C-1: The leading edge of the snowmelt run-off.

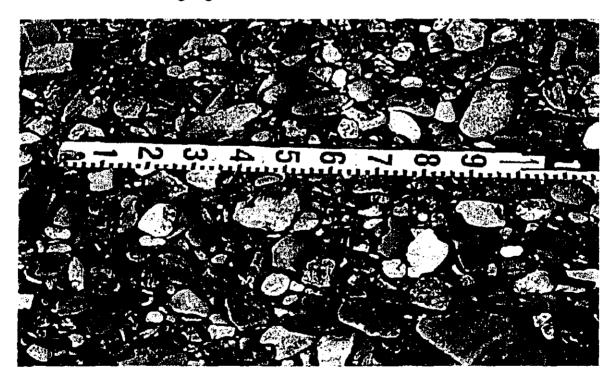


Photo C-2: Typical bed material within the gravel bed streams of this area.

APPENDIX C - TYPICAL PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

1		Michael Baker Jr., Inc.				
1	Date: 6/7/98		Project: 23247			
İ	Drawn; JDA		File: Appendix C			
	Checked: JWA		Scale:			

Photo Number:

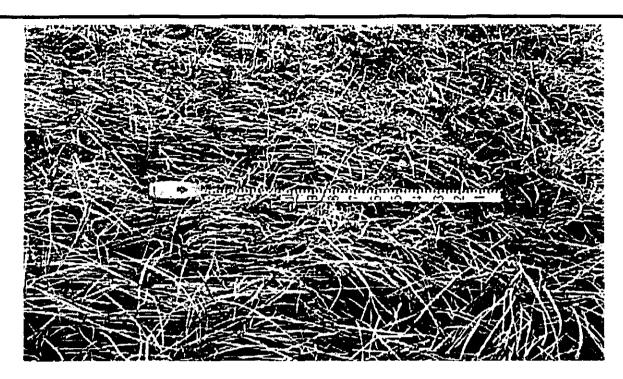


Photo C-3: Typical tundra vegetation.

Photo C-4: Typical vegetation in grass covered channel with low flow. Note that the grass is not laid down by the flow.

APPENDIX C - TYPICAL PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

	Michael Baker Jr., Inc.			
Date: 6/7/98	Project: 23247			
Drawn: JDA	File: Appendix C			
Checked: JWA	Scale:			

Photo Number:

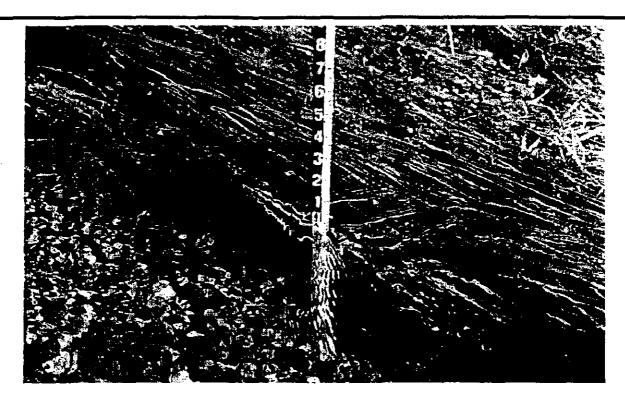


Photo C-5: Typical grass and gravel channel with medium flow. Note how the grass is laid down by the higher flow.

APPENDIX C - TYPICAL PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

	Michael Baker Jr., Inc.		
Date: 6/7/98		Project: 23247	
Drawn: JDA		File: Appendix C	
Checked: JWA	_	Scale:	

C-3

APPENDIX D: PLX 01

TABLE OF CONTENTS

Figure PLX 01-1: Plan

Figure PLX 01-2: Profile

Figure PLX 01-3: Profile

Photo Sheet PLX 01-1: Stream PLX 01 Photographs

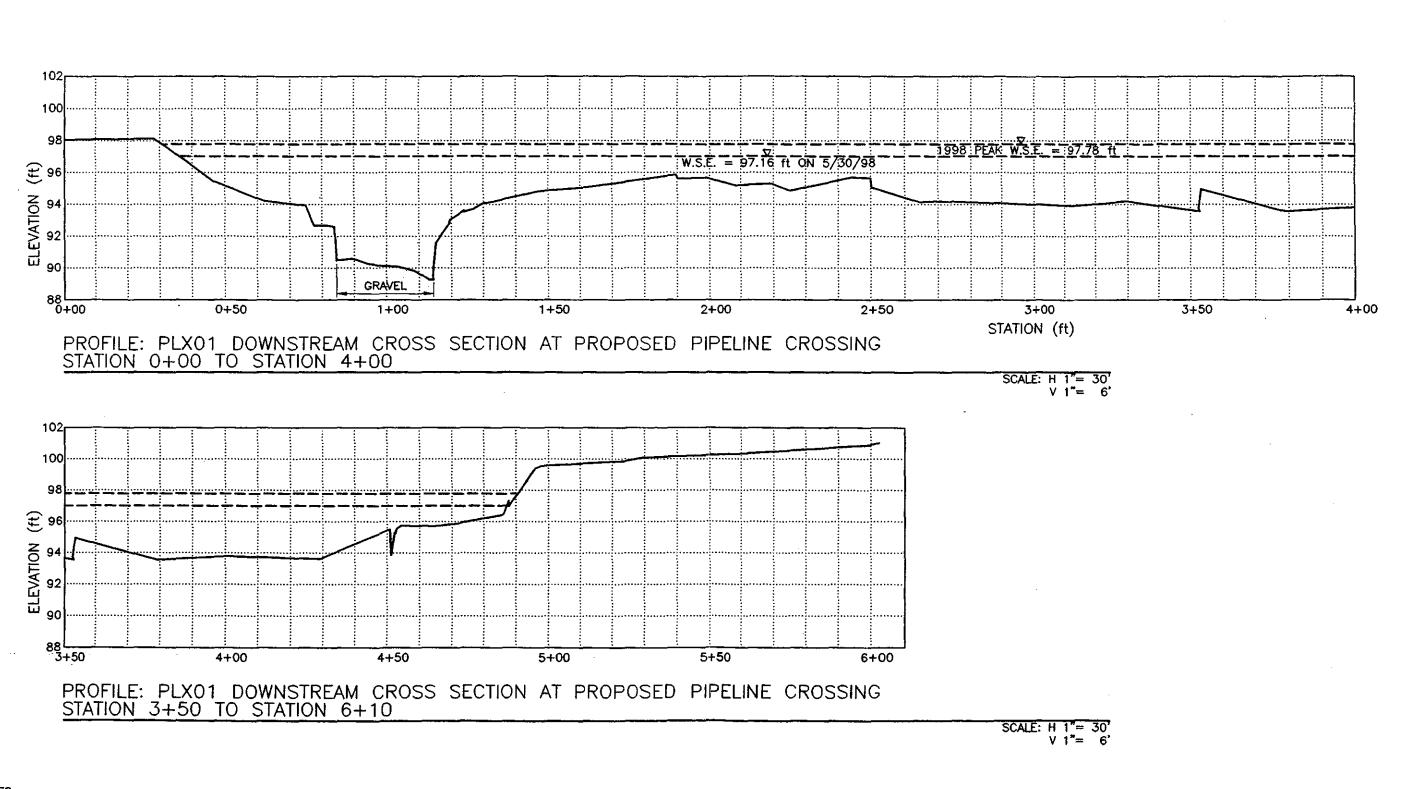
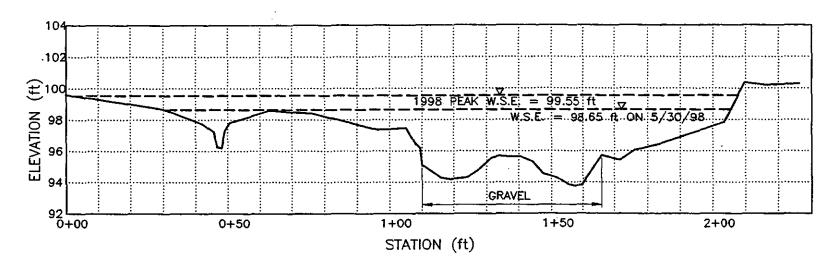

Table PLX 01-1: Survey Data For PLX 01 And PLX 02

Table PLX 01-2: Additional Survey Data For PLX 01

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02

Notes:

1. THE SURVEY DATA FOR PLX 02 CONTAINED IN TABLES PLX 01-1 AND PLX 01-3 ARE PROVISIONAL, SUBJECT TO VERIFICATION.



1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM1A.
2. W.S.E.= WATER SURFACE ELEVATION

STREAM PLX01 - WEST BADAMI CREEK PROFILE SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

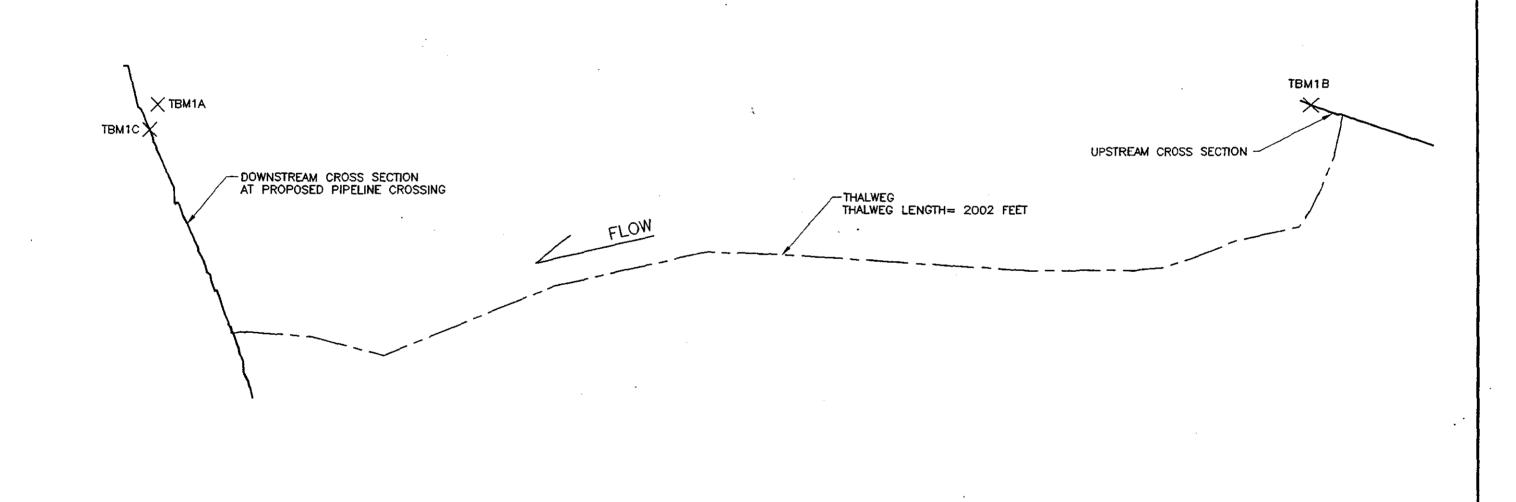
Baker Michael Baker Jr., inc. DATE: 8/3/98
DRAWN: BC
CHECKED: JWA ROJECT: SADP FILE: SADP-X1
SCALE: VARIES

PLX 01-3

PROFILE: PLX01 UPSTREAM CROSS SECTION

- NOTES:

 1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM1A.


 2. W.S.E.= WATER SURFACE ELEVATION

ł	$\overline{}$		REMISION		
ı	NO.:	DATE:		BY:	!
L					l L
l					
ı					11
l	C				
L					

STREAM PLX01	- WEST BADAMI CREEK	
	PROFILE	
SOURDOUGH AR	EA DEVELOPMENT PROJECT	
NORTH	H SLOPE, ALASKA	

Baker		Michael Baker Jr., Inc.		
DATE:	8/3/98	PROJECT: SADP		
DRAWH:	BC	FILE: SADPX1		
CHÉCYED:	JWA	SCALE: VARIES		

PLX 01-2

STREAM PLX01 - WEST BADAMI CREEK

PLAN

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA Michael Baker Jr., Inc.

PROJECT: SADP

FILE: SADP-X1

SCALE: 1"= 160"

PLX

01-1

1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.

2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM1A.

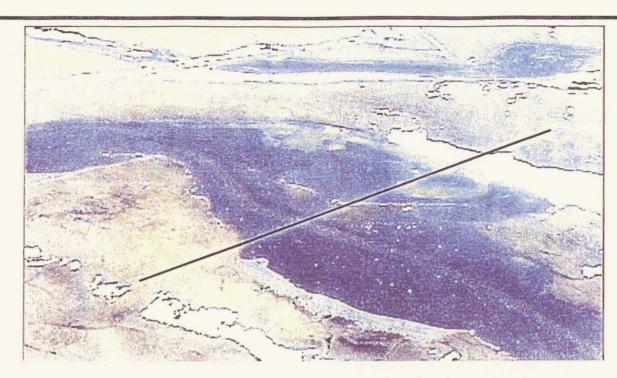


Photo PLX 01-1: Looking northeast at the proposed pipeline crossing (5/30/98).

Photo PLX 01-2: Looking downstream at the main channel of the proposed pipeline crossing (6/6/98).

STREAM PLX 01 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.		
Date: 6/7/98	Project: 23247		
Drawn: JDA	File: photo01		
Checked: JWA	Scale:		

Photo Number:
PLX
01-1

Table PLX 01-1: Survey Data For PLX 01 And PLX 02

Survey				
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	
1	5000	5000	100	TBMP-01 (TBM1A)
2	5000	3095.01	100.36	CG-UPSTR (TBM1B)
50	5300.232984	5195,474763	99.38	P01-P02-TRAV
51	3899.835966	5299.795892	99.38	PK-CULVERT
52	4890.640407		98.76	PK-LITTLE-CULV.
53	6263.448502	5711.026862	98.76	CG-PO2-UPSTR (TBM2A)
100	5006.713798	3110.113077	100.283	T
101	5002.983794	3101.108912	100.201	T/SH
102	4997.473998	3089.423831	97.85	GB
103	4989.575679	3070.32216	96.405	REW
104	4986.855769	3064.094153	96.07	G
105	4985.733331	3059.97293	95.428	
106		3054.143215	95.719	G/C
107		3047.540494	93.828	
108		3043.234365	93.873	•
	4981.020191		94.3	
110	4980.093594		94.548	
111	4978.400333		95.323	•
112		3029.607813	95.634	
113	4976.020588		95.643	
114		3023.268337	95.688	
115		3021.233367	95.543	
116	4972.675683		94.721	
117	4971.690997		94.327	
118	4970.991873		94.248	
119 120	4970.178109		94.207	
120	4969.166908 4968.310022		94.302 94.657	
121	4967.322372		94.637 95.102	
123	4967.238817		95.102 96.184	
123	4966.836964		96.434	
125	4965,829707	2996.24692	97.463	
125	4962.944427		97.463	
127	4956.243421		98.407	
128	4951.753336	2956.269562	98.59	
129	4947.779865			REW
130	4947.235933	2943,279101	97,287	
131	4946.73462	2942.398183	96.213	
132	4946.243338	2940.9906	96,256	
133	4945.989042	2940,262011	97.202	
134	4944,766729	2936,759935	97.745	
135	4940.929881	2925,184924	98.688	
136	4936.166431	2911.490125		T/HW
137	4931.099406	2896.92256	99.604	
137	5025,951276	3035,235038	93.764	
139	4982.877492	3045,466065	93.925	

Table PLX 01-1: Survey Data For PLX 01 And PLX 02 (continued)

Survey				U2 (continued)
Point	Easting	Northing		Description
Number	(ft)	<u>(ft)</u>	(ft)	
140	4953.929527	3050.932792	93.874	i i
141	4912.853444		93.837	TH
142	4858.830204		93.759	
143		3096,466742	94.172	TH
144	4791.832923	3113.588417	92.76	TH
145	4768.723912	3211.77967	92.829	
146	4737.889491	3289.483202	93.423	TH
147	4723.379248	3335,355051	92.619	TH
148	4718.046541	3388.401301	92.397	TH
149		3570.459449	91.287	TH
150		3742.284341	92.069	SB
151		3968.850216	89.148	
152		4098.707201	90.5	
153		4347.626322	90.359	
154		4629.406704	89.929	
155		4748.740818	88.489	
156	4613.248371	4864,89821	89.264	
157		4954.267791	89.426	
158		4879.138302	89.245	
159		4880.113853	92.756	
160		4881.779147	93.589	
161		4882.519405	93.691	
162		4884.038695	94.087	
163		4889.799028	94.817	
164		4901.851833		TWET
165	4710.455651	4913.698365		TWET
166		4923.543115		TWET
167		4926.063664	95.658	
168		4926.174978	95.045	
169	4756.599283		94.19	
170	4811.639333		94,196	
171	4831.348939		93.74	
	4831.863525		94.939	
173	4924.110369		95.51	
174	4925.937548		95,243	
175	4926.308443	5003.185228	95.545	
176	4936.773334	5008.185217	95.707	
177	4957.42392	5014.202161		T/TOE
178	4959.1925	5014.791132		CREST.GA. (TBM1C)
179	4968.416994	5019.052087	99.567	
180	4992.521746	5028.237528	99.864	
181	5065.562887	5057.255753	101.032	T
200	6245.658959	5664.886223	99.438	T
201	6261.131706	5705.026038	97.304	Т
202	6275.141597	5738.291372	95.413	<u>T</u>

Table PLX 01-1: Survey Data For PLX 01 And PLX 02 (continued)

Survey		ita POLITEX O		
Point	Easting	Northing		Description
Number	(ft)	<u>(ft)</u>	<u>(ft)</u>	
203	6279.073329		94.602	
204		5755.398766	94.209	
205		5760.182562	94.2	
206		5762.794743	93.713	
207		5765.371005	93.367	
208		5767.729506	93.122	
209		5770.346266	92.967	
210		5773.043713	92.436	· · · · · · · · · · · · · · · · · · ·
211		5774.093273	92.255	·
212		5776.468495	91.046	
213	6087.357761	5827.496541	90.123	
214	6022.326142		90.508	
215		5627.650619	87.59	
216		5518.651647	90.212	
217		5484.067956	89.279	
218		5490.548408	88.878	
219		5551.376814	89.895	
220		5562.43127	88.362	
221		5574.157918	87.616	
222		5527.283934		CGDS (TBM2B)
223		5864.585523	97.847	
224		5828.790128	97.787	•
225		5801.737811	96.359	
226		5797.943062	95.451	
227		5795.037232	94.648	
228		5793.355409	94.123	
229		5790,256548	93.965	
230		5786.152544 5781.944535	94.262	
231			94.076	
232		5779.599485 5779.419523	93.513	
233		5778.418523	92.774	
234 235		5777.502194 5777.598548	90.927 92.446	
i				
236	6346.210713		86.895	
237	6340.681613	6180,262066	86.285 86.474	
238			86.474	
239		6169,837834	84.85	
240	6326.390834		83.99	
241	6320.894826		83.546	
242	6318.304234		82.561	
243	6317.243315		82,333	
244	6316.580207	6099,734617	82.197	
245	6315.971448		81.703	
246	6315.298771	6093.398708	81.144	
247	6314.473663	6090.560863	80.538	
248	6314.157597	6088.071484	79.148	
249_	6314.339761	6087.285385	78.406	TH/C

Table PLX 01-1: Survey Data For PLX 01 And PLX 02 (continued)

Survey		utu 1 01 1 221 01				
Point	Easting	Northing	Elevation	Description		
Number	(ft)	(ft)		Description		
			(ft)	0/0		
250		6075.452902	77.99			
251	6310.774409		80.037			
252		6072.004832	80,268			
253	6310.27856		81.89			
254		6068.043993	78.469	LEW		
255	6308.726925	6062.582934	79.289	T		
256	6307.758754	6059.330011	79.625	T		
257	6307.239142	6057.121802	80.304	T		
258	6305.731338	6049.086738	79.661	T		
259	6304.240423	6041.063758	80.847	T/CG		
260	6304,23058	6040.984121	84.542	T/CG		
261	6302.432558	6031.346915	86.008	T		
262	6298.219479	6011.030394	87.368	T		
263	6291.859552	5985.885988	88.307	T		
Legend:						
G = grass		TH = thalweg		US = upstream		
T = tundra		CG = crest gage		TWET = wet tundra		
C = cobbles		GB = ground brea	ık	M = mud		
LEW = left edge of water		SH = shoulder		SB = sand bags		
REW = right edge of water		DS = downstream	ı	PK = "pk" nail		
CL = center line						
file:plx1&2.xls						

Table PLX 01-2: Additional Survey Data For PLX 01

Survey				
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	
1	5000	5000	100	P01TBMCL
2	5000	3095	99.64	POITBMUS
11	4501.89656	4844.977258	98.042	T
12	4529.211699	4852.062736	98.128	T
13	4533.217381	4853.445769	97.564	T/HWM
14	4546.152667	4859.124905	95.455	T
15	4562.689989	4859.805568	94.208	T
16	4574.490327	4864.827362	93.934	
17	4576.209056	4865.531673		LEW/G
18	4577.13166		92.672	
19		4866.469948	92.67	
20		4866.702355	92.589	
21		4866.906627	90.46	
22		4868.294908	90.577	
23		4870.483522	90.244	
24	4597.544911	4871.828881	90.118	
25	4601.794321	4872.990804	90.086	
26		4874.563446	89.824	
27 28		4876.514611	89.246	
28 29		4877.158674 4877.430474	89.363 91.542	
30	4616.950891	4878.724678	93.003	
31	4621.153094	4880.33797	93.539	
32	4627.238641	4882.816402	94.052	
33	4657.146903	4894.761106	95.072	
34	4682.437171	4905.254965	95.617	
35		4908.274355		T/POND/LEW
36		4911.761877	95.172	
37	4714.930837	4918.96025	94.856	
38	4751.463419	4932.752212	94.137	
39.	4770.103328	4939.36002	94.11	M
40	4797.553637	4950.31603	93.913	M
41	4833.887397	4965.192195	93.548	M
42	4858.93131	4973.018821	93.546	M
43	4878.230118	4981.713846	93.792	M
44	4904.765446	4993.192065	93.626	M
45	4924.77534	5002.674373	93.873	M
46	4925.716808	5002.907774	95.302	G
47	4927.672905	5003.407345	95.736	REW
48	4944.103424	5008.807318	95.859	T
49	4957.982766	5014.15964	96.52	T

Table PLX 01-2: Additional Survey Data For PLX 01 (continued)

Table PLX 01-2: Additional Survey Data For PLX 01 (continued)							
Survey							
Point		Easting	Northing	Elevation	Description		
Number		(ft)	(ft)	(ft)			
	50	4959.299999	5014.789013	96.975	CG.C/L. See note 1.		
	51	4966.649531	5018.523473	99.407	T.C/L. See note 1.		
	52	4996.776056	5033.825687	100.08	T.C/L. See note 1.		
	53	5027.493948	5041.257927	100.338	T.C/L. See note 1.		
	54	5065.143074	5050.151828	100.893	T		
Legend:							
G = grass			TH = thalweg		US = upstream		
T = tundra			CG = crest gage		TWET = wet tundra		
C = cobbles			GB = ground brea	ık	M = mud		
LEW = left e	dge c	of water	SH = shoulder		SB = sand bags		
REW = right	edge	of water	DS = downstream		PK = "pk" nail		
CL = center l	ine				•		
Notes:	Notes:						
	-				ole PLX 01-1 (P-01.txt) and are not		
the	the same points. Point No. 50 in this table is the same point as No. 178 in Table PLX 01 (P-01.txt).						

file:plx01-2.xls

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02

Survey				
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	-
1	4890.64	5661.19	105.4	PK/L.CULV.
2	3899.84	5299.8	104.63	PK/B.CULV.
101	4827.733907	5648.36582	104.818	GSH
102	4844.302932	5657.304352	105.047	GSH
103		5669.520818	105.249	
104	4878.887623		105.237	
105		5680.242788	105.161	
106		5689.904426	104.745	
107		5700.294125	104.464	•
108		5710.324977	104.364	
109		5719.838279	104.279	
110		5685.873976	104.605	
111		5675.758419	104.689	
112 113		5665.256504 5655.314272	104.777	
113		5650.160915	104.733 104.713	
115	4905.241428		104.715	
116		5638.233995	104.770	
117		5628.641427	104.811	
118		5618.992294	104.693	
119		5608.371976	104.643	
120	4840.429744	5599.212413	98.805	GTO
121	4867.323976	5608.115731	97.724	GTO
122	4907.372003	5614.20194	92.507	SB
123	4897.799864	5616.849096	94.385	SB
124	4877.953879		97.014	
125	4877.821448	5622.38851	100.977	
126		5653.928726	101.913	
127		5645.225183	93.316	
128	4936.431703		91.817	
129	4928.463425 4923.152696		98.077	
130 131	4923.132696	5640.464096 5636.187037	100 97.414	
131	4920.336197	5628.902602	91.51	
132	4920.451823	5632.227713	95.284	
134	4915.871946	5631.42031	93.264	
135	4913.222248	5627.568649	95.483	
136	4917.225592	5623.198793	92.284	
137	4914.850575	5621.486121	92.204	
138	4910.068834	5626.432604	95.409	
139	4903.332621	5628.158676	99.225	
140	4903.767467	5621.994787	95.031	
140	4909.067642	5615.846789	93.031	
141	4903.007042	5618.868499	91.813	

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02 (continued)

Survey				
Point	Easting	Northing		Description
Number	(ft)	(ft)	(ft)	
143	4911.410803	5619.123021	99.661	
144		5691.068697	99.122	
145		5691.517706	91.529	
146	4856.964706		89.671	
147	4857.398291		98.474	
148		5621.305528	98.517	
149	4925.436204	5620.453358	89.657	
150	4932.089514	5629.466388	91.757	
151	4931.8194	5630.045071	100.529	
152	4870.794958		100.319	
153	4870.258173		91.755	
154	4895.892077		101.484	
155	4845.22525	5666.268208	101.63	
156	4831.773502	5683.955135	91.52	
157 158	4847.091802 4852.600136	5688.869133	90.871	
159	4858.333946		96.389 98.759	
160	4859.531255		96.739 95.178	
161	4862.283508		95.799	
162	4866.486511	5689.251423	97.373	
163	4867.72134	5695.446607	93.395	
164	4864.298989	5698.703788	91.915	
165	4866.983764	5699.211273	92.258	
166	4879.895316	5691.394139	100.147	
167	4880.397788	5697.539061	96.211	
168	4873.737326	5705.107618	91.467	
169	4896.188448	5704.604611	96.714	SB
170	4884.155969	5742.141242	96.961	T
. 171	4869.557921	5733.950875	94.821	T
172	4865.10601	5731.194919	92.99	REW
173	4863.668709	5730.237981	92.332	G
174	4858.230689	5727.768983	92.123	G
175	4856.352135	5726.332765	88.556	C
176	4828.481045	5709.615155	88.976	M
177	4823.416403	5705.288797	90.413	M
178	4818.963658	5702.006159	91.709	M/G
179	4817.581523	5701.236148	92.997	LEW
180	4814.804652	5699.545105	93.718	T
181	4790.731484	5684.755622	96.015	T
182	4933.463616	5566.823805	98.243	T
183	4951.607411	5587.092533	96.921	T
184	4960.217507	5600.268294	93.597	LEW
185	4961.131798	5601.371112	92.757	C
186	4966.097131	5606.788728	92.469	<u>C</u>

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02 (continued)

Survey				
Point	Easting	Northing	Elevation	Description
Number	<u>(ft)</u>	(ft)	(ft)	
187	4971.682232	5614.665054	91.72	
188	4971.607175	5614.898446	91.718	
189	4975.407088		90.655	
190		5621.580851	90.416	
191	4982.157177		90.64	
192		5623.707155	91.889	
193 194	4984.338328	5628.1406 5639.733358	92.728	
194		5649.156225	93.631 93.857	
195	4999.590867		93.637	
197		5666.749171	97.206	
201		5328.312382	104.302	
202		5325.226107	104.28	
203		5323.272477	104.365	
204		5322.959112	104.508	
205	3884.366741	5321.942354	104.453	GSH
206	3894.880123	5321.134322	104.405	GSH
207		5320.504369	104.17	GSH
208		5319.478067	104.09	
209		5318.85317	103.962	
210		5318.191544	103.936	
211		5318.055321	103.68	•
212	4031.539713		103.671	
213		5279.611475	104.065	
214 215		5278.226649 5277.740656	104.223 104.217	
213	3938.480352		104.217	
217		5277.873806	103.777	
9	3918.030931		103.917	
219		5278.790345	104.346	
220	3895.247747		104.461	
221	3883.776061	5280.737306	104.392	GSH
222	3872.788145	5281.923762	104.264	GSH
223	3856.304159	5283.64971	104.041	GSH
224	3816.549511	5288.196719	104.295	GSH
225	3773.519186	5292.389681	104.845	GSH
226	3769.282352	5278.932717	97.619	GTO
227	3794:16473	5275.53447	97.071	GTO
228	3832.213777	5267.56962	95.806	GTO
229	3869.085417	5257.378673	93.801	
230	3864.455965	5258.006307	93.728	SB
231	3853.602832	5260.256896	95.459	SB
232	3859.563934	5268.931927	97.544	SB

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02 (continued)

Survey				
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	
233	3865.826435	5276.776809	101.783	SB
234	3884.79429	5275.678604	102.514	SB
235	3938.0707	5271.592777	101.378	SB
236	3947.199148	5253.39604	93.89	SB
237	3951.261643	5247.910644	93.549	SB
238	3941.733699	5245.014233	90.561	SB
239	3940.40995	5238.006297	89.735	SB
240	3934.086122	5239.424766	90.826	SB
241	3929.611108	5243.516878	95.912	: SB
242	3923.400841	5240.965013	89.923	
243	3917.298876	5244.60597	95.983	
244	3911.244114	5244.087452	90.238	
245	3909.275251	5259.463717	94.927	
246	3905.588961	5262.831381	97.65	
247	3901.040847	5258.537822	93.956	
248		5250.125488	90.723	
249	3899.151042	5259.70357	93.569	
250	3894.891387	5265.088111	98.611	
251	3890.735518	5261.872082	95.196	
252	3889.055917	5253.523014	92.404	
253 254	3888.127467 3884.111009	5261.857976	95.061	•
254 255	3879.484252	5269.399375 5265.9219	100.124 96.963	
255 256	3878.379997	5257.960462	93.674	
257	3877.26056	5264.695881	95.937	
258	3873.50651	5271.100835	100.518	
259	3869.41114	5265.917492	96.994	
260	3870.813837	5257.151061	93.189	•
261		5269.617893	97.645	
262	4024.099217	5264.521817	96.838	
263	3973.210656	5259.682134	95.808	
264	4104.887355	5340.515357	97.977	
265	4058.452657	5335.477198		GTO
266	3957.458142	5334.676158	95.318	
267	3849.292339	5346.158448	95.084	GTO
268	3822.23501	5346.788352	95.896	GTO
269	3782.794244	5346.029354	97.049	GTO
270	3729.653644	5348.201976	98.59	GTO
271	3854.413581	5346.691802	94.621	
272	3870.053927	5346.815309	93.47	
273	3870.213551	5338.58633	96.689	
274	3874.01493	5331.843108	100.628	
275	3878.042832	5339.67932	95.729	
276	3878.181138	5346.961276	93.407	

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02 (continued)

	Survey				
1	Point	Easting	Northing	Elevation	Description
L	Number	(ft)	(ft)	(ft)	
	277	3880.834338	5347.423848	92.839	SB
	278	3880.768434	5339.664337	95.69	SB
1	279	3884.671702	5331.979103	100.337	SB
	280	3889.290629		95.447	SB
	281		5347.117734	92.463	SB
l	282		5347.186559	92.375	i i
	283		5340.613455	94.621	
	284	3895.512841	5333.720716	98.687	SB
	285	3900.443006	5340.129982	93.652	
	286	3900.290258	5346.851092	90.944	
	287	3902.09559		90.645	
H	288		5341.284709	93.566	
	289		5335.037984	97.409	
	290		5339.832596	93.352	
	291	3911.117898	5346.676896	90.141	
	292		5345.815279	90.571	
	293	3913.0896	5343.13839	91.656	
	294		5337.462982	95.014	
ļ	295		5341,411445	92.144	
	296		5343.581392	90.817	, i
	297		5344.208539	90.411	
	298 299	3930.179131	5342.253243	92.219	
	300	3934.611154	5338.431638 5342.546162	95.2 8 2 9 1.85 9	
	301	3934.494849	5342.340102	89.063	
	302	3937.351573	5346.224643	90.325	
	303	3946.239017	5334.845776	95.508	
	304		5331.085019	97.02	
	305	3928.810539		96.782	
	306		5332.247394	97.058	
	307	3906.211361	5332.234476	98.119	
	308	3895.445503	5331.305389	99.313	
	309	3881.244174	5329.713835	100.828	
	310	3873.421052	5329.751424	101.175	
	311	3863.023962	5330.839768	100.557	
	312	3857.58153	5340.784612	96.348	
1	313	3874.304279	5354.031225	93.515	
	314	3874.237366	5353.69461	101.051	
	315	3884.925728	5345.474362	92.548	
	316	3884.626543	5345.219782	100.494	
	317	3895.979107	5347.364639	91.046	
	318	3896.109672	5347.004622	99.117	
Ī	319	3906.698553	5348.63756	89.869	
	320	3906.544283	5348.108626	97.943	
	320		2240.100020	21.543	<u> </u>

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02 (continued)

	Survey				
	Point	Easting	Northing	Elevation	Description
L	Number	(ft) .	(ft)	(ft)	
	322	3918.066383	5354.234498	96.139	
	323		5353.678987	88.03	
	324	3929.635481	5353.375424	96.115	
	325		5238.768876	87.329	
	326	3929.664802	5239.370184	96.069	
	327		5239.995786	87.601	
	328	3918.053926 3905.308274		96,222	
	329 330	3905.248959	5248.327904 5248.909712	89.86 97.888	
	331	3895.301354	5252.311572	90.887	
	332	3895.279906	5252.690119	99.056	
	332	3883.667794	5255.609893	92.53	
	333	3883.900041	5255.808869	100.477	
	335	3873.356509		93.267	
	336	3873.334261		100.857	
	337	3836.926243	9 9	95.59	
l	338	3861.985242		94.436	
	339	3885.988453	5194.503436	93.417	T
1	340	3900.350887	5195.071891	92.228	LEW
	341	3907.159485	5195.208086	91.352	: G
	342	3912.047337	5195.100718	91.164	3 G
l	343	3912.593925	5195.283389	89.286	S C
	344	3923.534719	5189.901171	89.492	
	345	3930.295773	5190.599499	89.486	
l	346	3935.669539	5190.432969	90.035	
١.	347	3941.012313	5190.490097	90.302	
l	348	3946.273343	5191.746865	90.876	
	349	3947.623494	5191.611213	92.232	
	350 351	3948.736925 3957.994186	5191.52099 5191.533541	92.996	
	351	3999.951581	5191.533341	94.593	
	352 353	4049.619507	5204.656556	96.345 97.664	
	353 354	4049.019307	5391.693413	97. 004 97.19	
	354 355	4052.021236	5394.254652	94.788	
	355 356	4009.696643	5398.533436	95.132	
	350 357	3964.577456	5403.419692	95.132 95.247	
	357	3947.597955	5404.866738	93.247	
	359	3939.280715	5405.20516		5 REW
	360	3936.117775	5405.551547	91.339	
	361	3934.268609	5405.361788	88.485	
	362	3900.21331	5410.783199	88.719	
	362 363	3898.022905	5410.783199	90.818	
	364	3892.216249	5410.63918	90.818	
	365	3883.68042	5410.43404	92.151 93.87	
	303	3003.00042	J410.70U4Z3	73.8/	1

Table PLX 01-3: Culvert Data For PLX 01 And PLX 02 (continued)

Survey			
Point Easting	Northing	Elevation	Description
Number (ft)	(ft)	(ft)	
366 3831.7445	5409.133585	95.238	T
367 3797.431222	5404.888647	97.228	T
Legend:			
G = grass	CL = center line		DS = downstream
T = tundra	TH = thalweg		US = upstream
C = cobbles	CG = crest gage		M = mud
LEW = left edge of water	GB = ground brea	ak	SB = sand bags
REW = right edge of water	SH = shoulder		PK = "pk" nail
, -	CT = Culvert Top)	-
	•		
file:culverts.xls			

APPENDIX E: PLX 02

TABLE OF CONTENTS

Figure PLX 02-1:

Plan

Figure PLX 02-2:

Profiles

Photo Sheet PLX 02-1:

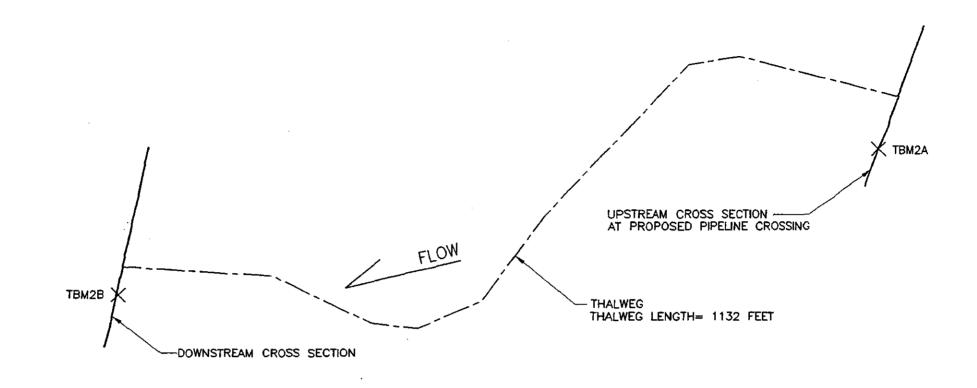

Stream PLX 02 Photographs

Photo Sheet PLX 02-2:

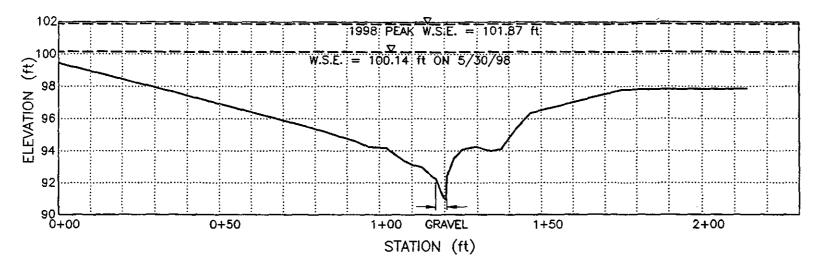
Stream PLX 02 Photographs

Notes:

- 1. THE PLAN AND PROFILE FOR PLX 02, AND THE DATA CONTAINED THEREIN, ARE PROVISIONAL, SUBJECT TO VERIFICATION OF THE SURVEY DATA CONTAINED IN TABLES PLX 01-1 AND PLX 01-3.
- 2. The survey and culvert data associated with PLX 02 were collected in combination with the data collected for PLX 01 and are presented in Tables PLX 01-1 and PLX 01-3.

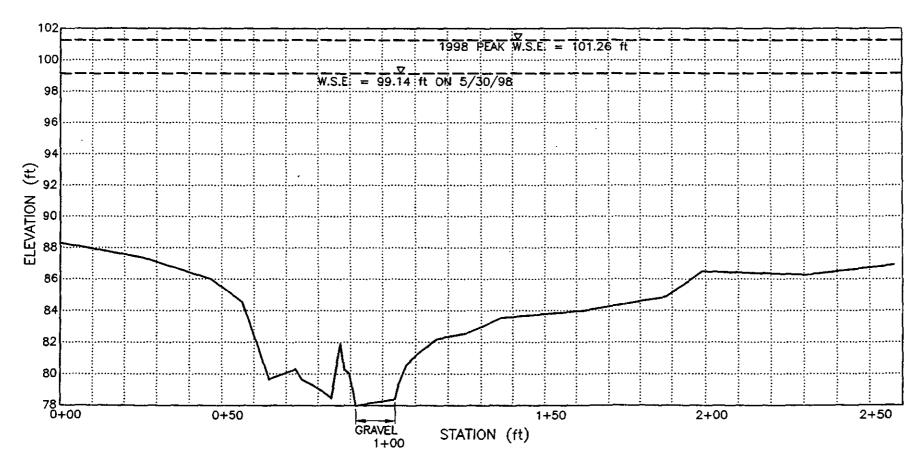
X TBM1A

1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.
2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM1A. THIS IS THE SAME TBM USED FOR THE PLX01 SURVEY.


PROVISIONAL SUBJECT TO CHANGE UPON FURTHER REVIEW OF SURVEY DATA

1		REVISION	···
NO.:	DATE:		BY;

STREAM PLX02 - MIDDLE BADIMI CREEK PLAN


SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Ba	ker	Michael Baker Jr., Inc.
DATE	8/3/98	PROJECT: SADP
DRAWN:	BC	FILE SADP-X2
CHECKED	JWA	SCALE: 1'= 120'

PROFILE: PLX02 UPSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

PROFILE: PLX02 DOWNSTREAM CROSS SECTION

SCALE: H 1"= 30' V 1"= 6'

PROVISIONAL SUBJECT TO CHANGE UPON FURTHER REVIEW OF SURVEY DATA

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM1A.
2. W.S.E.= WATER SURFACE ELEVATION

		REVISION	
NO.:	DATE:	·	8r:
Ĺ			

STREAM PLX02 - MIDDLE BADIMI CREEK PROFILES

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker		Michael Baker Jr., Inc.		
DATE:	8/3/98	PROJECT: SADP		
OKAWN:	BC	FILE: SADP-X2		
CHECKED:	JWA	SCALE: VARIES		

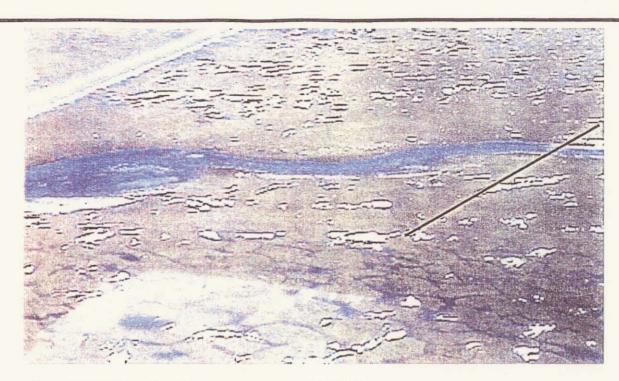


Photo PLX 02-1: Looking east at stream (5/30/98).

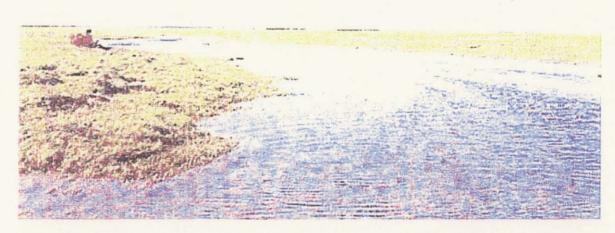


Photo PLX 02-2: Looking north, the proposed pipeline crossing is at the upper portion of the riffle in the straight reach before the bend to the left (6/2/98).

STREAM PLX 02 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker I	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo02
Checked: JWA	Scale:

Photo PLX 02-3: Looking north, the person in the photo is indicating the peak water surface elevation at the crossing (6/6/98).

STREAM PLX 02 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo02
Checked: JWA	Scale:

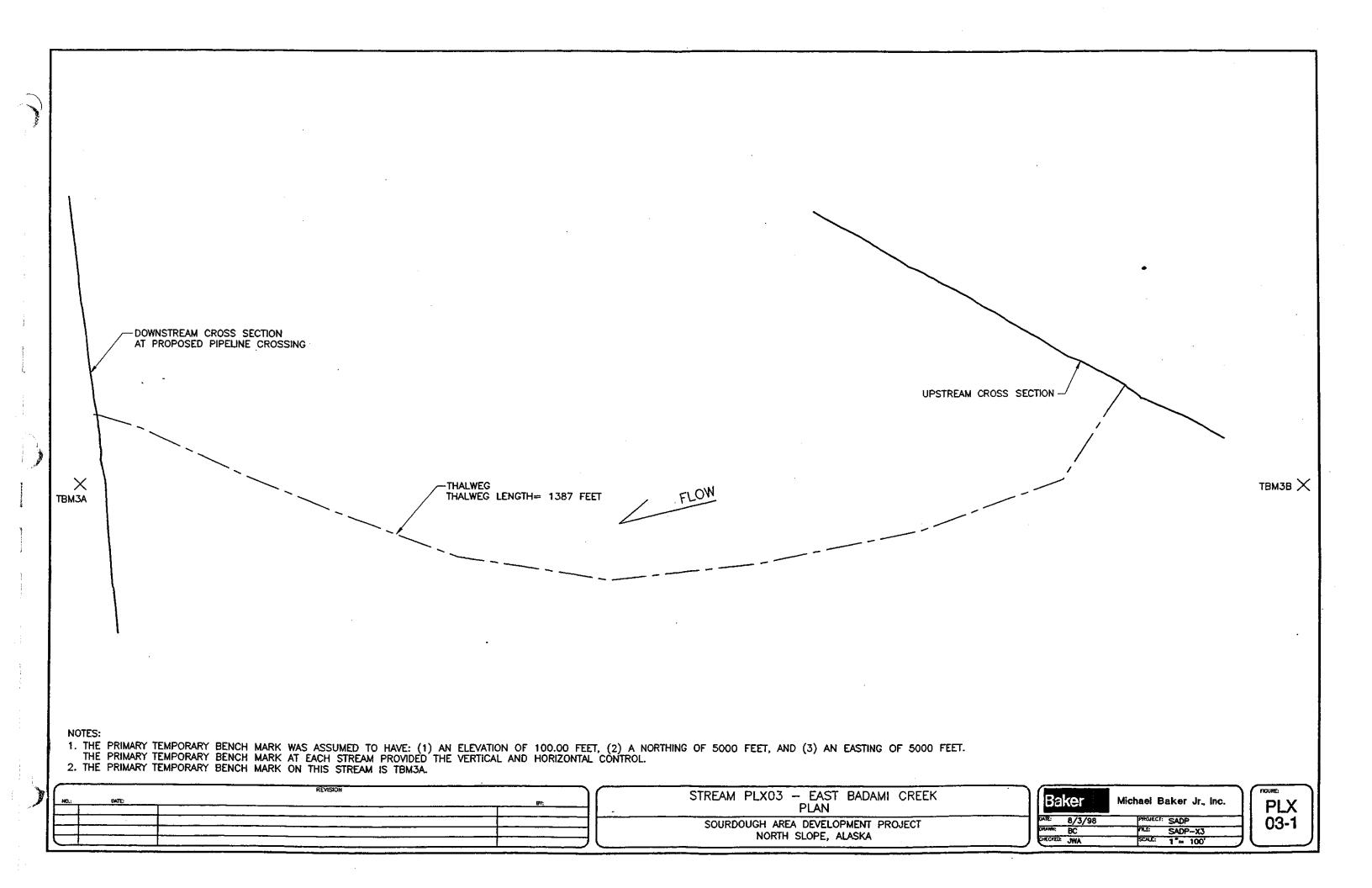
APPENDIX F: PLX 03

TABLE OF CONTENTS

Figure PLX 03-1: Plan

Figure PLX 03-2: Profile

Figure PLX 03-3: Profile


Figure PLX 03-4: Bed Material Gradation

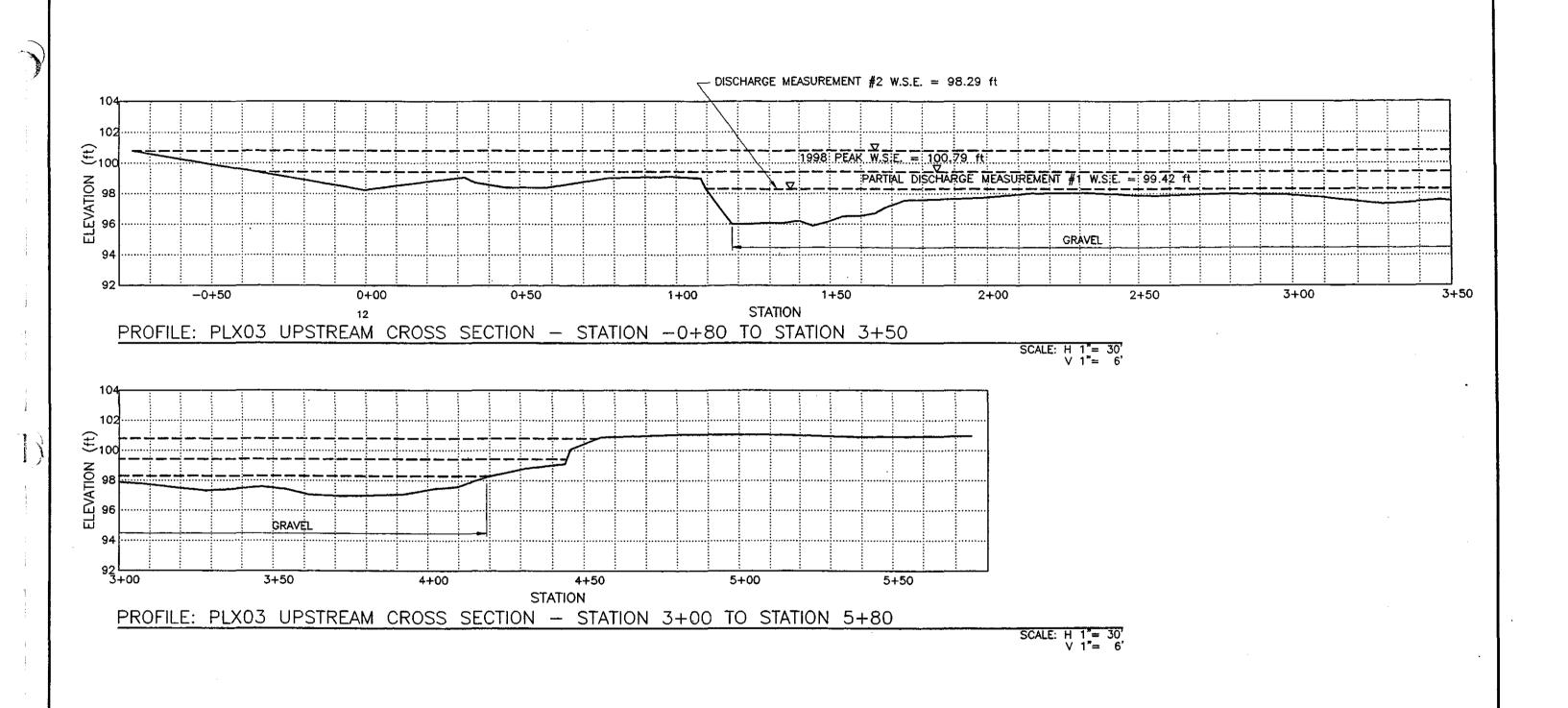

Photo Sheet PLX 03-1: Stream PLX 03 Photographs

Photo Sheet PLX 03-2: Stream PLX 03 Photographs

Discharge Measurement Notes

Table PLX 03-1: Survey Data

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM3A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

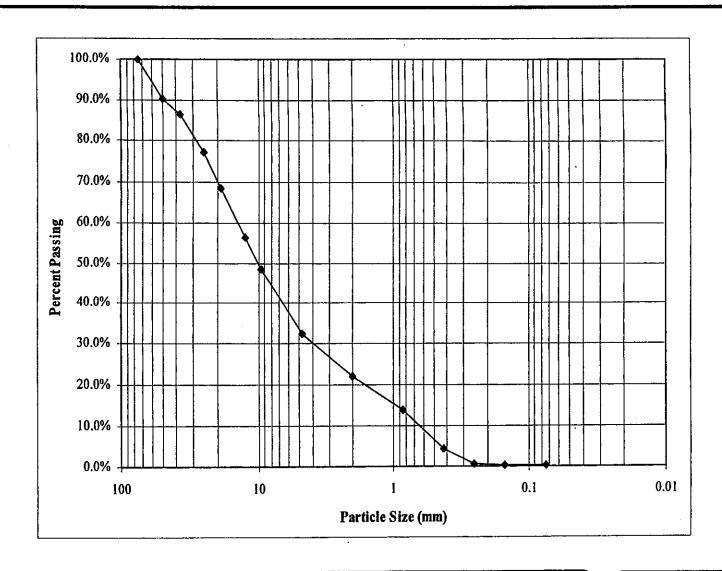
NO.:	DATE:	REVISION BY:	STREAM PLX03 - EAST BADAMI CREEK PROFILE
			SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Ba	ker	Michael B	aker Jr., Inc.	
ATE:	8/3/98	PROJECT:	SADP	•
RAVIN:	BC	FILE:	SADP-X3	
HECKED:	JWA	SCALE:	VARIES	

PLX

102 1998 PEAK W.S.E. = 99.59 ft PARTIAL DISCHARGE MEASUREMENT #1 W.S.E. = 98.16 ft
DISCHARGE MEASUREMENT #2 W.S.E. = 96.71 ft/ 1+00 1+50 2+00 2+50 4+00 4+50 5+00 CROSS SECTION FROM DISCHARGE MEASUREMENT #2

PROFILE: PLX03 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING


SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM3A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

HO.:	DATE:	REVISION BY:	STREAM PLX03 - EAST BADAMI CREEK PROFILE
			SOURDOUGH AREA DEVELOPMENT PROJECT
			NORTH SLOPE, ALASKA

Ba	ker	Michael Baker Jr., Inc.
QATE:	8/3/98	PROJECT: SADP
DRAWN:	BC	FILE: SADP-X3
CHECKED:	JWA	SCALE: VARIES

PLX 03-3

PLX 03-4

Baker	Michael Baker Jr., Inc.	
Date: 8/6/98	Project: 23247	
Drawn; JDA	Fue: gradations.ppt	
Checked: JWA	Scale: N/A	

STREAM PLX 03
BED MATERIAL GRADATION
SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

		REVISION:	•	
NO:	DATE:		BY:	
		· · · · · · · · · · · · · · · · · · ·		

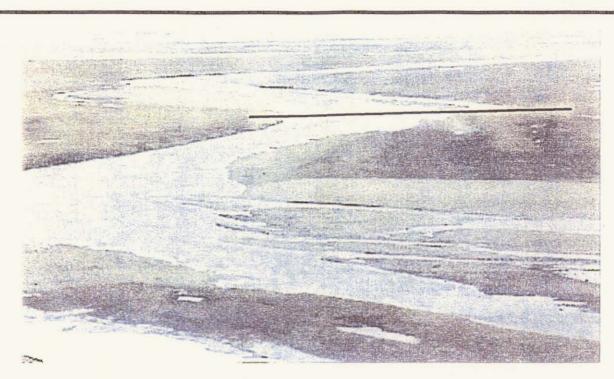


Photo PLX 03-1: Looking north at the proposed pipeline crossing (6/8/98).

Photo PLX 03-2: Looking north at the proposed pipeline crossing (6/11/98).

STREAM PLX 03 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Mich	Michael Baker Jr., Inc.			
Date: 6/7/98		Project: 23247			
Drawn: JDA		File: photo03			
Checked: JWA		Scale:			

PLX 03-1

Photo PLX 03-3: Looking west at the proposed pipeline crossing (6/2/98).

STREAM PLX 03 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo03
Checked: JWA	Scale;

PLX 03-2

		I	DISCHAR	GE MEASUREN	MENT NOTES				
LOCATION:	PLX 03 East Badami	Creek - Discharg	ge Measure	ment Number 1 (Partial Measuremen	t)			
	,1998 Party:	J. Meckel, P.	McGranah	an					
h	Area:	Vel:		G.H.:			Disch.:		cfs
No Secs.	G.H. ch			in.;	hrs.:			Susp.:	Rod
Method coef.:	1	Hor. Angle o	oef.	1	Sus. Coef.:	[Meter No.	std 1	
		ge Readings			Type of meter	r:	Price A		
Time	Recorder	Inside		Outside	Date rated:		Std No 1		
		****			Meter:		ft. above b	ottom of weigl	
	upstream x-sec		WSE=	99.41	Spin before n	****	ok	after	ok
					Method:	Wading at p	roposed pip	eline crossing.	
				ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	downstream x-sec		WSE=	98.16					
			******	ļ				••••••	

Weighted M.G.H	***********				Levels obtain	ea	this time		
G.H. corrections									
Correct M.G.H.	1	<u> </u>							
Measurement rat		~~~~~~~~~~~~~							
Cross section:	Fairly uniform - ice o	n dottom 20%.							
Flow:					Weather:	clear -wind			
Gage:	Upstream ok, downst	ream bent, w.s. r	efered for	levels.			Water °F@	D:	
Other:			******						
Record Removed	l:				Intake flushe	d:			
Observer									
Control	Channel	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	Section was free of ic	e in the area of t	he most dis	scharge.				,	
Remarks	Estimed that the max				at sta 52.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Estimated that maxin								
G.H. of zero flow							ft.		
								Page 1 of	2

DISCHARGE MEASUREMENT NOTES (PLX 03 Measurement 1 Continued)

Angle	Dist.						VELO	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	242.0	8.5	0.0						0.0	0.0	Right Edge Water (1030 hr)
	225.0	21.0	1.6	0.6	30	43	1.54	1.54	33.6	51.7	**************************************
	200.0	25.0	0.9					0.00	22.5	0.0	Snow/slush
	175,0	17.5	2.0	0,6	40	41		3.21	35.0	112	Bottom ice

	52.0	5.0	2.3	0.6	100	42	5.20	5.20	11.5	59.8	
				s	100	41	5.32		0.0	0.0	
	50.0	3.5	1.2	0.6	80	42		4.16	4.2	17.5	
	45.0	2.5					***********				Left Edge Water (1110 hr)

	197.0										
	P03c.xls		<u>-</u>	L				LI			Page 2 of 2

		DISC	HARGE MEASUREN	MENT NOTES		
LOCATION:	PLX 03 East Badami					
	,1998 Party:	J. Meckel, P. McG		************************		
		07 Vel:	1.94 G.H.:		Disch.:	
No Secs. 32	G.H. cha		in.:	hrs.:		Susp.:
Method coef.:	<u> </u>	Hor. Angle coef.	<u> </u>	Sus. Coef.: 1	Meter No.	
		ge Readings		Type of meter:	Price AA	
Time	Recorder	Inside	Outside	Date rated:	Std No 1	
	 			Meter:	ft. above bottor	
	upstream x-sec	WSE	98.29	Spin before meas.		after
					at proposed pipeline	crossing,
	 			downst	ream cross section.	
	downstream x-sec	WSE	96.71			
				····		
	, , , , , ,					
**********		j 				
Weighted M.G.H				Levels obtained	this time	
G.H. corrections						
Correct M.G.H.	<u> </u>					
Measurement rat				based on following c	onditions:	
Cross section:	Very uniform, smooth	h cobble				
Flow:	evenly distributed			Weather:	Air °F@:	
Gage:			<u> </u>		Water °F@:	
Other:						
Record Removed				Intake flushed:		
Observer				, ag pp g p g a ma na		
Control	Broad riffle 300-500	ft. downstream clear -	streambed smooth cob	ble <u>≤</u> 3".		
Remarks	Sand, gravel, mostly	firm - light short grass	on right side.	u 4864 man 2246 - 7756 7 600 00 00 00 00		
	Note that there was no	o flow between station	and 49, therefore wi	dth of section is 189 ft, wid	th of flow is 143 ft.	
G.H. of zero flow				ft.		. 4 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2004044110041100		, , , , , , , , , , , , , , , , , , , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Page 1 of

_

DISCHARGE MEASUREMENT NOTES (PLX 03 Discharge Measurement 2 Continued)

From						, 22	CITY	į.	i	
Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
						(fps)	(fps)	(s.f.)	(cfs)	
										Right Edge Water (1630)
-	~~~~~~~~~			0		grass bar				Dead water
	~~~~~~~~~			0						11 10
		0.0								Left Edge Water
	~~~~~~~~~	0.0								Right Edge Water
	~~~~~~~	1.0	0.6	10	45		0.50	3.0	1.5	Edge grass
55.0	4.5	1.3	0.6	15	53		0.64	5.9	3.7	Small cobble
60.0	5.0	1.3	0.6	15	42		0.80	6.5	5.2	n 11
65.0	7.5	1.4	0.6	15	48		0.70	10.5	7.4	H 11
75.0	10.0	1.5	0.6	15	46		0.73	15.0	11.0	(1 1)
85.0	10.0	1.6	0.6	20	44		1.01	16.0	16.2	10 10
95.0	7.5	1.8	0.6	25	48		1.16	13:5	15.7	11 11
100.0	5.0	1.8	0.6	25	44		1.26	9.0	11.3	11 11
105.0	5.0	1.8	0.6	25	40		1.38	9.0	12.4	(1 1)
110.0	5.0	2.0	0.6	30	40		1.65	10.0	16.5	(1 1)
115.0	5.0	2.2	0.6	40	42		2.10	11.0	23.1	li ii
120.0	5.0	2.6	0.8	40	45	1.96	2.18	13.0	28.3	n (I
[0.2	50	46	2.39				16 11
125.0	5.0	2.8	0.2	50	43	2.55	2.35	14.0	32.9	11 11
/t			0.8	40	41	2.15				11 11
130.0	5.0	3.0	0.8	40	42	2.15	2.44	15.0	36.6	11 11
				50	40	2.74				11 11
135.0	5.0	3.1	0.2	60	45	2.92	2.51	15.5	38.9	ęj (1
	**************		0.8	40	42	2.10]			11 11
140.0	5.0	3.1				2.55	2.77	15.5	42.9	11 11
						L				H H.
145.0	<u> </u>	3 1					}	15.5	44.5	ti 11
143.0	2.0					Lacronnes				t tt
150.0	ς Λ	3 2					2.80	16.0	44.8	i) ()
1.50.0	3.0	ے. <i>ن</i> 				L				11 11
	(ft) 3.0 8.0 15.0 23.0 49.0 51.0 55.0 60.0 65.0 75.0 85.0 95.0 100.0 115.0 115.0	(ft) (ft) 3.0 2.5 8.0 6.0 15.0 7.5 23.0 17.0 49.0 14.0 51.0 3.0 55.0 4.5 60.0 5.0 65.0 7.5 75.0 10.0 85.0 10.0 95.0 7.5 100.0 5.0 110.0 5.0 115.0 5.0 125.0 5.0 130.0 5.0 140.0 5.0 145.0 5.0 150.0 5.0	(ft) (ft) (ft) 3.0 2.5 0.0 8.0 6.0 1.1 15.0 7.5 0.4 23.0 17.0 0.0 49.0 14.0 0.0 51.0 3.0 1.0 55.0 4.5 1.3 60.0 5.0 1.3 65.0 7.5 1.4 75.0 10.0 1.5 85.0 10.0 1.6 95.0 7.5 1.8 100.0 5.0 1.8 105.0 5.0 1.8 110.0 5.0 2.0 115.0 5.0 2.2 120.0 5.0 2.8 130.0 5.0 3.0 140.0 5.0 3.1 145.0 5.0 3.1 150.0 5.0 3.1	(ft) (ft) (ft) 3.0 2.5 0.0 8.0 6.0 1.1 15.0 7.5 0.4 23.0 17.0 0.0 49.0 14.0 0.0 51.0 3.0 1.0 0.6 55.0 4.5 1.3 0.6 60.0 5.0 1.3 0.6 65.0 7.5 1.4 0.6 75.0 10.0 1.5 0.6 85.0 10.0 1.5 0.6 95.0 7.5 1.8 0.6 100.0 5.0 1.8 0.6 105.0 5.0 1.8 0.6 115.0 5.0 2.0 0.6 120.0 5.0 2.8 0.2 125.0 5.0 2.8 0.2 130.0 5.0 3.1 0.8 140.0 5.0 3.1 0.8 140.0 5.0 3.1	(ft) (ft) (ft) 3.0 2.5 0.0 8.0 6.0 1.1 0 15.0 7.5 0.4 0 23.0 17.0 0.0 17.0 0.0 49.0 14.0 0.0 10 0.6 10 51.0 3.0 1.0 0.6 10 15 10 15 10 15 10 15	(ft) (ft) (ft) 3.0 2.5 0.0 8.0 6.0 1.1 0 15.0 7.5 0.4 0 23.0 17.0 0.0	(ff) (ft) (ft) (fps) 3.0 2.5 0.0 8.0 6.0 1.1 0 grass bar 15.0 7.5 0.4 0 23.0 17.0 0.0 49.0 14.0 0.0 51.0 3.0 1.0 0.6 10 45 55.0 4.5 1.3 0.6 15 53 60.0 5.0 1.3 0.6 15 42 65.0 7.5 1.4 0.6 15 48 75.0 10.0 1.5 0.6 20 44 95.0 7.5 1.8 0.6 25 48 100.0 5.0 1.8 0.6 25 44 105.0 5.0 1.8 0.6 25 44 110.0 5.0 2.2 0.6 30 40	Opinit (ff) (ft) (ft) (fps) (fps) 3.0 2.5 0.0 3.0 2.5 0.0 3.0 2.5 0.0 3.0 1.1 0 grass bar 3.0 1.5 0.4 0 3.0 1.0 0.0 3.0 1.0 0.0 3.0 1.0 0.6 10 45 0.50 0.50 0.50 0.50 0.50 0.64 0.60 15 53 0.64 0.60 0.50 0.64 0.60 15 42 0.80 0.64 0.60 0.50 1.3 0.6 15 42 0.80 0.64 0.60 0.50 1.3 0.6 15 42 0.80 0.64 0.60 0.50 1.3 0.6 15 48 0.70 0.75 1.4 0.6 15 48 0.70 0.73 8.5 0.70 0.75 1.8 0.6 25 44 1.01 1.01 0.9 0.73 8.5 0.1 <	Column C	Point (ft) (ft) (ft) (ft) (fps) (fps) (s.f.) (efs)

DISCHARGE MEASUREMENT NOTES (PLX 03 Discharge Measurement 2 Continued)

Angle	Dist.						VELO	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)	i			(fps)	(fps)	(s.f.)	(cfs)	
	155.0	5.0	3.0	0.2	60	43	3.06	2.78	15.0	41.7	Small cobble
				0.8	50	44	2.50				# N
	160.0	5.0	2.8	0.8	50	43	2.55	2.80	14.0	39.2	11 It
				0.2	60	43	3.06				######################################
	165.0	5.0	2.7	0.2	60	42	3.13	2.78	13.5	37.5	ff II
			.=======	0.8	50	45	2.44				it it
	170.0	5.0	2.7	0.8	40	41	2.15	2.44	13.5	32.9	ff It
			.======	0.2	60	48	2.74				11 11
	175.0	5.0	2.6	0.2	50	48	2.29	2.02	13.0	26.3	**************************************
				0.8	40	50	1.76				ii
	180.0	4.5	2.5	0.6	30	45		1.47	11.3	16.5	
	184.0	4.5	2.2	0.6	15	41		0.82	9.9	8.1	
	189.0	4.0	0.8	0.6	5	43		0.27	3.2	0.9	Edge grass
	192.0	1.5	0.0					0.73			Left Edge Water (1730

											- ^^= = = = = = = = = = = = = = = = = =
										·	

							,				
	189	189.0							307.2	596.0	
e: disch	D2a vla										Page 3 of 3

Table PLX 03-1: Survey Data

S	Survey		······································	<u></u>	
#	Point	Easting	Northing	Elevation	Description
N .	lumber	(ft)	(ft)	(ft)	
<u> </u>	1	5000	5000		P03TBMCL (TBM3A)
1	2	5000	3501.836227		P03TBMUS (TBM3B)
1	11	5110.531359	3695.474296	98.239	
1	12		3598.034043	98.212	
	13		3599.415217	98.28	
1	14		3614.710612	98.754	
1	15	5076.542073	3625.564726	99.054	
l	16	5077.704449	3628.644704	98.72	
ij	17	5082.587656	3637.235257	98.388	
1	18		3649.040967	98.39	
Į.	19		3667.003108	99.009	
-	20	5106.396374	3685.589229	99.068	T
1	21	5110.246724	3693.563509	98.97	T
∦ `	22	5113.13038	3697.092813	97.447	T
l	23	5113.937505	3698.051851	97.131	LEW
	24	5116.499594	3701.402866	95.997	C
1	25	5120.218806	3706.467086	96.006	
	26	5123.614733	3711.629113	96. 07 9	
	27	5127.065571	3714.672978	96.084	
	28		3719.280696	96.217	
	29		3723.180354	95.882	
li	30		3727.173377	96.138	
l	31	5136.9869		96.486	
1	32	5140.004486	3736.348873	96.524	
1	33 34	5142.209647 5143.817629	3740.715786 3743.685958	96.715 97.087	
1	35	5146.301928	3749.358687	97.552	
	36	5157.591257		97.688	
	37	5163.5235	3785.231935	97.996	
	38	5172.568926	3800.601116	98.033	
ľ	39	5185.039393	3820.607782	97.839	
	40	5196.277801	3841.073652	97.965	
	41	5206.640463	3857.263269	97.916	
	42	5213.279822	3866.882836	97.726	C
H	43	5217.875763	3874.61197	97.509	C
	44	5222.208229	3883.166778	97.323	C
1	45	5226.324934	3891.703497	97.414	
	46	5230.800253	3899.354011	97.584	
ſ	47	5235.210597	3905.688238	97.426	
	48	5238.77963	3912.081947	97.054	
	49	5243.681408	3921.625956	96.958	
	50	5248.189158	3929.474583	96.995	
	51	5252.711107	3939.001637	97.06	
1	52	5257.542357	3948.063515	97.439	•
	53	5261.691622	3954.73099	97.575	
1	54	5263.618871	3958.825165	97.917	
	55	5266.409586	3963.654777	98.283	CT
	56	5271.893501	3974.046703	98.8	T
	57	5276.3385	3985.626994	99.104	T
	58	5277.265221	3987.067905	100.071	Т

Table PLX 03-1: Survey Data (continued)

Su	rvey	<u> </u>			
Pe	oint	Easting	Northing	Elevation	Description
Nu	mber	(ft)	(ft)	(ft)	<u> </u>
	59	5282.795799	3995.230981	100.872	T
	60	5296.365444	4017.529634	101.058	T
ļ	61	5312.920042	4043.719032	101.059	
	62	5324.963782	4066.83113	100.896	
	63	5343.402008	4097.898675	100.96	
ļ	64	5276.459277	3706.148663	96.022	
	65	5007.585728	3791.777563	94.022	·
	66	4943.406482	3968.459955	95.865	
	67	4900.406238	4170.086527	95.196	
	68	4880.422044	4350.422204	95.45	
	69	4909.597908	4535.762746	93.372	
	70		4686.654802	94.347	
	71	5010.83169	4793.987905	93.745 93.636	
	72 73	5071,728858 5089,558839	4925.751413 5075.000928	93.684	
	73 74	5361.431877	5013.639139	93.064 100.68	
	7 4 75	5341.965775	5013.059139	100.619	
	76	5320.274198	5008.946068	100.562	
	77	5298.411333	5006.438987	100.205	
	78	5277.898662	5004.23082	100.136	
	79	5260,252574	5002.208098	99.882	
	80	5251.781641	5001.916492	99.352	
1	81	5241.110317	5000.824103	97.363	
	82	5235.787113	5000.045725	97.454	
H	83	5234.323077	5000.045441	96.819	T
	84	5225.890354	4998.69676	96.402	T
	85	5222.353201	4997.779249	95.585	T
	86	5215.254033	4996.853379	95.838	
	87	5212.375994	4996.468051	96.596	
1	88	5203.67438	4995.155687	96.812	· ·
ĺ	89	5193.69788	4993.729493	97.14	
	90	5186.007765	4992.840756	96.738	
]	91 92	5184.920788	4992.774848	95.695	
!	92 03	5176.001071	4991.614481	95.408	
	93 94	5160.927436 5141.556049	4990.192496 4987.41488	95.309 95.019	
		5124.855536	4984.841683	93.919	
	95 96	5124.833336	4982.562752	94.011	·
[90 97	5088.473624	4979.217019	93.607	
	98	5073.971345	4977.284656	93.808	
ł	99	5062.587053	4975.821773	93.982	
	100	5047.831168	4975.000375	94.213	
	100	5047.831108	4973.932254	95.207	
1	101	5043.296362	4973.884147	95.69	
	103	5037.015703	4974.177488	96.554	
	104	5034.787023	4974.439899	98.18	
	105	5030.70673	4974.617237		P3CLCG
	106	5003.91943	4968.625952	99,289	
	107	4943.83383	4965.414428	99.998	
	108	4912.512938	4962.640986	100.32	1

Table PLX 03-1: Survey Data (continued)

G = grass TH = thalweg US = upstream T = tundra CG = crest gage TWET = wet tundra C = cobbles GB = ground break M = mud LEW = left edge of water SH = shoulder SB = sand bags REW = right edge of water DS = downstream PK = "pk" nail	Survey						
109 4873.686066 4959.630719 100.742 T 110 4812.758036 4952.088895 102.055 T 111 4866.931111 4957.638902 101.799 TBM Legend: G = grass TH = thalweg US = upstream T = tundra CG = crest gage TWET = wet tundra C = cobbles GB = ground break M = mud LEW = left edge of water SH = shoulder SB = sand bags REW = right edge of water DS = downstream PK = "pk" nail	Point	Easting	Northing	Elevation	Description		
110 4812.758036 4952.088895 102.055 T 111 4866.931111 4957.638902 101.799 TBM Legend: G = grass TH = thalweg US = upstream T = tundra CG = crest gage TWET = wet tundra C = cobbles GB = ground break M = mud LEW = left edge of water SH = shoulder SB = sand bags REW = right edge of water DS = downstream PK = "pk" nail	Number	(ft)	(ft)	(ft)			
111 4866.931111 4957.638902 101.799 TBM Legend: G = grass TH = thalweg US = upstream TWET = wet tundra C = cobbles GB = ground break M = mud LEW = left edge of water SH = shoulder SB = sand bags REW = right edge of water DS = downstream PK = "pk" nail	109	4873.686066	4959.630719	100.742	T		
Legend: G = grass TH = thalweg US = upstream T = tundra CG = crest gage TWET = wet tundra C = cobbles GB = ground break M = mud LEW = left edge of water SH = shoulder SB = sand bags REW = right edge of water DS = downstream PK = "pk" nail	110	4812.758036	4952.088895	102.055	T		
T = tundra	111	4866.931111	4957.638902	101.799	TBM		
T = tundra	Legend:						
C = cobbles GB = ground break M = mud LEW = left edge of water SH = shoulder SB = sand bags REW = right edge of water DS = downstream PK = "pk" nail	G = grass		TH = thalweg		US = upstream		
LEW = left edge of water SH = shoulder SB = sand bags REW = right edge of water DS = downstream PK = "pk" nail	T = tundra		CG = crest gage		TWET = wet tundra		
REW = right edge of water DS = downstream PK = "pk" nail	C = cobbles		GB = ground bre	ak	M = mud		
	LEW = left edge	of water	SH = shoulder		SB = sand bags		
CL = center line	REW = right edge	of water	DS = downstream		PK = "pk" nail		
	CL = center line						
file:plx3.xls	CL = center line			-			

APPENDIX G: PLX 04

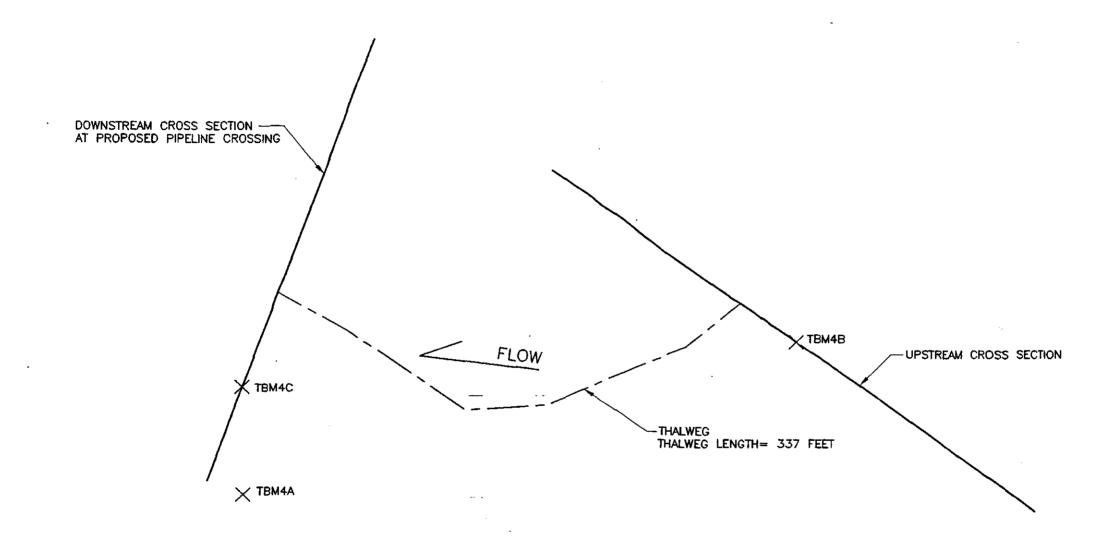
TABLE OF CONTENTS

Figure PLX 04-1:

Plan

Figure PLX 04-2:

Profiles

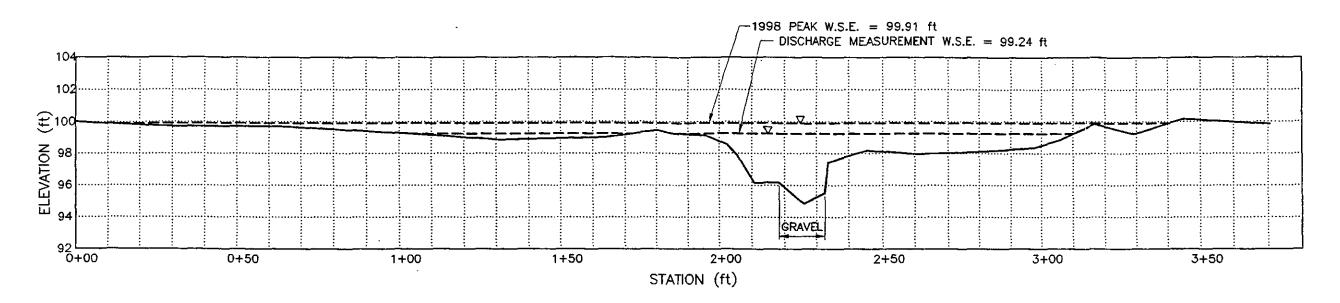

Photo Sheet PLX 04-1:

Stream PLX 04 Photographs

Discharge Measurement Notes

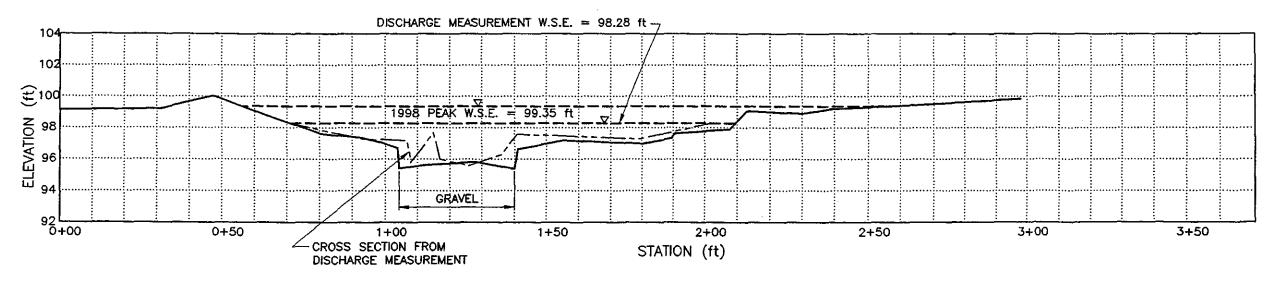
Table PLX 04-1:

Survey Data


1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.

2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM4A.

١	_	REVISION	STREAM PLX04
ĺ	NO.: DATE:	BY:	PLAN
ı			SOURDOUGH AREA DEVELOPMENT PROJECT
ľ			NORTH SLOPE, ALASKA
L			


1	Ba	ker	Michael B	aker Jr., Inc.
1	DATE:	8/3/98	PROJECT:	SADP
ı	DRAWN:	BC	FILE:	SADP-X4
J	CHECKED:	JWA	SCALE:	1"= 60"

PLX

PROFILE: PLX04 UPSTREAM CROSS SECTION

SCALE: H 1"= 30' V 1"= 6'

PROFILE: PLX04 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM4A.
2. W.S.E. = WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

$\overline{}$		REVISION	STREAM PLX04	
NO.:	DATE:		PROFILES	
			SOURDOUGH AREA DEVELOPMENT PROJECT	
├			NORTH SLOPE, ALASKA	
<u>—</u>	<u></u>			

Baker		Michael Baker Jr., Inc.	
CATE:	8/3/98	PROJECT:	SADP
ORAWN:	BC	FILE:	SADP-X4
CHECKED:	JWA	SCALE:	VARIES

PLX

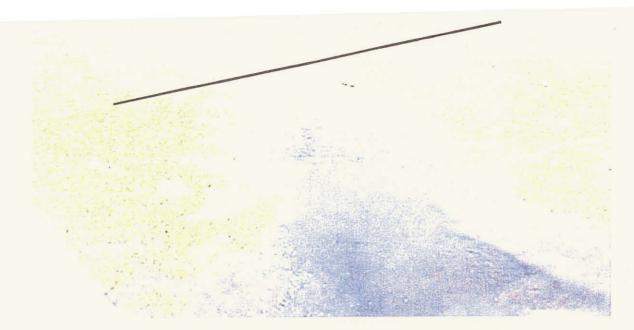


Photo PLX 04-1: Looking north at the proposed pipeline crossing (6/11/98).

Photo PLX 04-2: Looking north at the proposed pipeline crossing (6/6/98).

STREAM PLX 04
PHOTOGRAPHS
DOUGH AREA DEVEL OPMENT PROJECT

Baker	Michael Baker Jr., Inc.		
Date: 6/7/98	Project: 23247		
Drawn: JDA	File: photo04		

Photo Number:

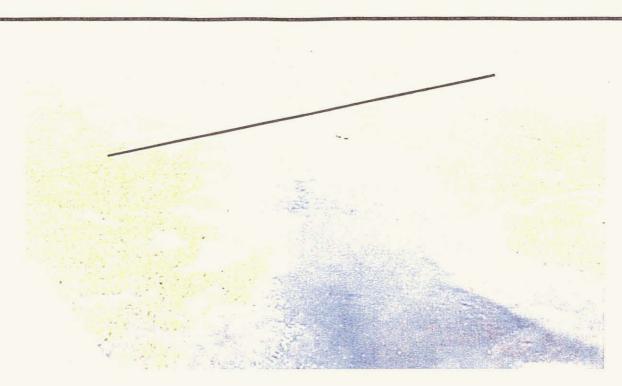


Photo PLX 04-1: Looking north at the proposed pipeline crossing (6/11/98).

Photo PLX 04-2: Looking north at the proposed pipeline crossing (6/6/98).

STREAM PLX 04 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo04
Checked: JWA	Scale:

PLX 04-1

		DISCHARO	E MEASUREN	MENT NOTES			
LOCATION:	PLX 04 at downstream	cross section					
~~~~~~~~~~~~~~~~	,1998 Party:	J. Meckel, P.McGranaha					
	<del></del>	8 Vel: 1.63	G.H.:		Disch.:		225 cfs
No Secs.	11 G.H. chai		in.:	hrs.:		Susp.:	Rod
Method coef.:	1	Hor. Angle coef.	1	Sus. Coef.: 1	Meter No.		
		e Readings		Type of meter:	Price AA		
Time	Recorder	Inside	Outside	Date rated:	Std No 1		
				Meter:	ft. above bott	om of wei	
	upstream x-sec	WSE=	99.24	Spin before meas.	ok	after	ok
	ļ			Method: Wading	at downstream cro	ss section	
	downstream x-sec	WSE=	98.28				
*		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70.20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				******			
	;   						
Weighted M.G.H				Levels obtained	this date		
G.H. corrections							
Correct M.G.H.	L						
Measurement rat				based on following co	nditions:		
Cross section:	Non-unife	orm, grass, cobbles, ice & sr	10W.				
Flow:				Weather:	Air °F@:		
Gage:					Water °F@:	****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Other:							
Record Removed	:			Intake flushed:			
Observer		vu			, , ,		
	D:00. 100						
Control	Kiiile Iuu	downstream - ice snow.					
Remarks		;;,					
~ ~ ~ ~ 1		04000000000000000000000000000000000000			, , , , , , , , , , , , , , , , , , ,		
G.H. of zero flow				ft.			
						Page 1 o	f 2

....

DISCHARGE MEASUREMENT NOTES (PLX 04 Continued)

Angle	Dist.						VELO	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
************	0.0	11.2	0.0				4	18	0	0.0	Left Edge Water (18:00 crest)
	22.4	18.0	1.0	5	25	41	1.35	1.22	18	21.9	
	36.0	7.3	1.1	0.6	40	46		1.92	8.03	15.4	
	37.0	4.0	2.5	0.6	20	46		0.97	10	9.7	
	44.0	4.5	0.6	0.6	60	41		3.21	2.7	8.7	
	46.0	5.5	2.3	0.6	80	53		3.31	12.6	41.7	
	55.0	9.5	2.7	0.2	50	41	2.68	2.44	25.6	62.5	
				0.8	40	40	2.20		0.0	0.0	
7	65.0	7.5	2.0	0.6	25	43		1.29	15.0	19.4	
	70.0	21.5	0.7	0.6	15	42		0.82	15.1	12.3	
	108.0	30.8	1.0	0.6	20	42		1.08	30.8	33.3	E of ice on bottom REW
	131.5	11.8	0.0								Right EdgeWater (1830 crest)
								*********			
	†										
		-440701160000				Lega-1100110					
		.========									
	<b>†</b>										
	<b></b>										
]											
ļ	<b> </b>										
									*******		
		-1									
									1277	224.8	
	131.5	131.5	L	L		L	L	<u> </u>	137.7	224.8	
ile: disch	_P4.xls										Page 2 of 2

Table PLX 04-1: Survey Data

Survey	T.,			
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	
1	5000	5000		P04PCL (TBM4A)
2	5000	5068.715984		P04.P.C/L (TBM4C)
11		4989.139814		T/HWM
12		5007.925412	99.696	1
13		5026.192908	99.7	
14		5048.382101	99.281	
15		5066.248678	98.866	
16		5085.636193	98.996	
17		5094.994359	99.468	
18		5097.20829		CG/US (TBM4B)
19		5104.197563	99.12	, -
20		5107.963139	98.564	I
21		5110.147103	97.816	
22	5323.687665	5111.56871	97.122	
23	5321.180911	5113.061899	96.165	С
24	5315.192246	5117.610479	96.188	С
25	5308.817049	5121.957688	94.846	C/TH
26	5302.958829	5125.49826	95.507	c
27	5302.337089	5126.117428	97.416	G
28	5292.778449	5132.65619	98.19	G
29	5280.075572	5141.817382	97.961	G
30	5263.242178	5153.732162	98.118	G
31	5250.281959	5163.684627	. 98.37	REW
32	5243.688268	5169.18385	98.883	
33		5175.479812	99.843	
34		5182.505718	99.211	
35		5191.665823	100.15	
36		5205.884809	99.853	
37	5329.922813			TH/FL
38		5094.056408	96.484	
39		5099.402253	96.311	
40	5236.092823	5077.839047	95.927	•
41	5187.537658	5057.132268	94.935	
42	5136.892241	5053.800661	95.359	
43	5063.539277	5105.001963	95.466	
44	5012.133165	5142.624031		TH/FL
45	5080.99992	5288.300523	99.843	
46	5069.630272	5258.909505	99.472	1
47	5060.393167	5232.917361	99.181	
48	5057.430681	5225.104342	98.897	
49	5051.697624	5208.748504	99.056	
50	5049.802824	5203.826929	97.9	
51	5043.795433	5187.74605	97.622	T
52	5043.506721	5186.876912	97.334	
53	5040.152497	5178.352102	96.977	G

Table PLX 04-1: Survey Data (continued)

Comment		······································		
Survey	T4:	N.T mail. for a	m1	
Point	Easting	_	Elevation	The state of the s
Number	(ft)	(ft)		Description
54		5154.646236	97.176	G
55	5026.72545	5141.196541	96.616	G
56	5026.369344	5140.282618	95.388	C
57	5021.976498	5129.114255	95.815	C/TH
58	5017.334034	5115.620434	95.641	C
59	5013.982942	5106.851411	95.424	C
60	5013.824244	5106.339866	96.702	G
61	5011.702055	5100.945013	97.105	G
62	5009.937342	5096.252943	97.368	LEW
63	5005.812935	5084.692355	97.596	T `
64	4999.668889	5068.639201	98.798	CG.C/L
65	4994.005713	5053.405215	100.036	T
66	4988.788459	5038.337029	99.21	T
67	4978.002697	5008.908583	99.116	T
Legend:			,	
G = grass		TH = thalweg		US = upstream
T = tundra		CG = crest gage		TWET = wet tundra
C = cobbles		GB = ground brea	k ·	M = mud
LEW = left edge of water		SH = shoulder		SB = sand bags
REW = right edge of water		DS = downstream		PK = "pk" nail
CL = center line				
file:plx4.xls				

# APPENDIX H: PLX 05

# TABLE OF CONTENTS

Photo Sheet PLX 05-1:

Stream PLX 05 Photographs

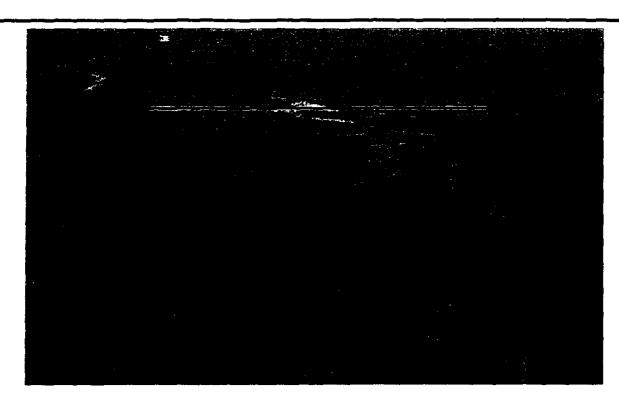



Photo PLX 05-1: Looking north at the proposed pipeline crossing (6/8/98).

STREAM PLX 05 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker Michael Baker Jr., Inc.		
Date: 6/7/98	Project: 23247	
Drawn: JDA	File: photo05	
Checked: JWA	Scale:	

PLX 05-1

## APPENDIX I: PLX 06

#### TABLE OF CONTENTS

Figure PLX 06-1:

Plan

Figure PLX 06-2:

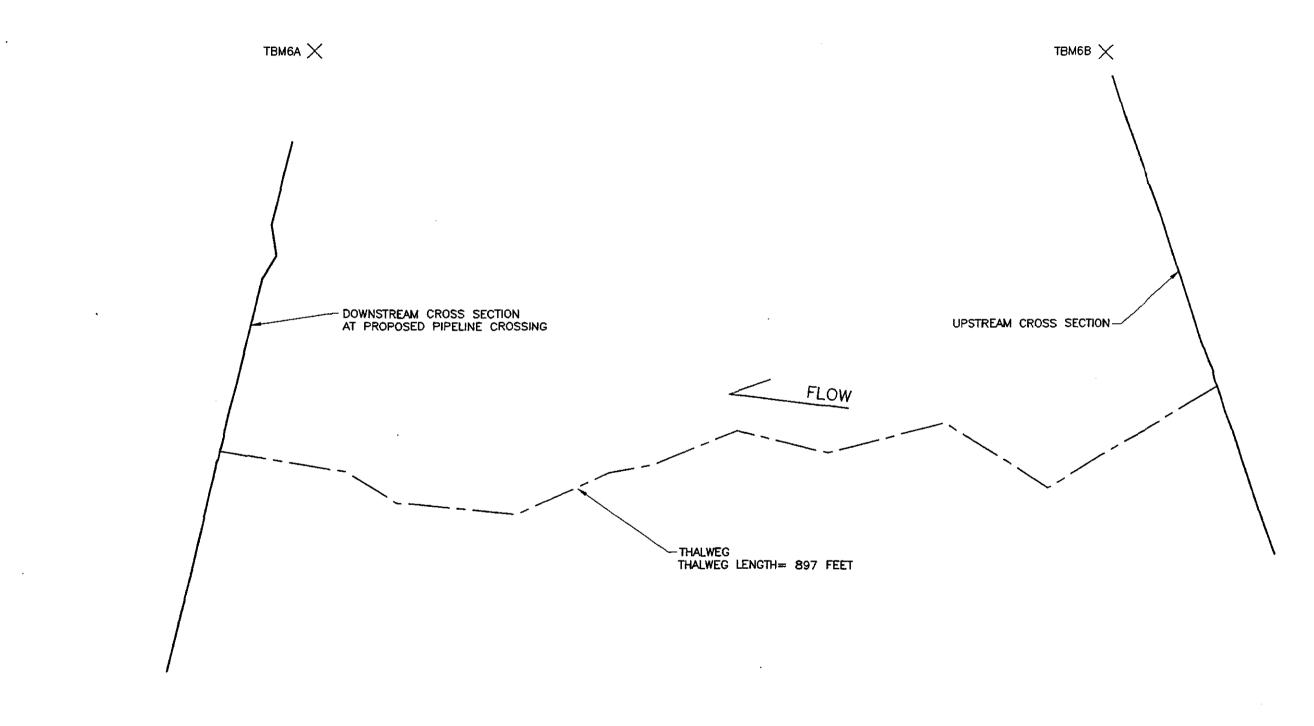
Profiles

Figure PLX 06-3:

Bed Material Gradation

Photo Sheet PLX 06-1:

Stream PLX 06 Photographs


Photo Sheet PLX 06-2:

Stream PLX 06 Photographs

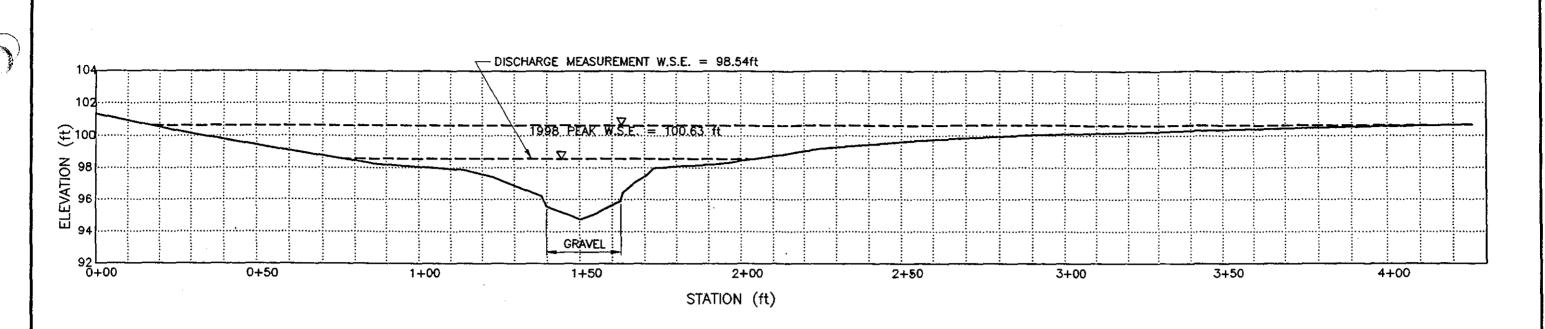
Discharge Measurement Notes

Table PLX 06-1:

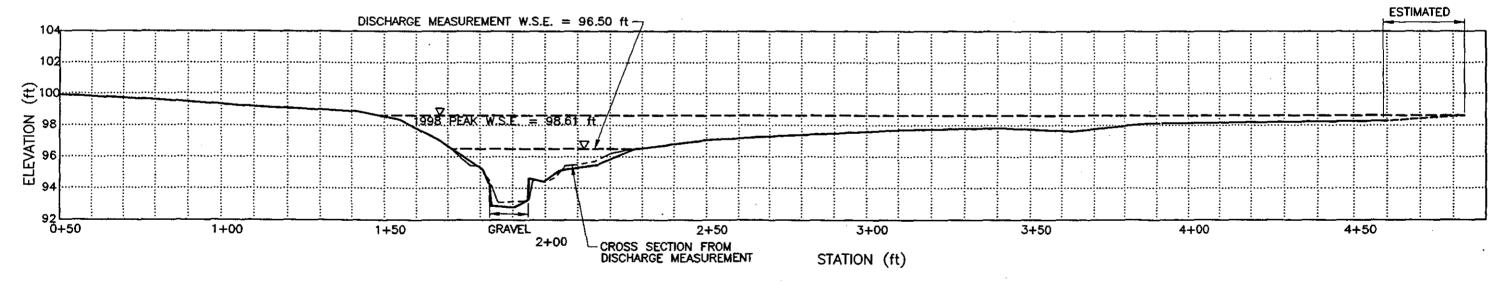
Survey Data



1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.


2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM6A.

17			REVISION		۱ (	
	NO.:	CATE:		BY:	П	
ΙC					] [	
ΙL					7 [	
					11	
١C					りし	L


STREAM PLX06 PLAN	
SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA	

	Baker	Michael Baker Jr., Inc.
┪	DATE: 8/3/98	PROJECT: SADP
ı	ORAWN: BC	FILE: SADP-X6
J	CHECKED: JWA	SCALE: 1"# 80"

PLX



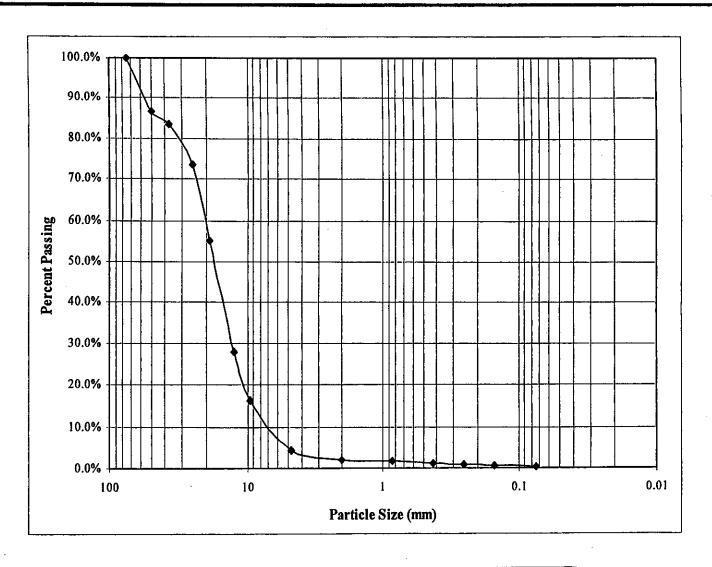
PROFILE: PLX06 UPSTREAM CROSS SECTION



PROFILE: PLX06 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

NOTES:


1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM6A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

		 REVISION		
NO.:	CATE:	 		BY:
$\Box$				
		 	<del></del>	

STREAM PLX06 **PROFILES** SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker  ATE: 8/3/98  RAWN: BC		Michael B	aker Jr., inc.
ATE:	8/3/98	PROJECT:	SADP
RAWN;	BC	FILE:	SADP-X6
HECKED:	JWA	SCALE:	VARIES

PLX 06-2



PLX 06-3

Baker Michael Baker Jr., In	
Date: 8/6/98	Project: 23247
Drawa: JDA	File: gradations.ppt
Checked: JWA	Scale: N/A

STREAM PLX 06
BED MATERIAL GRADATION
SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

		REVISION:	
NO:	DATE:		BY:
	1		



Photo PLX 06-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 06-2: Looking north at the upstream cross section (6/11/98).

STREAM PLX 06 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn: JDA	File: photo06				
Checked: JWA	Scale:				

PLX 06-1



Photo PLX 06-3: Looking north at the upstream cross section (6/8/98).



Photo PLX 06-4: Looking north at the proposed pipeline crossing (6/1/98).

STREAM PLX 06 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn: JDA	File: photo06				
Checked: JWA	Scale:				

PLX 06-2

		DISCHAR	GE MEASUREM	IENT NOTES			
LOCATION:	PLX 06 at proposed pi	neline crossing					
	,1998 Party:	J. Meckel, P McGranaha					
	**=================	.7 Vel: 2.47			Disch.:		20
No Secs.	16 G.H. cha	nge:	in.:	hrs.:		Susp.:	-
Method coef .:	i	Hor. Angle coef.	1	Sus. Coef.: 1	Meter No.		
	Gag	e Readings		Type of meter:	Price AA		
Time	Recorder	Inside	Outside	Date rated:	Std No 1		
			!	Meter:	ft. above bo	ttom of weig	ht
	upstream x-sec	WSE=	9854	Spin before meas.	ok	after	
`	**************************************			Method: Wading	at proposed pipe	line crossing,	
,	downstream x-sec	WSE=	96.5		ream cross section		14-
	+		{	4	**************************************		
	†=						•••
				*************************	064542-7R40664-7-4		
f							
					***************	***********	P +40 ×
Weighted M.G.H				Levels obtained			
G.H. corrections		<mark></mark>			*==d==================================		
Correct M.G.H.							-
Measurement rat	ted: Poor over	- 8%	<u> </u>	based on following co	nditions:		***
Cross section:		form - grass, cobble smoot	h, no snow or ice.		#40+y-2702202202	¥778502===400488	***
Flow:				Weather:	Air °F@:		•
					Water °F@		
Gage:	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				water rw	, 	
Other: Record Removed				Intake flushed:			
				Illiake Hranen:			
Observer	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		±=====================================			
Control	Riffles th	roughout - channel at high	stage.	979612VVZXVZ ZZ 428888 97 88 47 84 4			
 			<b></b>				
Remarks	Channel h	nas grass up to 8-10". Short	section smooth c	obbles < 3" - sand.	20		
				ft.			

•

**DISCHARGE MEASUREMENT NOTES (PLX 06 Continued)** 

Angle	Dist.		1				VELO	CITY	CITY		
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	21.0	1.5	0.0						0	0.0	Left edge water (0900)
	24.0	3.0	0.6	S	20	46	0.968	0.87	1.8	1.6	
	27.0	3.0	1.1	0.6	40	52		1.7	3.3	5.6	
	30.0	3.0	1.1	0.6	40	44		2	3.3	6.6	
	33.0	2.8	2.1	0.6	50	47		2.34	5.8	13.5	Edge grass
*********	35.5	5.5	3.4	0.8	40	41	2.15	2.94	18.7	55.0	Small cobble
				0.2	80	47	3.72				
	44.0	4.8	3.3	0.2	80	45	4.07	3.31	15.7		Small cobble
	45.0	1.0	3.2	0.6	30	46	1.44	2.64	3.2	8.4	Edge grass
				S	80	41	4,26				
	46.0	2.5	2.0	0.6	60	40	· 	3.28	5.0	16.4	
	50.0	3.5	2.1	0.6	60	46		2.86	7.4	21.0	
	53.0	3.0	1.8	0.6	30	41		1.62	5.4	8.7	
	56.0	3.5	1.1	0.6	40	49		1.8	3.9	6.9	L
	60.0	4.5	1.0	0.6	20	46		0.97	4.5	4.4	
	65.0	5.0	0.8	0.6	25	40		1.38	4.0	5.5	·
	70.0	6.0	0.3	s	15	44	0.763	0.69	1.8	1.2	L
	77.0	3.5	0.0			*******	**********	0	0.0	0.0	Right edge water (0945)
********					+						
										100000000000000000000000000000000000000	
			***********				, , , , , , , , , , , , , , , , , , ,				
							**************************************				
	<i>EC</i> ^	56.0							83.7	206.8	
e: disch	56.0	56.0					L		03.7	200.0	Page 2 of 2

Table PLX 06-1: Survey Data

Survey				
Point	Easting	Northing	Elevation	
Number	(ft)	(ft)	(ft)	Description
1	5000	5000	100	P06.TBM.C/L (TBM6A)
2	5000	4344.343096	101.448	P16.TBM.US (TBM6B)
11	4979.746546	4338.674674	100.66	T
12	4927.982426	4321.444807	100.456	T
13	4854.035847	4295.509772	100.056	SG/US
14	4816.355942	4283.816739	99.678	T
15	4789.591238	4274.849823	99.178	T
16	4759.127951	4265.102675	98.227	T
17	4739.995608	4258.408545	97.961	T
18	4737.936055	4257.49552	97.503	REW
19	4734.053898	4255.478932	96.963	G
20	4731.25489	4254.439164	96.442	G
21		4254.949058	95.904	
22	4723.371355		95.159	
23	4718.507601		94.757	C/TH
24	4708.654497		95.57	
25		4247.540837	96.213	
26	4697.643153	4244.69122	97.007	
27	4692.022526		97.476	
28	4684.348747	4239.619287	97.851	
29	4658.056028		98.231	
30	4630.131132		99.15	
31	4602.224976		100.219	
32	4575.803864		101.337	•
33	4748.382504 4632.176826		90.038	TH/FL
34 35	4687.662896	4480.01247	94.19	
36	4661.796202		92.479	
37	4680.524956		94.531	
38	4652.468766		94.331	
39	4644,282661	4757.901634	92.818	
40	4609.455917	4832.657415	92.443	
41	4619.048048	4933.065908	93.577	
42	4645.396847	4975.531949	94.545	
43	4701.989746			TH/FL
44	4476.138306		100.666	
45	4503.039882	5114.529282	100.057	
46	4527.887209	5109.176656	99.893	
47	4556.162824	5102.071331	99.581	
	4584.136111	5096.14779	99.163	
	4614.660876	5089.336499	98.871	
	4627.041946	5086.466088		T/HWM
	4639.151275	5083.631026	9 <b>7.</b> 041	
52	4652.479224	5080.808458	95.171	LEW

Table PLX 06-1: Survey Data (continued)

Survey				
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	
53	4654.550242	5080.115075	94.244	G
54	4655.048582	5079.72639	92.86	C
55	4661.885138	5078.146301	92.797	TH
56	4665.896065	5076.920736	93.245	C
57	4666.045204	5076.8864	94.61	G
58	4670.595933	5075.737794	94.413	G
59	4675.178639	5074.791901	95.111	REW
60	4686.664587	5072.29918	95.462	T
61	4697.511117	5070.120885	96.429	NAIL
62	4719.874956	5064.200081	97.041	T
63	4748.014404	5057.750979	97.369	T
64	4779.023142	5050.232877	97.696	T
65	4808.467212	5043.56401	97.804	T ·
66	4828.3698	5031.732323	97.602	SG.C/L
67	4854.567397	5035.949779	98.103	
68	4923.675936	5018.588161	98.264	T
Legend:				
G ≈ grass		TH = thalweg	•	US = upstream
T = tundra		CG = crest gage		TWET = wet tundra
C = cobbles		GB = ground brea	ık	M = mud
LEW = left edge		SH = shoulder		SB = sand bags
REW = right edg	e of water	DS = downstream	l	PK = "pk" nail
CL = center line				
file:plx6.xls				

## APPENDIX J: PLX 07

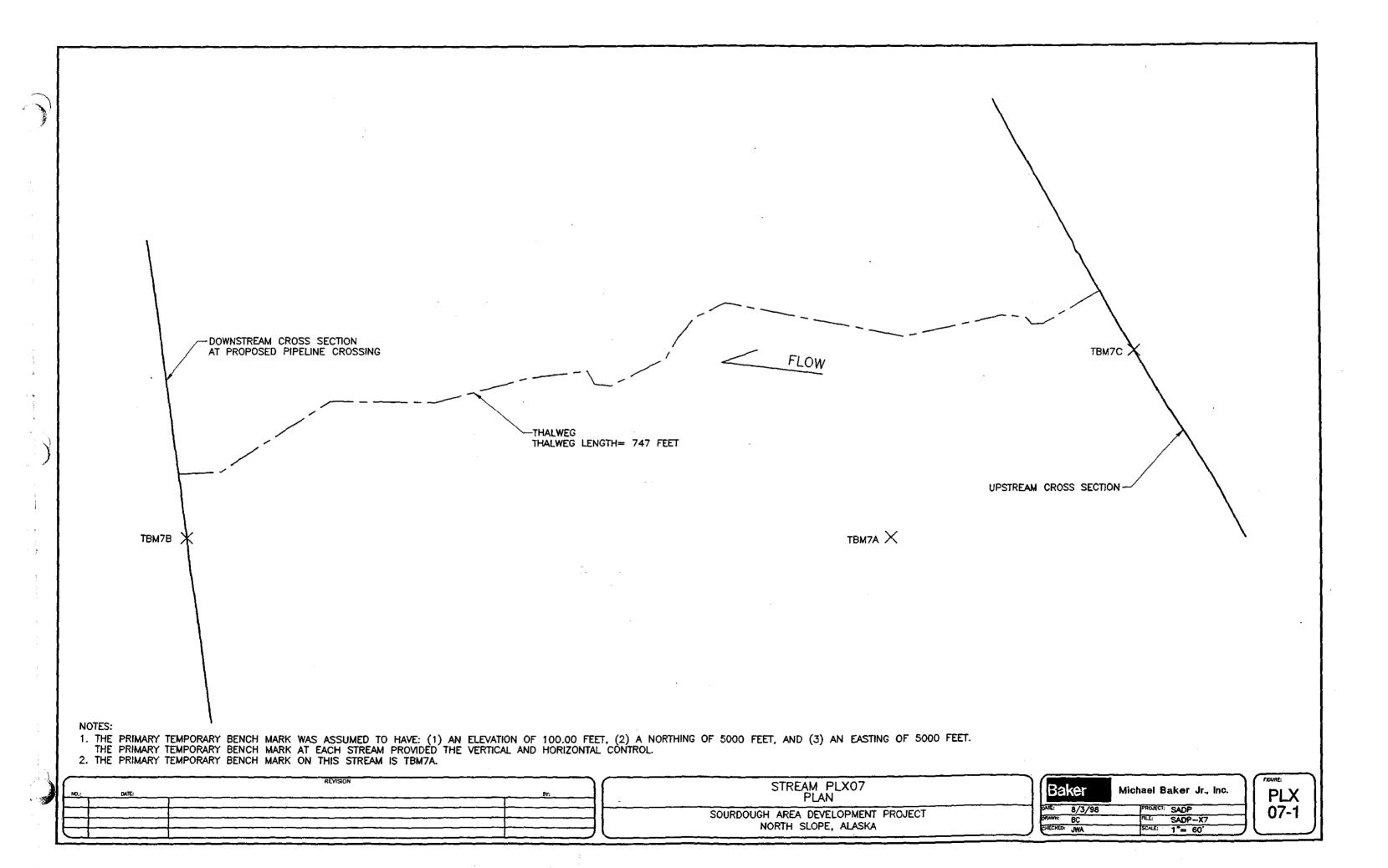
# TABLE OF CONTENTS

Figure PLX 07-1:

Plan

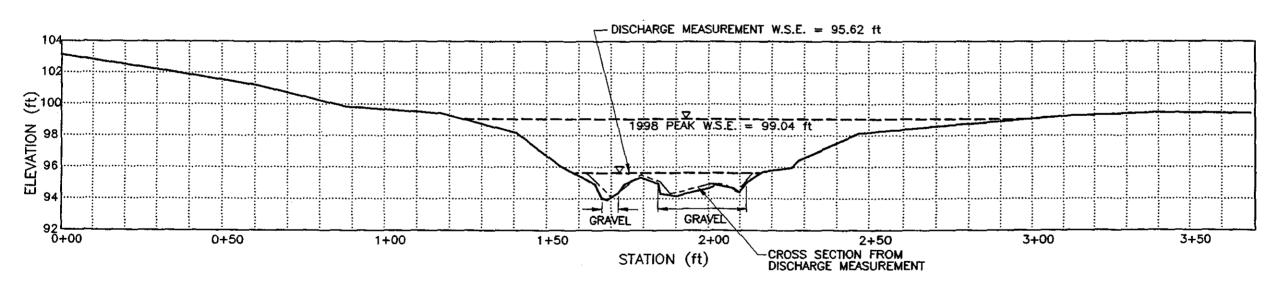
Figure PLX 07-2:

**Profiles** 


Photo Sheet PLX 07-1:


Stream PLX 07 Photographs

Discharge Measurement Notes


Table PLX 07-1:

Survey Data





PROFILE: PLX07 UPSTREAM CROSS SECTION



PROFILE: PLX07 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM7A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

REVISION REVISION	STREAM PLX07 PROFILES
	PROFILES
	SOURDOUGH AREA DEVELOPMENT PROJECT
	NORTH SLOPE, ALASKA

Ba	ker	Michael Baker Jr., Inc.
ATE:	8/3/98	PROJECT: SADP
RAWN:	BC	FILE: SADP-X7
HECKED:	JWA	SCALE: VARIES

PLX 07-2

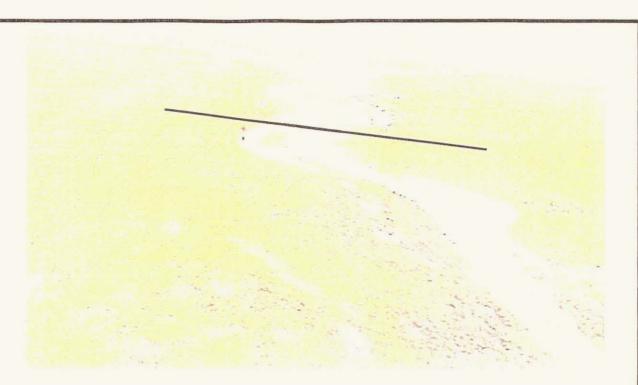



Photo: PLX 07-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo: PLX 07-2: Looking north at the discharge measurement cross section, located 60 feet upstream from the proposed pipeline crossing (6/1/98).

STREAM PLX 07 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn: JDA	File: photo07				
Checked: JWA	Scale:				

Photo Number.
PLX
07-1

Date: 6/1 ,1998 Width: 52 Area No Secs. 11 Method coef.:  Time Reco	G.H. chan	peline crossing  J. Meckel, P. McGra	nahan .00 G.H.: in.: Noted  Outside	hrs.: Sus. Coef.: 1 Type of meter: Date rated: Meter: Spin before meas. Method: Wading	ok	82.3 Susp.: tom of weight
Date: 6/1 ,1998 Width: 52 Area No Secs. 11 Method coef.:  Time Reco upstro	Party: 41. G.H. chan Gage rder eam x-sec	J. Meckel, P. McGrai 2 Vel: 2 nge: Hor. Angle coef. e Readings Inside WSE=	00 G.H.: in.: Noted Outside	Sus. Coef.: 1 Type of meter: Date rated: Meter: Spin before meas. Method: Wading	Meter No. Price AA Std No 1 ft. above bot ok	Susp.:
Date: 6/1 ,1998 Width: 52 Area No Secs. 11 Method coef.:  Time Reco upstre	Party: 41. G.H. chan Gage rder eam x-sec	J. Meckel, P. McGrai 2 Vel: 2 nge: Hor. Angle coef. e Readings Inside WSE=	00 G.H.: in.: Noted Outside	Sus. Coef.: 1 Type of meter: Date rated: Meter: Spin before meas. Method: Wading	Meter No. Price AA Std No 1 ft. above bot ok	Susp.:
No Secs. 11 Method coef.:  Time Reco upstra down Weighted M.G.H.	G.H. chan  1  Gage rder  eam x-sec	2 Vel: 2 nge: Hor. Angle coef. e Readings Inside WSE=	00 G.H.: in.: Noted Outside	Sus. Coef.: 1 Type of meter: Date rated: Meter: Spin before meas. Method: Wading	Meter No. Price AA Std No 1 ft. above bot ok	Susp.:
Method coef.:  Time Reco  upstru  down  Weighted M.G.H.	Gagarder	Hor. Angle coef. e Readings Inside WSE=	Noted Outside	Sus. Coef.: 1 Type of meter: Date rated: Meter: Spin before meas. Method: Wading	Price AA Std No 1 ft. above bot ok	tom of weight.
Time Reco upstro down  Weighted M.G.H.	Gagarder	Hor. Angle coef. e Readings Inside WSE=	Outside	Type of meter: Date rated: Meter: Spin before meas. Method: Wading	Price AA Std No 1 ft. above bot ok	tom of weight.
down Weighted M.G.H.	rder eam x-sec	Inside WSE=		Date rated: Meter: Spin before meas. Method: Wading	Std No 1 ft. above bot ok	
down Weighted M.G.H.	eam x-sec	WSE=		Date rated: Meter: Spin before meas. Method: Wading	ft. above bot ok	
down  Weighted M.G.H.			97.57	Spin before meas.  Method: Wading	ok	
down  Weighted M.G.H.			97.57	Method: Wading	ok	
Weighted M.G.H.	stream x-sec	WSF=			at proposed pipeli	
Weighted M.G.H.	stream x-sec	WSF=	j			ne crossing,
Weighted M.G.H.	stream x-sec	WSF=		downstre	eam cross section.	
			95.62			o
			·	******		
G.H. corrections				Levels obtained		
Correct M.G.H.						
Measurement rated:	·	<u>. l</u>		hand on fall and a sec		
<del></del>	alon organ albita			based on following co	agitions:	
	ılar - grass, cobble					
Flow: Not e	venly distributed.			Weather:	Air ⁴F@:	
Gage:					Water ⁰F@:	
Other:						
Record Removed:				Intake flushed:		
Observer				.2.0012366000000000000000000000000000000000		
· · · · · · · · · · · · · · · · · · ·						
Control Riffle	. 100 150 January	ream clear.				
Remarks Chan	100-150 downstr			aananamannan markan ka	+	

DISCHARGE MEASUREMENT NOTES (PLX 07 Continued)

Angle	Dist.				1	1	VELO	CITY			narge Description
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	71.0	2.0	0.0								Left edge water (1030)
0.9	67.0	4.0	0.7	0.6	30	45	1,47	1.32	2.8	3,7	
0.94	63.0	6.5	1.6	0.6	30	46	1.44	1.35	10.4	14.0	**************************************
	54.0	7.5	0.1			`	0.20	0.20	0.8	0.2	
	48.0	4.5	0.6	0.6	60	40		3.28	2.7	8.9	
	45.0	4.0	1.3	0.6	60	42		3,13	5.2	16.3	Edge grass/cobble
	40.0	6.0	1.1	0.6	60	41		3.21	6.6	21.2	small cobble
0.98	33.0	6.0	0.7	0.6	50	45	2,44	2.39	4.2	10.0	11 11 11
0.97	28.0	4.5	0.7	0.6	20	45	0.99	0.96	3.2	3.0	11 11 11
	24.0	4.5	1.2	0.6	20	48		0.93	5.4	5.0	Edge grass/cobble
	19.0	2.5	0.0						0.0	0.0	Right edge water (1100)
										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 
			L					*******			
									<del></del>	,-,	
	*******										
					********************	~~~~~~					
	52.0	52.0					*==========		41.2	82.3	>~~~~ <u>*********************************</u>
le: disch		L	L	1				L			Page 2 of 2

Table PLX 07-1: Survey Data

Survey				
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	
1	5000	5000	100	P07.TBM (TBM7A)
2	5000	5519.894587	99.095	P07.P.C/L (TBM7B)
3	4999.924379	5519.934927	98.175	CG.C/L
11	4998.991317	4738.29578	100.591	T
12	5024.951223	4751.907536	100.169	T
13		4760.711702		T/HWM
14		4775.953955	99.615	T
15	5093.825312	4790.332706	99.348	T
16		4805.057362	98.956	
17		4817.014268		CG/US (TBM7C)
18		4828.481951		T/HWM
19		4835.887721	97.161	
20		4837.888121	96.728	
21		4839.969685		
22		4840.567255		
23		4840.737481	95.288	
24		4841.140483	95.073	
25		4842.423244	95.253	
26		4842.63836	95.96	
27		4843.337987 4844.922087		
28 29		4851.006886	97.332 97.142	
	-5208.475423			
31		4854.707701	95.87	
32		4854.935932	95.044	
33		4856.306426	94.485	
34		4858.310044	94.446	
35		4858.626009	95.678	
36	5217.329368	4859.4108	96.608	
. 37	5224.157863		97.228	
38	5250.623614	4876.828783	98.338	T
39	5277.137585	4891.8015	98.649	Ť
40	5302.026119	4906.138119	98.655	T
41	5330.653591	4921.845266	98.984	T
42	5211.392215	4790.037739	94.93	TH/FL
43	5162.274703	4884.807569	95.512	TH
44	5161.680933	4893.913256	95.219	TH
45	5166.963107	4897.434186	94.739	TH
46	5168.880116	4915.523284	94.81	TH
47	5153.255932	4990.768157	93.6	TH
48	5161.955667	5033.044297	94.268	TH
49	5178.683198	5120.290305	94.069	TH
50	5167.578118	5143.603635	93.78	TH
51	5152.51232	5156.201832	95.101	TH

Table PLX 07-1: Survey Data (continued)

Survey			_	
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	
52	5136.941383	5165.150234	94.06	TH
53	5115.856607	5206.794541	94.509	TH
54	5117.53841	5218.49549	93.405	TH
55	5127.347023	5223.867948	93.851	TH
56	5121.955773	5267.178323	94.702	TH
57	5103.379254	5336.329591	94.175	TH
58		5412.620289	94.22	
59		5494.285771	93.719	
60		5560.300872		TH/FL
61	5226.039613	5549.88817	99.42	
62		5545.527739	99.466	
63		5541.650708	99.209	
64		5537.756247	98.695	
65		5533.712243	98.137	
66		5531.152886	96.405	
67		5530.781146	95. <del>9</del> 64	
68		5530.019301	95.701	
69		5529.253799	94.984	
70		5528.983796		
71		5528.544686	94.682	
72		5527.849449	94.885	
73		5527.501469	94.708	
	5054.244811		94.408	· · · · · · · · · · · · · · · · · · ·
75 76		5526.089678	94.149	
76 77	5044.1978	5525.573612	94.297	
78	5043.413949		94.926	
78 79	5033.268432		95.33 94.914	
79 <b>8</b> 0	5033.266432		94.914	
81	5027.989759		93.877	
82	5026.379373		94.008	
82 83	5024.128179		94.008	
84	5013.355394		94.872	
85	4976.909216		99.407	
86	4947.867363	5512.865274	99.407	
00	CUCI 00.175F	2212.003214	77.0 <del>4</del>	1

(continued on next page)

Table PLX 07-1: Survey Data (continued)

Survey					
Point	Easting	Northing	Elevation	Description	
Number	(ft)	(ft)	(ft)		
87	4920.366054	5509.016092	101.188	T	
88	4893.196829	5505.420631	102.109	T	
89	4860.572455	5501.155183	103.118	T	
Legend:					
G = grass		TH = thalweg		US = upstream	CL = center line
T = tundra		CG = crest gage		TWET = wet tundra	
C = cobbles		GB = ground brea	ık .	M = mud	
LEW = left edge o	of water	SH = shoulder		SB = sand bags	
REW = right edge	of water	DS = downstream	l	PK = "pk" nail	
file:plx7.xls					

## APPENDIX K: PLX 08

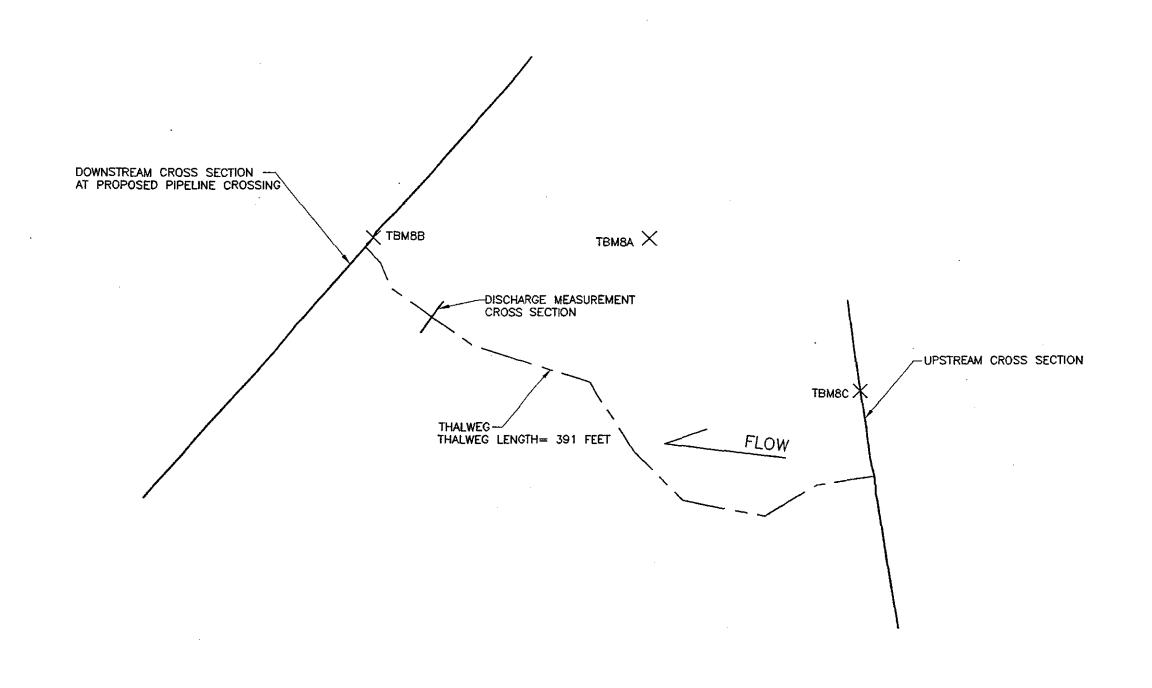
## TABLE OF CONTENTS

Figure PLX 08-1:

Plan

Figure PLX 08-2:

**Profiles** 


Photo Sheet PLX 08-1:

Stream PLX 08 Photographs

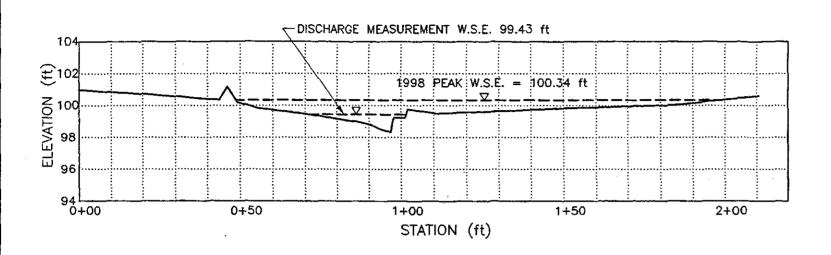
Discharge Measurement Notes

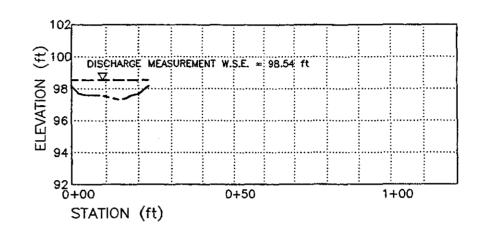
Table PLX 08-1:

Survey Data



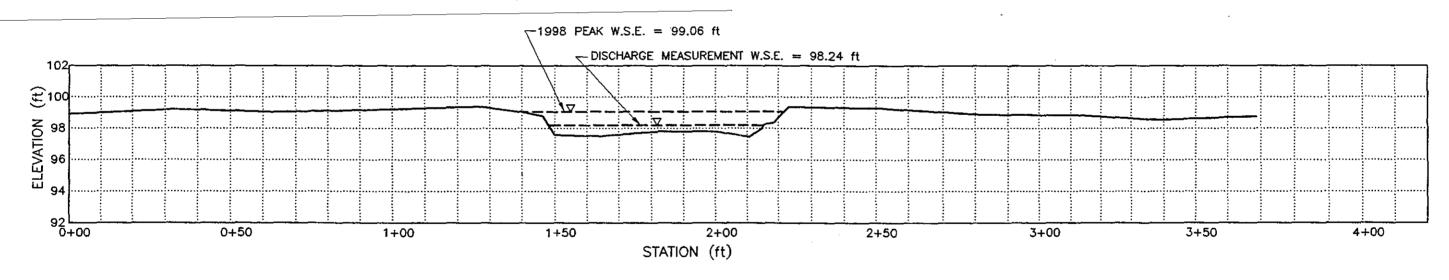
1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.


2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM8A.


				REVISION	 		
L≝	).: DAT	TE:	 		 	BY:	 1
I L_			 				 L
I L							 [
1							1
I					 		<u> </u>

STREAM PLX08 PLAN		
SOURDOUGH AREA DEVELOPMENT NORTH SLOPE, ALASKA	PROJECT	

Ва	ker	Michael Baker Jr., Inc.					
DATE	8/3/98	PROJECT: SADP					
DRAWN:	BC	FILE: SADP-X8					
CHECKED:	JWA	SCALE: 1"= 60"					








PROFILE: PLX08 UPSTREAM CROSS SECTION

PROFILE: PLX08 DISCHARGE MEASUREMENT CROSS SECTION



PROFILE: PLX08 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

- 1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM3A.
  2. W.S.E.= WATER SURFACE ELEVATION
  3. THE DISCHARGE MEASUREMENT CROSS SECTION IS LOCATED 60 FEET UPSTREAM FROM THE DOWNSTREAM CROSS SECTION.

$\overline{}$		REVISION	STREAM PLX08
NO.:	DATE:		PROFILES
$\sqsubseteq$			SOURDOUGH AREA DEVELOPMENT PROJECT
$\subseteq$			NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
DATE: 8/3/98	PROJECT: SADP
DRAWN: BC	PLE: SADP-X8
CHECKED: JWA	SCALE: VARIES

PLX 08-2

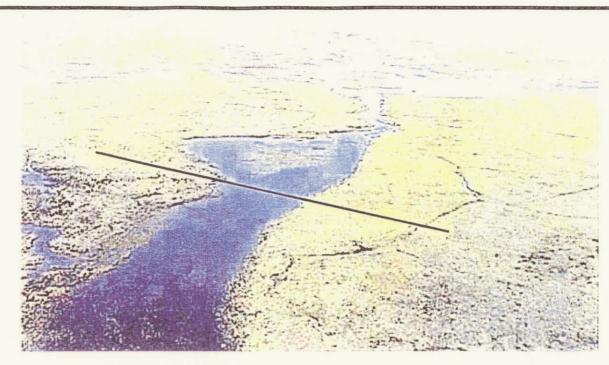



Photo: PLX 08-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 08-2: Looking north at the proposed pipeline crossing (6/6/98).

STREAM PLX 08 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo08
Checked: JWA	Scale.

PLX 08-1

<del></del>		D	ISCHAR(	E MEASUREM	ENT NOTES				
LOCATION:	DI V 00 (05-4	6 4			- · · · · · · · · · · · · · · · · · · ·				
Date: 6/1	PLX 08, 60 feet upstr ,1998 Party:				· 				
		J. Meckel, P. 1 4.0 Vel:	0.921	G.H.:	**************************************	Dial.			
No Secs.					1	Disch.:	O	1	
Method coef.:	4 G.M. CHI	Hor. Angle co		in.:	hrs.: Sus. Coef.:	Meter No.	Susp.:		
Tribution Court	- ' Ga	ge Readings	Je1.	1	Type of meter:	Price AA	·~~~~~~~		
Time	Recorder	Inside	· · · · · · · · · · · · · · · · · · ·	Outside	Date rated;	Std No 1			
			· · · · · · · · · · · · · · · · · · ·	- Catalag	Meter:		ottom of wei	σh	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	upstream x-sec		WSE=	99.43	Spin before meas.	ok	after	P	
********						60' upstream fro	m pipeline cı	ros	
	1					ed pipeline crossi			
	downstream x-sec		WSE=	98.24		ream cross section			
	1								
Weighted M.G.I					Levels obtained				
G.H. corrections									
Correct M.G.H.						******			
Measurement ra					based on following conditions:				
Cross section:	Uniform	grass.	*******						
Flow:	Evenly o	istributed.		, 	Weather:	Air °F@:			
Gage:						Water °F@) :		
Other:									
Record Remove	d:				Intake flushed:				
Observer						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
					- 				
Control	Narrow	channel & riffle 1	80' downst	ream clear.					
Remarks	slope = 1,23/260 ft. =	.00473 in reach o	of 260 ft at	measurement		404550500000000000000000000000000000000			
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
G.H. of zero flow					ft.				

DISCHARGE MEASUREMENT NOTES (PLX 08 Continued)

Angle	Dist.					VELO	VELOCITY				
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	32.0	1.5	0.0						0.0		Right edge water (1115)
	29.0	2.5	0.6	S	15	52	0.80	0.72	1.4	1,0	
	27.0	2.0	0.7	S	20	42	1.06	0.95	1.3	1.2	***************************************
	25.0	2.0	0.8		25	48	1.16	1.04	1.6	1.7	
	23.0	2.0	0.9		25	48	1.16	1.04	1.8	1.9	
	21.0	2.0	0.8		25	47	1.18	1.06	1.6	1.7	
	19.0	2.0	0.7		20	46	0.97	0.87	1.4	1.2	
	17.0	2.0	0.7		20	46	0.97	0.87	1.3	1.1	
	15.0	2.0	0.7		20		1.08	0.97	1.3	1.3	
# 	13.0	2.0	0.7		20	50	0.89	0.80	1.3	1.0	
	11.0	2.0	0.5	S	20	49	0.91	0.82	1.0	0.8	
	9.0	1.0	0.0								Left edge water (1200)
			·								

	ì										
									-1		
		i									
	T										
	T										
****										.,,,,-41234000*	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~										
	<u> </u>										
	23.0	23.0							14.0	12.9	
le: disch			L	L	L	L	L	l		Lana	Page 2 of 2

Table PLX 08-1: Survey Data

Survey				
Point	Easting	Northing	Elevation	
Number	(ft) .	(ft)	(ft)	Description
1	5000	5000	100	P08.TBM. (TBM8A)
2	5000	5172.17623	99.859	P08.PC/L (TBM8B)
3	5000.283708	5172.114383	98.357	CG.C/L
11	4960.544301	4878.667929	100.601	T
12	4934.306032	4874.974541	100.014	T
13	4902.933202	4870.536246	99.846	CGUS (TBM8C)
14	4878.361672	4866.516362	99.609	T
15	4861.688785	4864.529377	99.504	T
16	4853.22665	4862.691964	99.753	T
17	4852.092483	4862.402101	99.215	T
18	4848.991317	4861.774116	99.231	T
19	4848.494388	4861.716966	99.063	REW
20	4847.951853	4861.377095	98.306	G/TH
21	4844.975753	4861.135157	98.488	
22	4841.856093	4860.951673	98.781	
23	4837.481966	4860.951026	98.974	G
24	4832.664494	4859.878909	99.112	LEW
25	4820.14139	4857.772078	99.487	T
26	4806.851929	4855.827829	99.842	T
27	4800.822782	4854.883162	100.207	T
28	4797.686301	4854.496401	101.167	T
29	4795.380336	4853.986334	100.365	T
30	4774.3744	4850.559402	100.695	T
31	4752.188895	4846.907246	100.965	T
32	4856.301352	4801.579255	98.803	TH/FL
33	4842.733656	4898.63257	97.273	TH
34	4823.025695	4929.364573	98.535	TH
35	4832.926501	4979.559948	98.198	TH
36	4864.322205	5009.675919	96.53	TH
37	4908.166516	5036.839271	97.957	TH
38	4916.16756	5062.575334	97.855	TH
39	4932.536614	5102.931411	97.592	TH
40	4967.250989	5160.846782	97.701	TH
41	4984.387414	5167.812052	97.674	TH
42	5013.728359	5206.690374	97.399	TH/FL
43	4834.595189	5314.586377	98.91	T
44	4859.135107	5293.168336	99.193	
45	4883.380928	5272.896179	99.037	Т
46	4906.319156	5252.330716	99.183	
47	4930.085393	5231.690131	99.406	
48	4940.399085	5223.473411	99.062	
49	4945.677819		98.775	
50		5218.022565	97.926	
	1270.220200	J-10.022JUJ	71.720	1/1/ TT
51	4948.355495	5216.68774	97.586	G

Table PLX 08-1: Survey Data (continued)

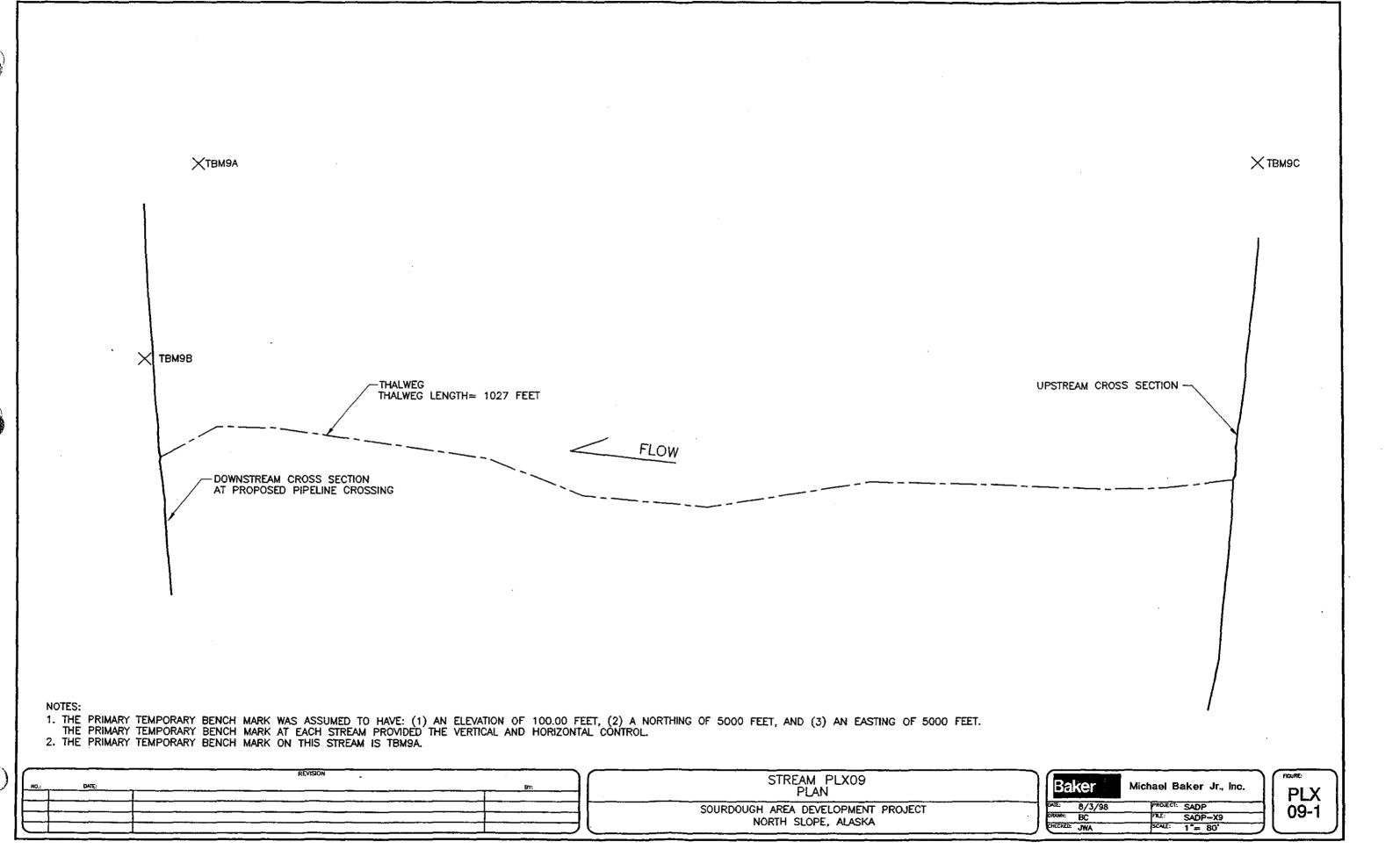
Survey					
Point	Easting	Northing	Elevation		
Number	(ft)	(ft)	(ft)	Description	
53	4973.115992	5195.447566	97.802	G	
54	4986.196228	5184.241338	97.802	G	
55	4992.035466	5178.933997	97.548	G	
56	4994.404923	5177.217257	97.465	G/TH	
57	4997.201233	5174.655896	97.954	REW	
58	4997.879765	5174.226434	98.238	T	
59	5004.523525	5169.758559	99.354	T	•
60	5025.319535	5150.742332	99.287	T	
61	5048.94387	5129.611704	98.864	T	
62	5070.786564	5111.059173	98.832	T	
63	5090.897828	5093.245898	98.531	T	
64	5113.712237	5073.59503	98.753	T	
Legend:					
G = grass		TH = thalweg		US = upstream	CL = center line
T = tundra		CG = crest gage		TWET = wet tundra	
C = cobbles		GB = ground brea	ık	M = mud	
LEW = left edge of water S		SH = shoulder		SB = sand bags	
REW = right edge of water		DS = downstream	i	PK = "pk" nail	
file:plx8.xls					

APPENDIX L: PLX 09

TABLE OF CONTENTS

Figure PLX 09-1: Plan

Figure PLX 09-2: Profiles


Figure PLX 09-3: Bed Material Gradation

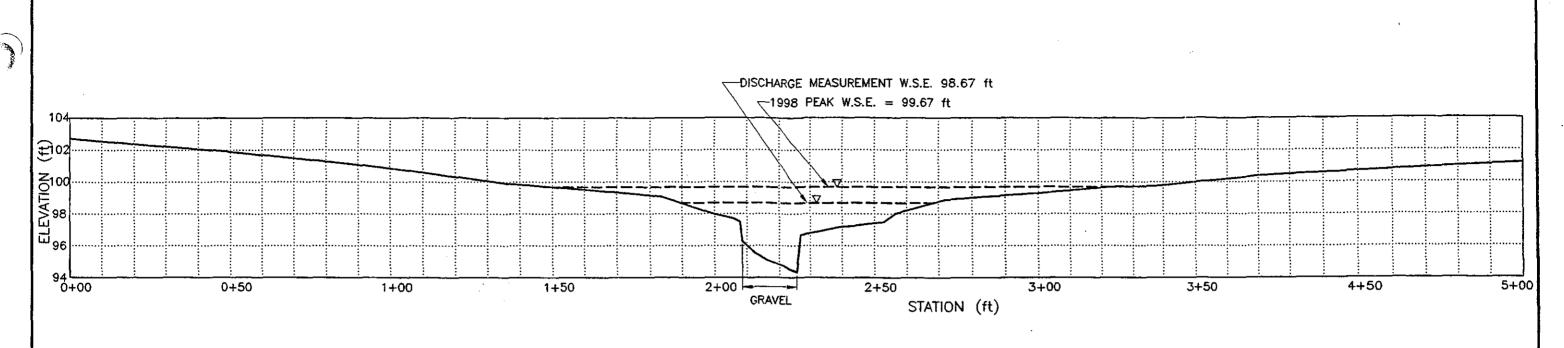

Photo Sheet PLX 09-1: Stream PLX 09 Photographs

Photo Sheet PLX 09-2: Stream PLX 09 Photographs

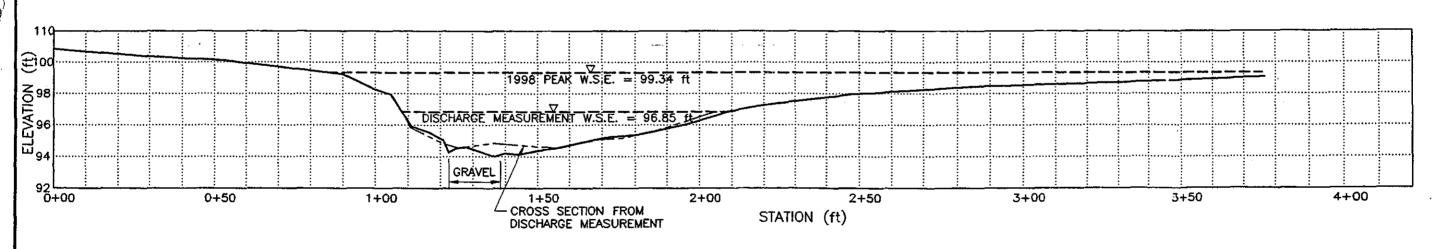

Discharge Measurement Notes

Table PLX 09-1: Survey Data

PROFILE: PLX09 UPSTREAM CROSS SECTION

PROFILE: PLX09 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM9A.


2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

1			REVISION	
N.	0.:	DATE:	 	9 Y:
<u> </u>				
╙				
L_			 	

STREAM PLX09 **PROFILES** SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Ba	ker	Michael Baker Jr., inc.			
DATE:	8/3/98	PROJECT: SADP			
DRAWN:	BC	FILE: SADP-X9			
CHECKED:	JWA	SCALE: VARIES			

PLX 09-2

PLX 09-3

Baker	Michael Baker Jr., Inc.		
Datc: 8/6/98	Project: 23247		
Drawn: JDA	File: gradations.ppt		
Checked: JWA	Scale: N/A		

STREAM PLX 09
BED MATERIAL GRADATION
SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

		REVISION:	7
NO:	DATE:		BY:
$\overline{}$			

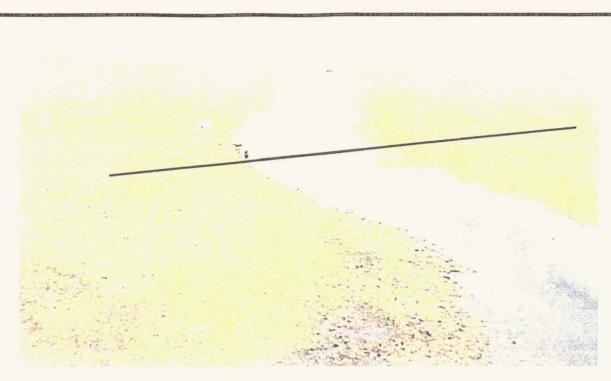


Photo PLX 09-1: Looking northwest at the proposed pipeline crossing (6/11/98).

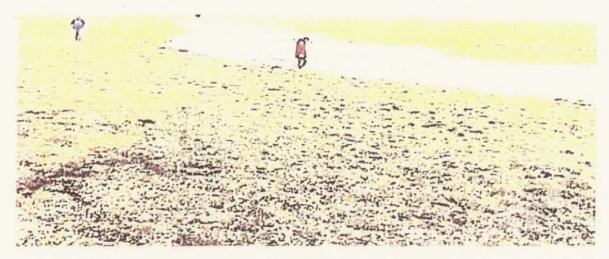


Photo PLX 09-2: Looking northwest at the proposed pipeline crossing (6/11/98).

STREAM PLX 09 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo09
Checked: JWA	Scale:

PLX 09-1

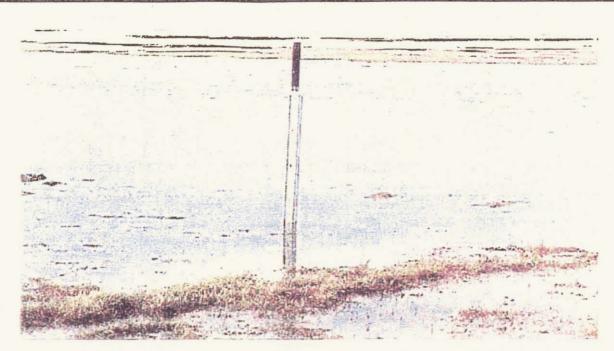


Photo PLX 09-3: Looking west at the proposed pipeline crossing and staff gage (5/28/98).

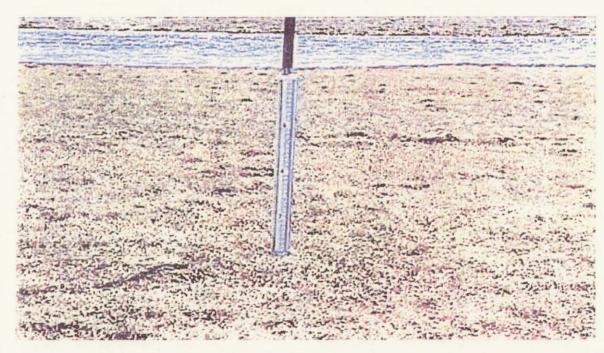


Photo PLX 09-4: Looking southwest at the proposed pipeline crossing and staff gage (5/29/98), note change in water surface elevation between this picture and previous picture.

STREAM PLX 09 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo09
Checked: JWA	Scale:

Photo Number:
PLX
09-2

		DISCHA	RGE MEASUREM	TENT NOTES			_
LOCATION:	DI V 00 -4	* * * * * * * * * * * * * * * * * * * *			<u> </u>		
	PLX 09 at proposed p 0,1998 Party:	Dipeline crossing (Partially J. Meckel, P. McGran					
	.7 Area: 156 ^E		********				
	./ Area: 156" G.H. cha		G.H.:	7	Disch.:	603 ^E	
Method coef.:	U G.M. CHA	ange: Hor. Angle coef.	in.:	hrs.:	B#-4 NI-	Susp.:	
ifferrod cociii	Ga	ge Readings	1	Sus. Coef.: 1 Type of meter:	Meter No. Price AA		
Time	Recorder	Inside	Outside	Date rated:	Std No 1		
	1	I	1	Meter:		ottom of weight	 ŀ.
	downstream x-sec	WSE=	96.85	Spin before meas.	ok	after	:
					at proposed pipe		•
	upstream x-sec	WSE=	98.67		eam cross section		•-
,======							·-
				****			_
							_
	4						
Weighted M.G.I	/		{	Levels obtained	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_
G.H. corrections							_
Correct M.G.H. Measurement ra	<u></u>	i er 8%), Partially Estimate		based on following co			•
Cross section:		obbles. Some ice on left si		Dascu on Inituming co	Maitions.		-
Flow:	Official grass and co	DOIGS, DOING ICC OII 1016 SH	uc.	Weather:	Air °F@:		-
	1		.00	7;	Water °F@		•
Gage: Other:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.02000000000000000000000000000000000000	200 E366000000000000000000000000000000000	AASIEL T.GG	/•	-
Record Remove	,			Intake flushed:			٠
Observer		1 3 5 5 5 6 44 5 6 44 5 6 4 5 6 4 6 5 5 5 5	, n = = = = = = = = = = = = = = = = = =				-
)	, a a a a a a a a a a a a a a a a a a a					٠
Control	Channel clear.						•
Remarks		lly measured and partially					,
		16.5 the depth was taken f	from survey notes, a	nd the velocity was estimate	d at time of the r	neasurement.	_
G.H. of zero flow	W:		,	ft.			-
		E = Estimated				Page 1 of 2	1

w.

DISCHARGE MEASUREMENT NOTES (PLX 09 Continued)

Angle	Dist.						VELO	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	22.3	9.1	0.0				- 		0.0		Right Edge water (1515 hr)
	40.5	14.7	1.2	0.6	40	48		1.84	17.6	32.5	
	51.7	10.1	1.7	0.6	50	48		2.29	17.2	39.3)
	60.7	9.9	1.8	0.6	60	43		3.06	17.8	54.5	
	71.5	15.4	2.3	0.6	100	45		4.85	35.4	171.8	
**=======	91.5	15.0	2.0					5.50	30.0	165.0	Estimated
	101.5	7.5	2.3					5.20	17.2	89.4	Estimated
	106.5	7.5	2.0					3.00	15.0	45.0	Estimated
	116.5	6.3	1.0					1.00	6.3		Estimated
	119.0	1.3	0.0					0.00	0.0	0.0	Left edge water (1545 hr)

						~6					
							,				
	L										
										•	

								***********			* = = = = = = = = = = = = = = = = = = =
							*				
*********					J975=4002500		**********			- , , , , , , , , , , , , , , , , , , ,	

	†				**********						
	;										144401201111111111111111111111111111111
	† <u>-</u>										
	}										
	96.7	96.7							156.5	603.8	
le: disch			L					l			Page 2 of 2

Table PLX 09-1: Survey Data

Survey	······································			
Point	Easting	Northing	Elevation	
Number	(ft)	(ft)	(ft)	Description
1	5000	5000	100	P09TBMPCL (TBM9A)
2	5000	4005.439138	102.089	P09TBMUS (TBM9C)
4	4966.979931	4005.350208	101.343	SGUS
11	4928.236174	4004.931448	101.227	T
12	4885.482897	4008.784505	100.792	T
13	4843.988115	4013.586954	100.382	T
14	4811.322247	4017.131184	99.729	T
15	4796.287198	4017.747062	99.682	T
16	4779.019556	4019.764824	99.366	T
17	4760.476088	4021.968112	99.098	T
18	4746.579982	4024.877109	98.878	T
19		4026.292155	97.996	
20		4026.738118	97.48	
21		4026.196673	97.254	
22		4026.670823	97.154	
23		4027.243014	96.88	
24		4027.475054	96.655	
LI.	4699.986544		94.311	
26		4029.439937	94.732	
27		4029.517784	95.097	
28		4029.442785	95.488	
29		4029.778566	96.276	
30 31		4029.954424 4030.083777	96.276 97.488	
32		4029.995624		LEW
33		4030.758984	98.005	
34		4030.873424	99.071	
35		4032.895248	99.445	
36		4035.279614	99.901	
37	4571.638613		100.928	
it .		4043.08543		
39	4475.799226	4052.963716	102.71	
40	4686,014027	3986.11025	96.004	
41	4687.426131	4093.005293	95.964	
42	4686.690925	4145.127159	95.645	TH
43	4691.269818	4251.633895	93.804	TH
44	4693.864268	4369.965949	94.296	TH
45	4669.163668	4521.270054	94.847	
46	4679.863648	4638.893161	94.026	TH
47	4716.051408	4727.650234	93.812	TH
48	4732.035479	4832.385527	92.063	
49	4745.826977	4927.98311	92.084	
50			92.51	
51	4704.995812	5068.966311	93.366	

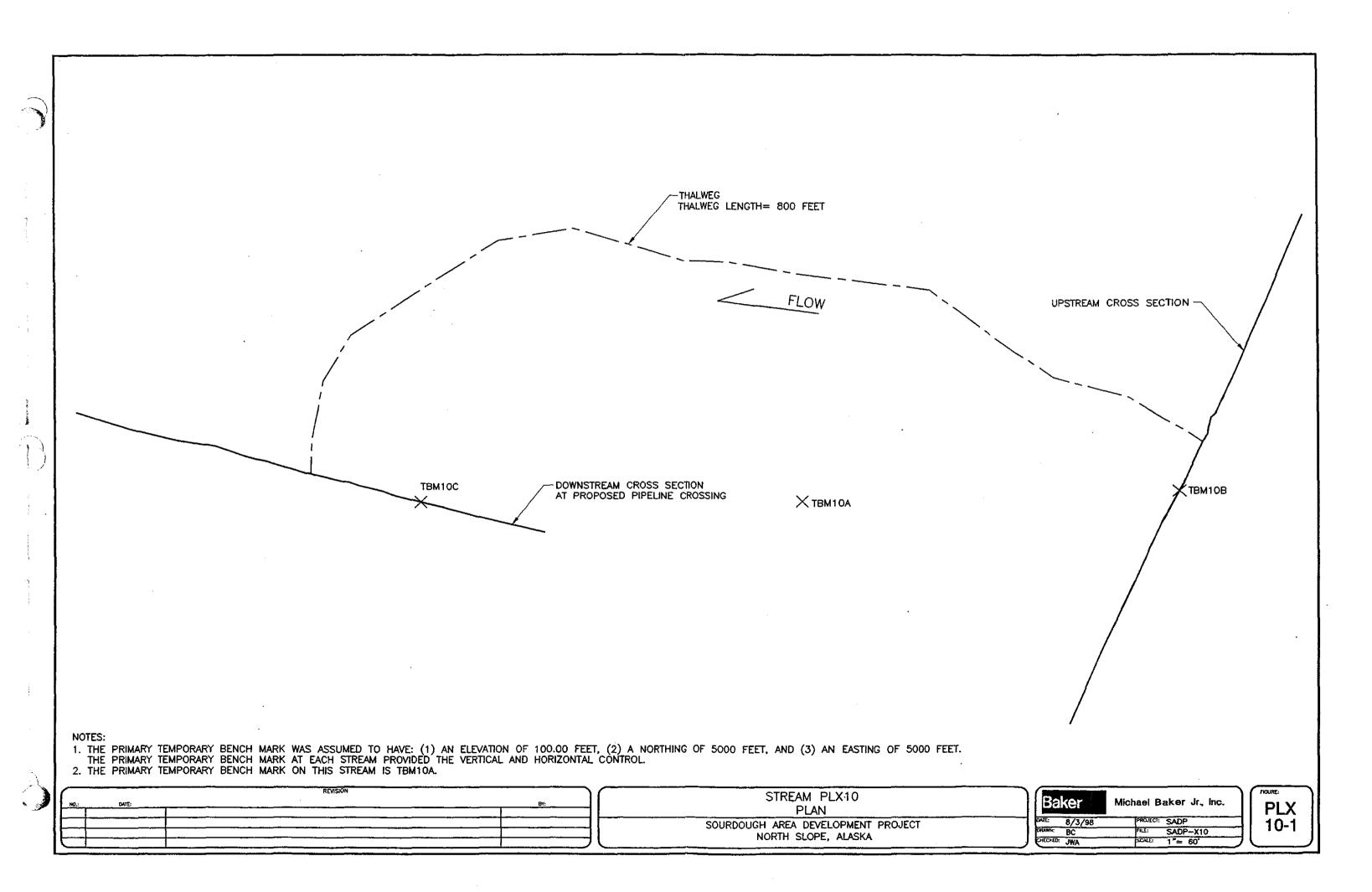
Table PLX 09-1: Survey Data (continued)

Point Number Easting (ft) Northing (ft) Elevation (ft) Description 52 4585.454563 5025.78843 100.851 T 53 4615.594209 5028.734945 100.369 T 54 4637.745698 5030.534308 100.119 T 55 4661.431946 5032.136596 99.566 T 56 4675.103448 5032.16652 99.244 T 57 4684.526117 5033.273622 98.328 T 58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
52 4585.454563 5025.78843 100.851 T 53 4615.594209 5028.734945 100.369 T 54 4637.745698 5030.534308 100.119 T 55 4661.431946 5032.136596 99.566 T 56 4675.103448 5032.16652 99.244 T 57 4684.526117 5033.273622 98.328 T 58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
53 4615.594209 5028.734945 100.369 T 54 4637.745698 5030.534308 100.119 T 55 4661.431946 5032.136596 99.566 T 56 4675.103448 5032.16652 99.244 T 57 4684.526117 5033.273622 98.328 T 58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
54 4637.745698 5030.534308 100.119 T 55 4661.431946 5032.136596 99.566 T 56 4675.103448 5032.16652 99.244 T 57 4684.526117 5033.273622 98.328 T 58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
55 4661.431946 5032.136596 99.566 T 56 4675.103448 5032.16652 99.244 T 57 4684.526117 5033.273622 98.328 T 58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
56 4675.103448 5032.16652 99.244 T 57 4684.526117 5033.273622 98.328 T 58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
57 4684.526117 5033.273622 98.328 T 58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
58 4690.114624 5033.930366 97.95 T 59 4696.100555 5034.639893 95.928 T	
59 4696.100555 5034.639893 95.928 T	
60 4701.465409 5035.539379 95.547 T	
61 4705.969953 5036.080646 95.04 LEW	
62 4707.613871 5036.238691 94.263 G	
63 4710.034277 5036.366997 94.53 C	
64 4712.941033 5036.957007 94.603 C	
65 4717.512436 5036.159652 94.297 CTH	
66 4721.805983 5037.098416 94.015 C	
67 4724.917464 5037.742762 94.205 G	
68 4729.090495 5037.899748 94.133 G	
69 4735.099577 5038.310393 94.386 G	
70 4741.845966 5038.5302 94.569 G	
71 4748.67499 5038.109046 94.875 G	
72 4757.03574 5038.862205 95.229 REW	
73 4766.870626 5040.489624 95.411 T	
74 4782.791083 5041.636757 96.142 T	
75 4804.253371 5042.490822 97.249 T	
76 4832.681164 5044.207543 97.957 T	
77 4869.949568 5047.352338 98.455 T	
78 4916.600058 5049.949538 98.72 T	
79 4961.090563 5051.165933 99.074 T	
80 4812.810866 5050.941005 98.105 P09TBM2 (TBM9B)	
81 4793.65213 5041.737179 96.842 N	
82 4958.670228 4992.387638 99.27 SG	
83 5263.394308 5324.829951 98.794 HV54, Photo Panel - set by others	
Legend:	
G = grass $TH = thalweg$ $US = upstream$ $CL = center$	line
T = tundra CG = crest gage TWET = wet tundra	
C = cobbles GB = ground break M = mud	
LEW = left edge of water SH = shoulder SB = sand bags	
REW = right edge of water DS = downstream PK = "pk" nail	
file:plx9.xls	

APPENDIX M: PLX 10

TABLE OF CONTENTS

Figure PLX 10-1: Plan


Figure PLX 10-2: Profiles

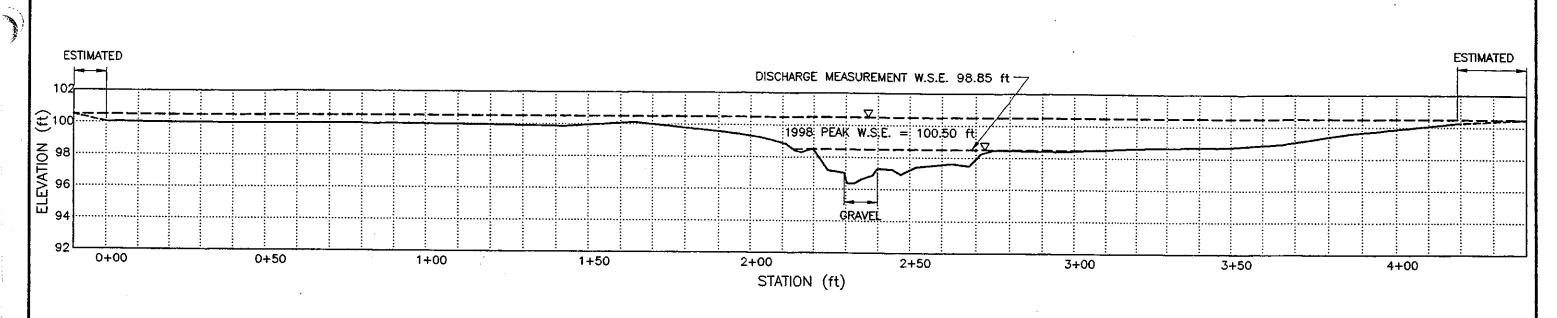
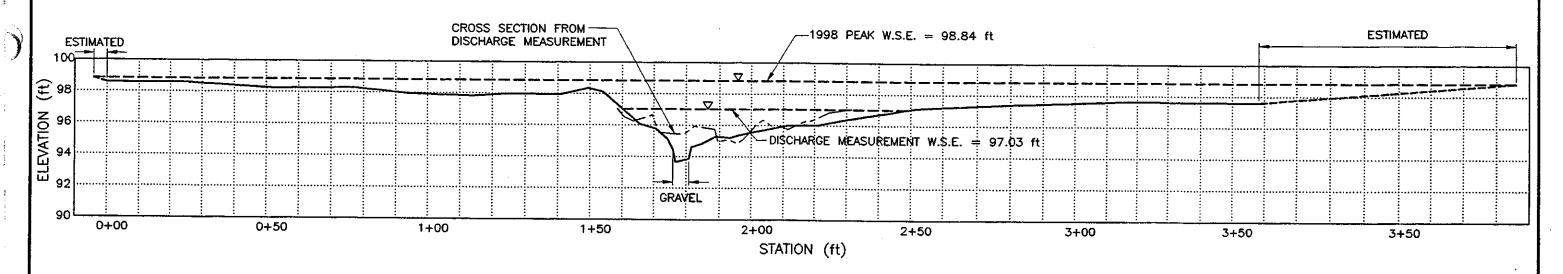

Photo Sheet PLX 10-1: Stream PLX 10 Photographs

Photo Sheet PLX 10-2: Stream PLX 10 Photographs

Discharge Measurement Notes


Table PLX 10-1: Survey Data

PROFILE: PLX10 UPSTREAM CROSS SECTION

SCALE: H 1"= 30'

PROFILE: PLX10 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM10A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

REVISION	
NO.: DATE:	STREAM_PLX10
	PROFILES
	SOURDOUGH AREA DEVELOPMENT PROJECT
	NORTH SLOPE, ALASKA

Baker		Michael Baker Jr., Inc.				
DATE:	8/3/98	PROJECT: SADP				
DRAWN:	BC	FILE: SADP-X10				
CHECKED:	JWA	SCALE: VARIES				

PLX 10-2

Photo PLX 10-1: Looking north at the proposed pipeline crossing (6/1/98).

Photo PLX 10-2: Looking northwest at the proposed pipeline crossing (6/11/98).

STREAM PLX 10
PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn; JDA	File: photo10
Checked: JWA	Scale:

Photo Number:
PLX
10-1

Photo PLX 10-3: Looking east at the proposed pipeline crossing (6/1/98); note crest mark on lath.

STREAM PLX 10 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo10
Checked: JWA	Scale:

PLX 10-2

LOCATION:	PLX 10 at proposed	pipeline crossing					
Date: 6/1	,1998 Party:		ahan				
		76.5 Vel: 2.3	60 G.H. :		Disch.:		176
No Secs. 26	G.H. c		in.:	hrs.:		Susp.:	
Method coef.:	1	Hor. Angle coef.	<u>l</u>	Sus. Coef.: Noted	Meter No.	************	
		age Readings		Type of meter:	Price AA		
Time	Recorder	Inside	Outside	Date rated:	Std 1		
	 			Meter:	ft. above botto		ht.
	upstream x-sec	WSE=	98.85	Spin before meas.	ok	after	
	 			Method: Wading a	t proposed pipeline	e crossing,	
	downstream x-sec	WSE=	97.03	downstre	am cross section.	************	
	i 		∦				
	i ! !						
Weighted M.G.H	•			Levels obtained	this time		
G.H. corrections							
Correct M.G.H.							
Measurement rat	ed: Good			based on following con	ditions:		
Cross section:	Irregular - mostly	grass 8-10".					
Flow:	Uneven distributio	n	:	Weather:	Air °F@:		
Gage:					Water °F@:	************	
Other:							
Record Removed	-400			Intake flushed:			
Observer	r· 						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		**************************************					
Control	Riffle 100-150 dow	netream clear		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	INTERPOSEDUCION	HISH CAHI CICAL.		200400; +	+2020PC09#242044880		
Remarks	Crops - rough small	l amount of cobble < 2".	! pappa = = = = = = = = = = = = = = = = =				
ACMATKS	Grass - rough, smar	amount of copole > 2.					
G.H. of zero flow				ft.		·	

DISCHARGE MEASUREMENT NOTES (PLX 10 Continued)

Angle	Dist.						VELO	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds			Description		
	(ft)	(ft)	(ft)		į		(fps)	(fps)	(s.f.)	(cfs)	
	137.0	3.5	0.0						0.0	0.0	Right edge water (1315 hr)
	130.0	6.0	0.2	s	10	48	0.47	0.43	1.2	0.5	
	125.0	4.0	0.7	0.6	40	52		1.70	2.8	4.8	
	122.0	4.0	0.8	0.6	40	45		1.96	3.2	6.3	
	117.0	3.5	1.3	0.6	50	40		2.74	4.6	12.5	
	115.0	2.0	1.1	0.6	60	43		3.06	2.2	6.7	
	113.0	2.0	1.2	0.6	80	50		3.50	2.4	8.4	
	111.0	2.0	1.0	0.6	80	48	***********	3.65	2.0	7.3	
	109.0	2.0	0.7	0.6	80	41		4.26	1.4	6.0	,
	107.0	2.0	1.0	0.6	80	48		3.65	2.0	7.3	
	105.0	2.0	1.5	0.6	80	50		3.50	3.0	10.5	
0.98	103.0	2.0	1.9	0.6	80	40	4.37	4.28	3.8	16.3	
0.96	101.0	2.0	2.2	0.6	80	43	4.07	3.91	4.4		Edge grass
0.96	99.0	2.0	2.0	0.6	80	44	3.98	3.82	4.0		Small cobble
0.97	97.0	2.0	2.0	0.6	60	40	3.28	3.18	4.0	12.7	" " " 
0.97	95.0	1.5	2.1	0.6	40	50	1.76	1.71	3.2	5.4	L
0.98	94.0	2.0	1.3	0.6	50	48	2.29	2.24	2.6		Edge grass
0.98	91.0	3.0	1.2	0.6	30	45	1.47	1.44	3.6	5.2 6.0	
0.99	88.0	3.0	1.1	0.6	40	48	1.84	1.82	3.3	2.4	-+
	85.0	3.0	1.6	0.6	10	45		0.50	4.8	9.7	
!}	82.0	4.0	1.6	0.6	30	44		1.51 1.16	6.4 5.3	6.1	
	77.0	3.5	1.5	0.6	25 7	48 50	0.33	0.29	1.6	0.5	
	75.0	4.0	0.4	Lacrassacassi		41	V.33	0.29	3.6	3.0	
!	69.0	4.5	0.8	0.6	15	52	0,44	0.82	1.3	0.5	
	66.0	2.5	0.5	3	10		U,44	0,40	0.0		Left edge water (1400 hr)
I	64.0	1.0	0.0	-2454205555					0.0	V.V	Later Cago water (1400 m)
			***********								
	73.0	73.0							76.5	176.1	Page 2 of 2

Table PLX 10-1: Survey Data

Survey			<del></del>	
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	•
1	5000	5000		P10.TBM (TBM10A)
2	5000	5282.459824	98.915	P10PCL (TBM10C)
3	4999.630039	5282.628993	97.942	CG.C/L
6	4999.993153	5282.445536	98.914	CK
11	4832.375265	4799.621793	100.044	T
12	4873.210025	4781.715073	99.995	T
13	4893.069439	4773.27477	100.01	T
14	4917.810792	4761.905342	99.986	T
15	4939.572039	4751.983904	99.943	T
16	4963.309403	4742.019108	99.863	Τ
17	4982.941818	4733.304273	100.116	T
18	5007.893632	4721.753526	99.538	CGUS (TBM10B)
19	5017.639271	4717.115119	99.232	•
20	5025.30885	4713.992707	98.837	T .
21	5027.975702	4712.673772	98.432	T
22	5029.900108	4712.163986	98.298	G
23	5033.211422	4710.503816	98.515	LEW
24	5034.392979	4709.957324	98.182	G
25	5037.594419	4708.603561	97.176	G
26	5042.120247	4706.395055	97.025	G
27	5042.844109	4706.114823	96.39	C
28	5045.176276	4705.154136	96.38	CTH
29	5046.910049	4703.914514	96.631	C
30		<del>4702.314825</del> -	<del>- 96.88</del>	- <del>C</del>
31	5051.236367	4701.518459	97.286	G
32		4701.053106	97.266	
33	5058.764655		96.912	
34		4699.181457	97.393	
35		4695.364747	97.503	
36		4693.029173	97.629	
37	5077.542607		97.488	
38	5080.667967	4689.725132	98.235	
39	5084.564611	4688.033314	98.482	
40	5102.551618		98.404	
41	5125.535647		98.626	
42	5151.987861	4658.718737	98.718	
43	5167.962721	4652.165182	98.937	
44	5186.229076		99.581	
45	5216.340143		100.256	
46	5021.970496	4639.062569	96.794	
47	5079.339729	4756.360124	96.662	TH .
. 48	5094.456478	4812.906544	96.116	TH
49	5117.601601	4847.841309	96.46	TH
50	5160.41197	4907.188984	95.976	TH
51	5172.809054	5006.005266	95.565	TH

Table PLX 10-1: Survey Data (continued)

Γ	Survey				
	Point	Easting	Northing	Elevation	Description
L	Number	(ft)	(ft)	(ft)	
厂	52	5181.094028	5053.379972	95.373	TH
	53	5182.439741	5088.680906	94.626	TH
	54	5206.421929	5169.272159	94.368	TH
	55	5197.565103	5224.214115	94.203	TH
	56	5164.018387	5277.385983	95.483	TH
	57	5126.128272	5334.033646	95.112	TH
	58	5091.529594	5354.841122	93.243	
	59	5047.287817	5363.13111	94.508	TH
	60	4986.90034	5390.315761	94.7	THFL ·
	61	4976.767717	5191.0879	98.577	
	62	4982.365857	5215.319108	98.579	
	63	4988.792005		98.248	
	64	4995.455736		98.278	
	65	4999.540918		97.949	
l	66	5004.464171		97.818	
	67	5008.14725		97.964	
	68	5011.946616		97.933	
ı	69	5014.725836		98.339	
	70	5015.421345		98.113	
i	71	5018.154025	5351.28717	96.076	
	72	5019.422142		95.754	
	73	5020.202345	5359.93646	95.096	•
	74	5020.360078		94.492	
	75	5020.826289	5362.263174	93.656	
	76	5021.253056	5363.837283	93.732	
	77	5021.821619	5366.24987	93.859	
	78 70	5021.691473		94.598	
1	79	5022.566745	5370.28876	94.823	
	80	5023.692477		95.283 95.201	
	81	5024.971118 5026.324048	5378.176226		
	82	5028.086161	5388.520431	95.472 95.711	
	83 84		5395.749362		REWX
	84 85	5030.740771 5032.644273		96.002 96.019	
	85 86	5035.014061		96.369	
	86 87		5434.386157		
	87	5042.368694		97.129	
	88	5046.653898	5462.084196 5497.94815	97.384	
	89	5055.658283	· ·	97.653	
	90	5068.182379	3331.022813	97.602	1
		1	continued on ne	yt nage)	
1			ACTION OF INC.	··· Pugo)	

(continued on next page)

Table PLX 10-1: Survey Data (continued)

Ѕшгуеу			·····			
Point		Easting	Northing	Elevation	Description	
Number		(ft)	(ft)	(ft)		
	88	5046.653898	5462.084196	97.384	T	
	89	5055.658283	5497.94815	97.653	T	
	90	5068.182379	5537.622815	97.602	T	
Legend:						
G = grass			TH = thalweg		US = upstream	PK = "pk" nail
T = tundra			CG = crest gage		TWET = wet tundra	
C = cobbles			GB = ground brea	ak	M = mud	
LEW = left e	dge c	of water	SH = shoulder		SB = sand bags	
REW = right	edge	of water	DS = downstream	1	CL = center line	
	_					
file:plx10.xls						

#### APPENDIX N: PLX 11

#### TABLE OF CONTENTS

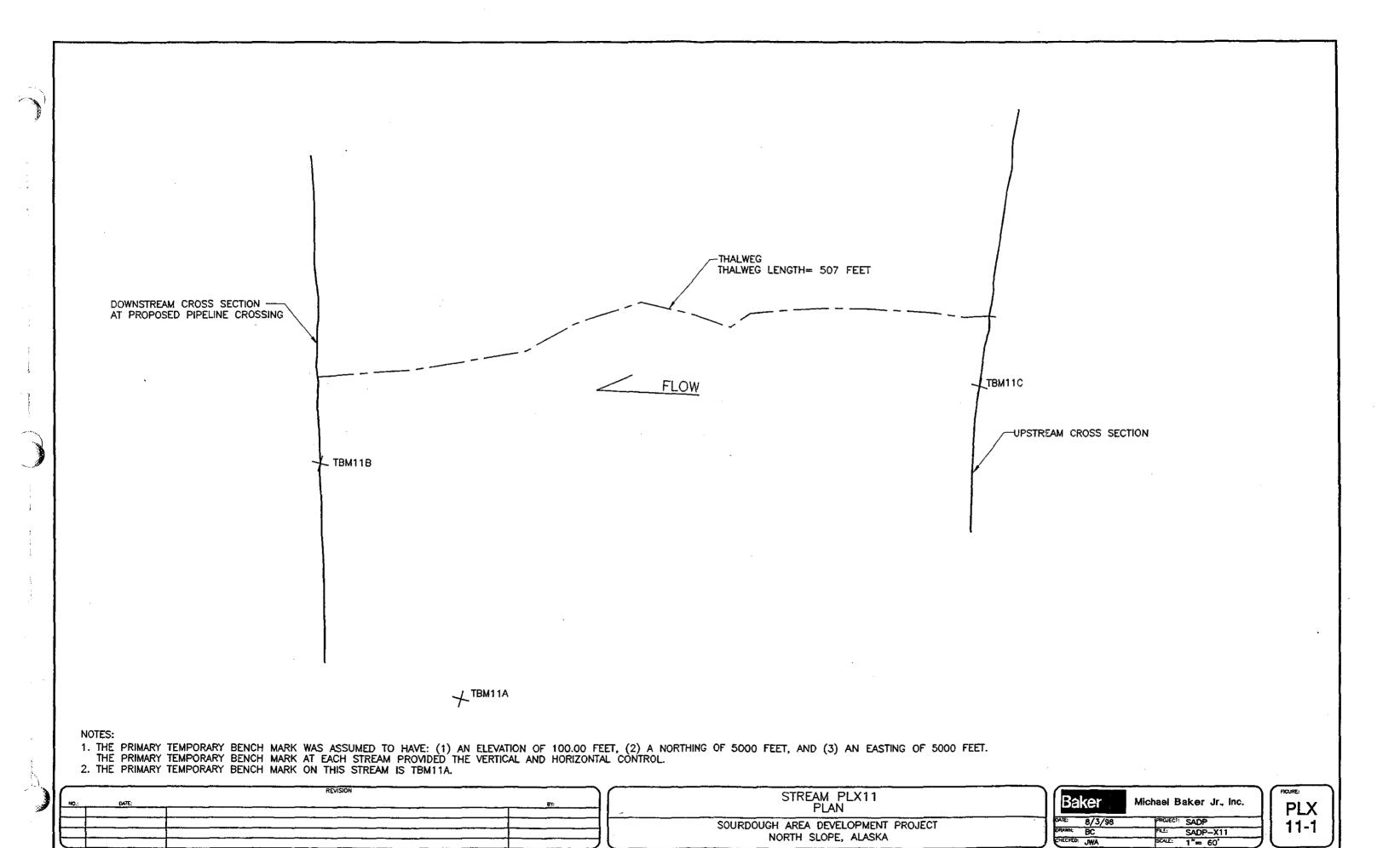
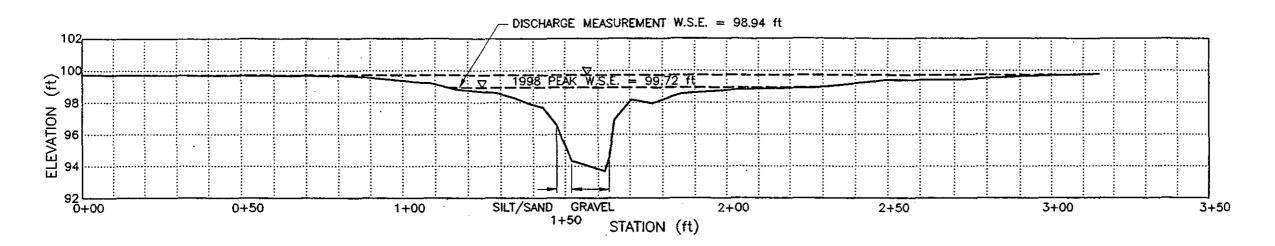
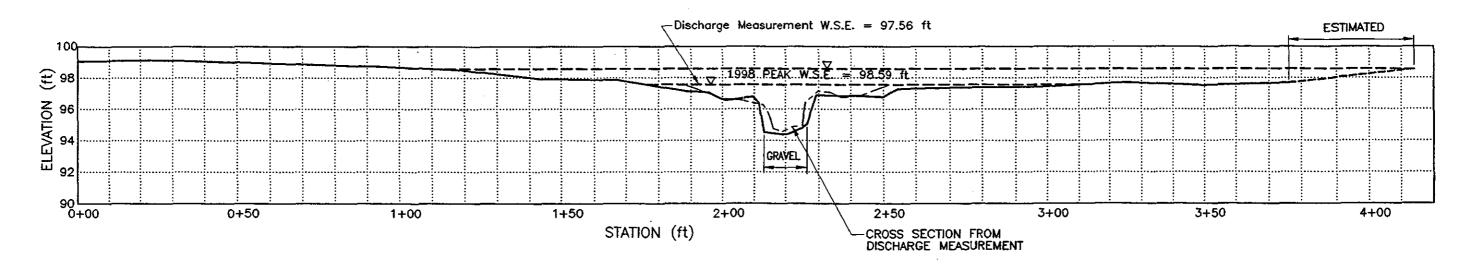

Figure PLX 11-1: Plan

Figure PLX 11-2: Profiles


Photo Sheet PLX 11-1: Stream PLX 11 Photographs

Discharge Measurement Notes

Table PLX 11-1: Survey Data




NORTH SLOPE, ALASKA



PROFILE: PLX11 UPSTREAM CROSS SECTION

SCALE: H 1"= 30' V 1"= 6'



PROFILE: PLX11 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM11A.

2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

NO.: DATE:  BY:	PROFILES	Baker Michael Baker Jr., Inc.	PLX
	SOURDOUGH AREA DEVELOPMENT PROJECT	DATE: 8/3/98 PROJECT: SADIP  ORANN: BC FILE: SADIP—X11  PRÉCIÉCIO: JWA SCALE: VARIES	11-2



Photo PLX 11-1: Looking north at the proposed pipeline crossing, water depth is 1 foot (6/1/98).




Photo PLX 11-2: Looking north at the proposed pipeline crossing (6/11/98).

STREAM PLX 11 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker M	lichael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photol 1
Checked: JWA	Scale:

PLX 11-1

		DISCHA	ARGE MEASUREN	MENT NOTES		
LOCATION:	PLX 11 at proposed	pipeline crossing				
Date: 6/1	,1998 Party:	J. Meckel, P. McGra	nahan	***********		
Width: 64	,	66.2 Vel: 0.9		**************************************	Disch.:	65.2
No Secs.	17 G.H. ch		in.;	hrs.:	Sus	
Method coef .:	1	Hor. Angle coef.	1	Sus. Coef.: 1	Meter No.	
	G	age Readings		Type of meter:	Price AA	
Time	Recorder	Inside	Outside	Date rated:	Std No I	
				Meter:	ft. above bottom of	weight.
	upstream x-sec	WSE=	98.94	Spin before meas.	ok afte	
	1			Method: Wading	at proposed pipeline cros	sing,
		,			eam cross section.	
	downstream x-sec	WSE=	97.56		**************************************	
				***************************************		
						**********
	!		**************************************			
Weighted M.G.H	•			Levels obtained	this day	
G.H. corrections		, , ,	   		######################################	
Correct M.G.H.				799-24# 1484		
Measurement rat	ted: Fair			based on following co	nditions:	*********
Cross section:	Trapazo	id with over banks.	~~~***********************************	,		
Flow:				Weather:	Air °F@:	**********
Gage:	· · · · · · · · · · · · · · · · · · ·			***************************************	Water °F@:	
Other:	******************				Tratel 1.00.	
Record Removed	•			Intake flushed:	a 2 2 2 2 4 2 4 4 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	
Observer		*****************		**************************************		
Observer						
Control	Lake 20	0 ft downstream. Channe	l overbanks of grass	. Streambed smooth cobble <	3", sand.	
Remarks	No snov	v or ice.	# # # # # # # # # # # # # # # # # # #		40 89 4 8 5 4 4 8 8 9 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
			######################################			
G.H. of zero flow	7828 888666			ft.		
******************	***************	*******			Page	1 of 2

DISCHARGE MEASUREMENT NOTES (PLX 11 Continued)

Angle	Dist.	Ì					VELO	CITY			-
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	110.0	3.5	0.0	.+					0.0	0.0	Left edge water (1400 hr)
	103.0	6.0	0.5		7	54	0.30	0.27	3.0	0.8	
	98.0	5.5	0.9		10	53	0.43	0.39	5.0	1.9	
	92.0	6.5	1.0	S	10	42	0.54	0.49	6.5	3.2	
	85.0	4.0	1.3	0.6	20	53		0.84	5.2	4.4	
	84.0	1.0	1.6	0.6	20	49		0.91	1.6	1.5	
**======	83.0	1.0	2.1	0.6	20	42		1.06	2.1	2.2	
	82.0	2.0	2.8	0.8	15	43	0.78	1.44	5.6		Edge grass
*****	79.0	3.0	3.0	0.2	40	42	2.10	2.22	9.0	20.0	smooth cobbles
	<u> </u>			0.8	40	42	2.10				H 11
	76.0	3.0	2.7	0.8	30	41	1.62	1.77	8.1	14.3	<u> </u>
	<u> </u>			0.2	40	46	1.92		0.0	0.0	
*****	73.0	2.0	2.6	0.2	20	50	0.89	0.86	5.2	4.4	Edge grass
				0.8	15	41	0.82		0.0	0.0	
	72.0	2.5	1.1		7	50	0.33	0.29	2.8	0.8	
	68.0	4.0	0.4			0		0.00	1.6	0.0	
	64.0	3.5	0.5	s	0	0		0.00	1.8	0.0	
	61.0	4.5	0.8		15	45	0.75	0.67	3.6	3.6	
	55.0	7.5	0.7	S	0		0.00	0.00	5.3	0.0	
	46.0	4.5	0.0			******	0.00		0.0	0.0	Right edge water (1500 hr)
*********											
***											
			**********								
	64.0	64.0							66.2	65.2	

Table PLX 11-1: Survey Data

	Survey				
	Point	Easting	Northing	Elevation	•
L	Number	(ft)	(ft)	(ft)	Description
	1	5000	5000		START (TBM11A)
	2	5000	5201.772255	99.148	PIIPCL (TBMIIB)
	3	5000	5201.856814	97.931	CG
	11	4928.624257	5071.847914	99.071	T
1	12	4940.683611	5092.785136	99.137	T
	13	4952.569471	5114.656762	99.015	T
	14		5134.572159	98.873	T
l	15		5155.253685	98.727	T
	16		5176.112397	98.508	T
	17		5198.473567	97.923	
	18		5218.661854	97.866	
	19		5237.805568	97.12	
ll	20		5243.642345	97.068	
	21		5246.452025	96.713	
	22		5248.767562	96.55	
	23	5027.86642		96.707	
l	24		5255.551509	96.793	
ŀ	25	5030.159792		96.38	
∦	26	5030.894089		94.53	
	27		5263.484547	94.406	
	28		5266.210393	94.42	
ŀ	29		5269.194636	94.771	
	30 31	5038.733381	5270.508635	95.06 96.884	•
	31		5280.323705	96.847	
	33	5045.619021		96.847	
	34	5049.044595		96.755	
	35		5294.423682	97.287	
l	36		5309.588522	97.376	
	37		5333.469959	97.431	
l	38	5085.385459		97.709	
ĺ	39	5097.20209		97.531	
I	40	5108.437722	5402.159375	97.676	
	41	4990.420522	5296.135	94.927	
	42	5094.70199		94.438	
	43	5171.293783		95.233	
	44	5211.592942	5200.093498	96.714	
	45	5261.310303	5189.669227	95.964	
	46	5291.340877	5161.206805	95.251	
	47	5309.51977	5140.54917	94.008	
	48	5326.960567		95.028	
	49	5350.064236		95.687	
1	50	5374.538154		96.654	
	51.		5103.079301	95.351	
	J1.	J701.J7017	J10J.017J01	73.331	111

Table PLX 11-1: Survey Data (continued)

Survey		ata (Continue	· · · · · · · · · · · · · · · · · · ·		
Point	Easting	Northing	Elevation		
Number	(ft)	(ft)	(ft)	Description	
52	5440.926553	5076.832855	95.57	TH	
53	5459.705211	5062.143236	95.608	TH	
54	5497.628706	5007.612258	97.401	THFL	
55	5570.701126	5174.163221	99.772	T	
56	5555.148652	5156.292124	99.639	T	
57	5544.428849	5139.068362	99.409	T	
58	5529.848847	5123.272611	99.401	T	
59	5515.913025	5105.602009	98.907	Ŧ	
60	5501.629745	5088.77688	98.841	T	
61		5074.002096	98.55		
62	5487.514594	5069.99862	98.29	REW	
63		5065.977535	97.941	G	
64	5480.627353		98.175		
65	5476.916023		96.891		
66		5055.676426	94.586		
67		5054.717706	93.704		
68		5046.015571	94.333	С	
69		5044.623942	95.046	•	
70		5042.773192	96.618		
71	5463.521098		97.673		
72		5036.704511	97.907		
73	5457.725024		98.26		
74		5028.704623	98.609		
75		5018.697387	98.814		
76		5012.889975		CGUS (TBM11C)	
77	5426.998319		99.657		
78		4959.800174	99.693		
79	5381.846693	4921.936405	99.736	1	<del> </del>
Legend:		77f f 4l1		T10	Dvr. H. 1
G = grass		TH = thalweg		US = upstream	PK = "pk" nail
T = tundra		CG = crest gag		TWET = wet tundra	
C = cobbles		GB = ground b	reak	M = mud	
LEW = left edge o		SH = shoulder		SB = sand bags	
REW = right edge	of water	DS = downstre	am	CL = center line	
file:plx11.xls					

# APPENDIX O: PLX 12

### TABLE OF CONTENTS

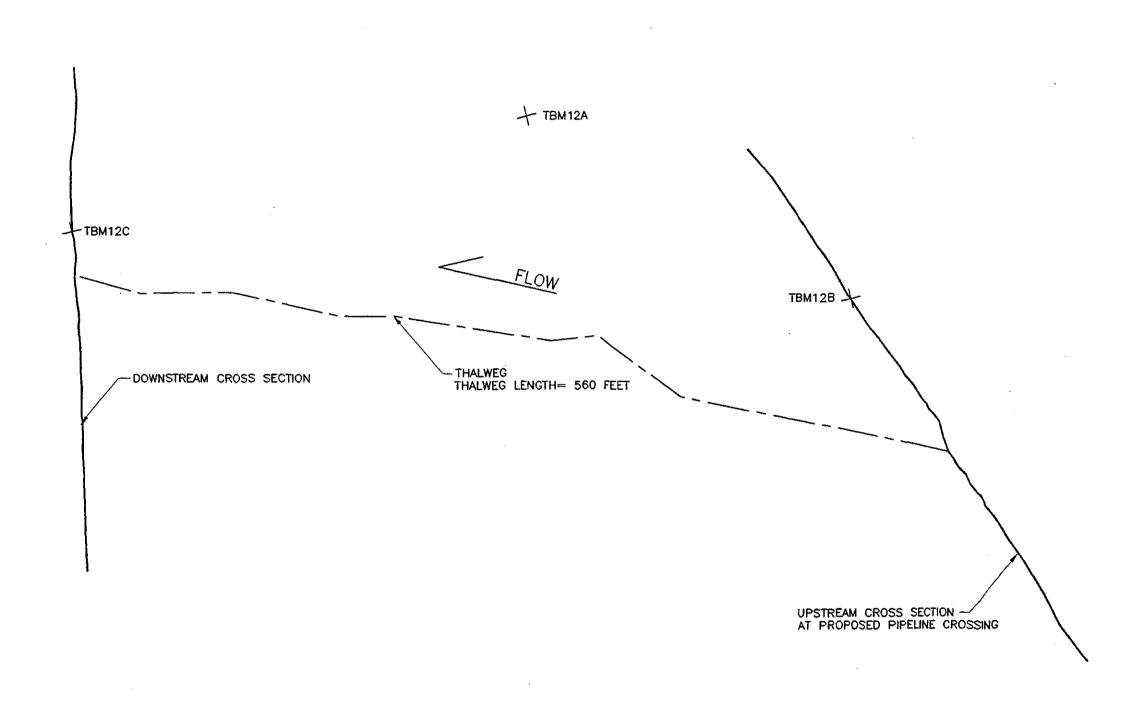

Figure PLX 12-1: Plan

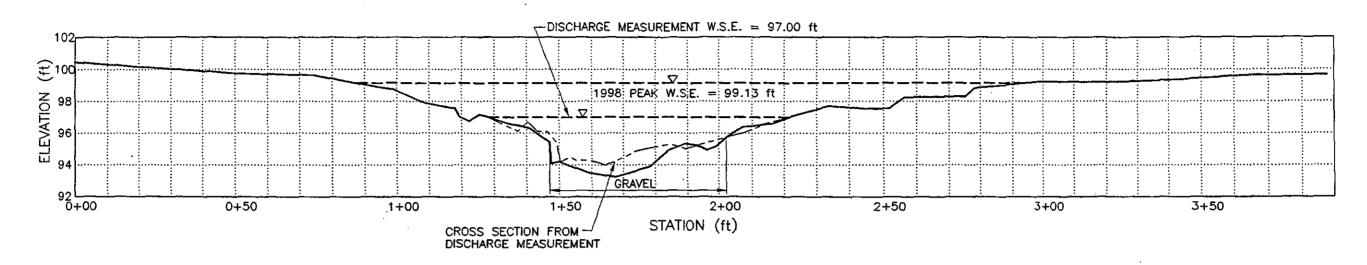
Figure PLX 12-2: Profiles

Photo Sheet PLX 12-1: Stream PLX 12 Photographs

Discharge Measurement Notes

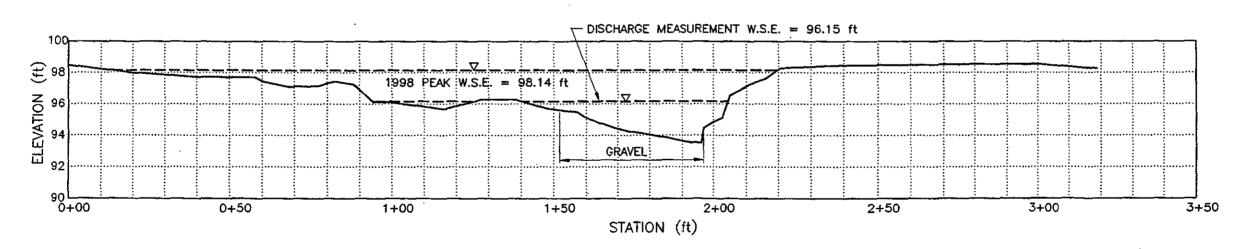
Table PLX 12-1: Survey Data




- 1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.

  2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM12A.

	NO.: DATE:	RÉVISION 6Y:	STREAM PLX12 PLAN
١			SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA


Ba	ker	Michael Baker Jr., Inc.					
QATE;	8/3/98	PROJECT: SADP					
DRAWN:	BC	FILE: SADP-X12					
CHECKED:	JWA	SCALE: 1 = 60'					

PLX



PROFILE: PLX12 UPSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'



PROFILE: PLX12 DOWNSTREAM CROSS SECTION

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM12A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

		REVISION	
NO.:	DATE:		BY:
L			
$\smile \bot$			

STREAM PLX12 **PROFILES** SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Bal	ker	Michael Baker Jr., Inc.
ATE:	8/3/98	PROJEC: SADP
RAWN;	BC	FILE: SADP-X12
HECKED:	JWA	SCALE: VARIES

PLX



Photo PLX 12-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 12-2: Looking southeast at the proposed pipeline crossing (6/5/98).

STREAM PLX 12 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo12
Checked: JWA	Scale,

PLX 12-1

		DI	SCHARGE	MEASUREN	MENT NOTES	-		<del></del>
LOCATION:	PLX 12 at proposed j	pipeline crossing						
	,1998 Party:	J. Meckel, P. M	IcGanahan			<u> </u>		
L	*	42 Vel:	1.73	G.H.:		Disch.:	245	cfs
No Secs. 23	G.H. ch	ange:	in		hrs.:		Susp.:	Rod
Method coef.:	1	Hor. Angle co	ef.	1	Sus. Coef.: Noted	Meter No.		
		ge Readings			Type of meter:	Price AA		
Time	Recorder	Inside	0	utside	Date rated:	Std No 1		
	 				Meter:	ft. above bot	om of weigl	nt.
·=====================================	Upstream x-sec	W	/SE=	97.00	Spin before meas.	ok	after	ok
					Method: Wading a	t proposed pipelii	ne crossing,	
	 				upstream	cross section.		
				***				
	downstream x-sec	W	/SE=	96.15				
				,				
	+							
***************************************	*							
Weighted M.G.H					Levels obtained	this time		
G.H. corrections								
Correct M.G.H. Measurement rat	ted: Good	i						د وي چند خود مواد کان ويو چند چېږد يې دوې مند مند د
		1 111 - 41 1			based on following con	ditions:		
Cross section:	Fairly uniform smoot	h cobbles < 3", sho	rt grass.	,				
Flow:					Weather:	Air °F@:		
Gage:					·	Water °F@:		
Other:								
Record Removed	:				Intake flushed:			
Observer								
Control	Broad riffle 100-150	ft. downstream clea	ar.					
Remarks								
G.H. of zero flow	•				ft.			
							Page 1 of	2

·. _.

DISCHARGE MEASUREMENT NOTES (PLX 12 Continued)

Angle	Dist.	{		1	f [		VELO	CITY				
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description	
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)		
	22.0	2.5	0.0						0.0		Left edge water (1515 hr)	
	27.0	4.5	0.5	s	15	40	0.84	0.75	2.3	1.7		
0.98	31.0	3.5	0.9	S	25	46	1.20	1.08	3.2	3.4		
0.98	34.0	3.0	0.3	S	20	48	0.93	0.84	0.9	0.8		
0.98	37.0	3.0	0.9	S	25	43	1.29	1.16	2.7	3.1		
0.98	40.0	3.0	0.9	S	30	47	1.41	1.27	2.7	3.4		
0.99	43.0	2.0	1.6	0.6	30	43		1.54	3.2	4.9	Edge grass	
0.98	44.0	2.0	2.8	0.8	25	45	1.23	1.56	5.6		Small cobble	
0.98				0.2	40	47	1.88		0.0	0.0	11 11 11 11 11 11 11 11 11 11 11 11 11	
0.99	47.0	2.5	2.5	S	30	44		1.90	6.3	11.9		
				0.6	40	46		1.92	0.0	0.0	() ()	
0.99	49.0	2.5	2.7	0.6	40	41		2.15	6.8	14.5	et 11	
0.98	52.0	3.0	2.7	0.6	40	39		2.25	8.1	18.2	11 11	
0.98	55.0	3.0	2.8	0.6	40	43		2.05	8.4	17.2	H II	
0.98	58.0	3.0	3.0	0.6	40	40		2.20	9.0	19.8	11 11	
1	61.0	3.0	2.8	0.6	40	41		2.15	8.4	18.1	II II	
1	64.0	3.0	2.5	0.6	40	46		1.92	7.5	14.4	11 11	
1	67.0	4,5	2.2	0.6	40	48		1.84	9.9	18.2	14 14	
1	73.0	5.5	1.9	0.6	40	44		2.00	10.5	20.9	11	
1	78.0	5.0	1.7	0.6	40	48		1.84	8.5	15.6	10 II	
<u> </u>	83.0	6.0	2.0	0.6	30	42		1.58	12.0	19.0	11	
1	90.0	9.0	1.6	0.6	25	41		1.35	14.4	19.4	11 11	
i	101.0	9.0	1.0	0.6	20	42		1.06	9.0	9.5	ft 11	
	108.0	7.0	0.4	s	20	49		0.91	2.8	2.5	Edge grass	
	115.0	3.5	0.0						0.0	0.0	Right edge water (1600 hr)	
			- 4 4 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7									
	93.0	93,0						-44-46	142.0	245.4		

Table PLX 12-1: Survey Data

Survey		<u>-</u>	<del> </del>	
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	2
	5000	5000		P15.TOPO (TBM12A)
2		4770.255932		P12PCL (TBM12B)
11	4999.99443			P12PCL
12		4870.896995	99.641	
13		4849.937183	99.648	i
14		4829.725179	99.336	l
15		4809.295023	99.2	
16		4789.874564	99.217	
17		4772.881283	98.789	
18		4753.338246	98.233	
19		4749.122271	97.529	
20		4742.728591	97.531	
21		4732.656279	97.701	
22		4722,070656	97.042	
23		4716.882019	96,594	
24		4708.405388		REW .
25	4969.4499	4704.021952	95.725	G
26	4968.231719	4701.159956	95.167	c
27	4966.90772	4698.444481	94.923	С
28	4965.942418	4694.833987	95.259	c
29	4963.977973	4691.876636	95.34	С
30	4962.448341	4686.761614	94.87	C
31	4960.295339	4681.735153	93.874	C
32	4952.13647	4673.734764	93.238	C
33	4946.700938	4666.777343	93.518	СТН
34	4944.641182	4661.841048	93.913	C
35	4942.518858	4658.894071	94.224	C
36	4941.540992	4656.64777	94.072	C
37	4941.281127	4656.32996	95.42	G
38	4939.320472	4650.11904	96.307	
39	4935.744951		96.593	
40	4932.356847	4636.897156	97.169	
41	4931.203473	4633.910703	96.755	
42	4929.694348	4631.299197	97.019	
43	4928.475861	4630.221981	97.569	
44	4925.185017	4621.530807	97.877	T
45	4920.540461	4612.569562	98.766	T
46	4916.519093	4605.419316	99.022	Ţ
47	4909.974694	4590.494094	99.648	T
48	4898.488395	4569.830528	99.73	T
49	4886.387535	4550.68733	100.062	T
50	4875.302238	4524.821189	100.464	T
51	5036.639672	4697.901497	92.649	TH/FL
52	4894.089744	4828.591041	94.976	TH
53	4901.885772	4892.51982	92.625	TH

Table PLX 12-1: Survey Data (continued)

Survey	_			
Point	Easting	Northing		Description
Number	(ft)	(ft)	(ft)	
54	4884.695774	4916.124042	93.304	
55	4849.356348	5008.535849	93.718	
56		5037.283729	92.756	
57		5101.97564	92.977	
58		5151.217349	93.895	TH
59	4745.822034	5253.108129	93.787	TH/FL
60	4614.279931	5091.565478	98.448	T
61	4630.035692	5102.040242	97.995	T
62	4647.41725	5112.702465	97.721	
63	4663.198121	5122.234633	97.688	T
64	4665.640955	5123.637098	97.393	T
65	4672.180431	5128.031268	97.108	
66	4679.720869		97.138	
67		5135.338852	97.43	
68		5138.233545	97.249	
69		5141.565728	96.124	
70	4699.034601	5144.521526	96.095	
71	4713.277571		95.665	
. 72	4722.942004		96.28	
73		5164.312869	96.277	
74	4739.590573	5169.668833	95.724	
75		5174.708056	95.463	
76	4749.594534	5175.381029	95.187	
77	4753.777131	5178.117409	94.783	
78		5181.110357	94.469	
79	4761.355698		94.242	
80		5187.567166	94.044	
81		5190.215904	93.891	
82	4773.355193	5192.520683	93.694	
83	4777.629014	5194.852065	93.546	
84	4780.405889	5196.04306	93.506	
85	4781.184298	5196.150261	94.442	
86	4783.90437	5197.8514	94.861	
87	4786.451092	5199.234381	95.108	
88	4788.162883	5200.596939	96.506	
89	4792.904075	5204.14512	97.234	
90	4796.53809			P12CGDS (TBM12C)
91	4800.476092	5210.009501	98.28	
92	4816.479969	5220.213304	98.456	T
	(	continued on ne	xt page)	

Table PLX 12-1: Survey Data (continued)

Survey		<del></del>			
Point	Easting	Northing	Elevation	Description	
Number	(ft)	(ft)	(ft)		
9:	3 4834.17202	5230.255411	98.477	T	
9.	4 4851.879603	5237.182894	98.533	T	
9:	5 4870.215271	5246.607653	98.542	T	
90	6 4886.330964	5257.637627	98.256	T	
Legend:					
G = grass		TH = thalweg		DS = downstream	CL = center line
T = tundra		CG = crest gage	•	US = upstream	PK = "pk" nail
C = cobbles		GB = ground brea	ık	TWET = wet tundra	
LEW = left edg	ge of water	SH = shoulder		M = mud	
REW = right ed	ige of water			SB = sand bags	
file:plx12.xls					

# APPENDIX P: PLX 13

# TABLE OF CONTENTS

Photo Sheet PLX 13-1:

Stream PLX 13 Photographs



Photo PLX 13-1: Flow is in small indistinct channels (6/5/98).



Photo PLX 13-2: Looking northwest at the proposed pipeline crossing (6/11/98).

STREAM PLX 13 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn: JDA	File: photo13				
Checked: JWA	Scale:				

PLX 13-1

## APPENDIX Q: PLX 14

## TABLE OF CONTENTS

Photo Sheet PLX 14-1: Stream PLX 14 Photographs

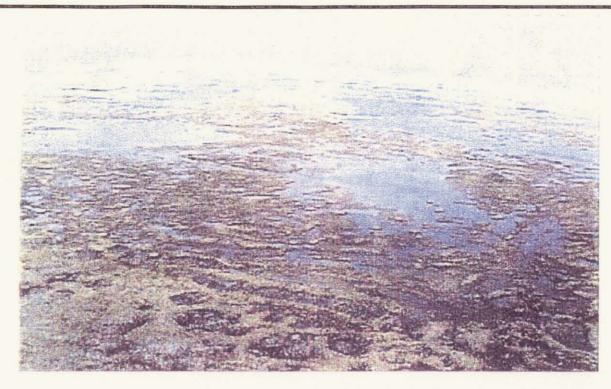



Photo PLX 14-1: During the 1998 break-up there was no flowing water at this location, only standing water in lakes (6/5/98).

STREAM PLX 14 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn: JDA	File: photo14				
Checked: JWA	Scale:				

PLX 14-1

## APPENDIX R: PLX 15

## TABLE OF CONTENTS

Figure PLX 15-1: Plan

Figure PLX 15-2: Profiles

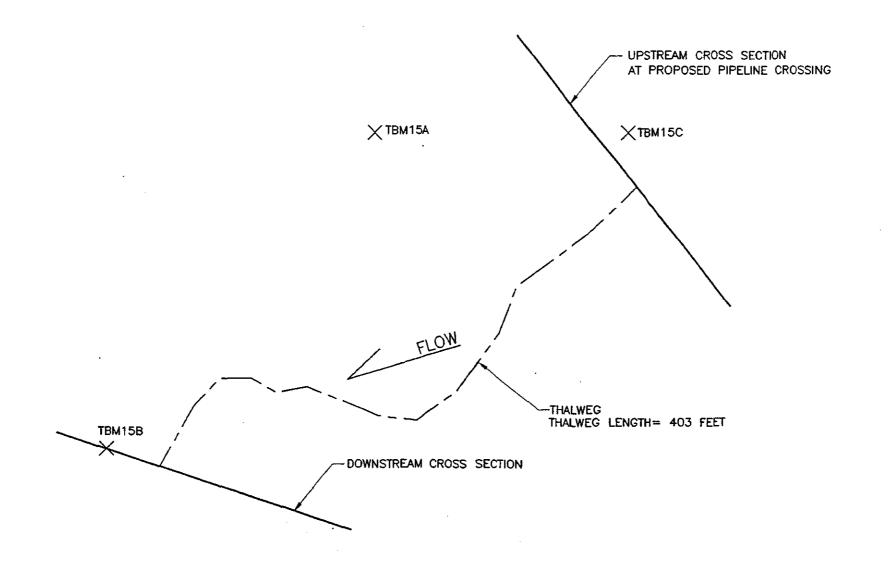
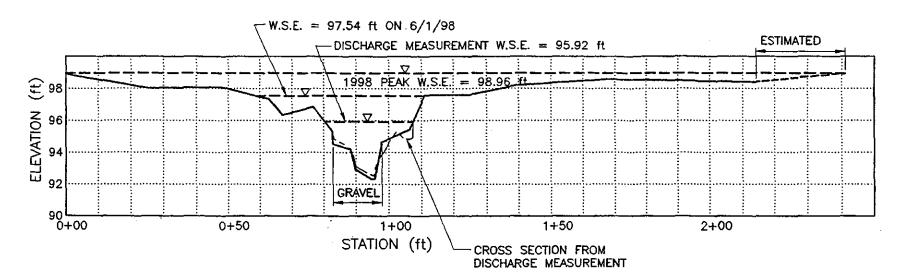

Figure PLX 15-3: Bed Material Gradation

Photo Sheet PLX 15-1: Stream PLX 15 Photographs

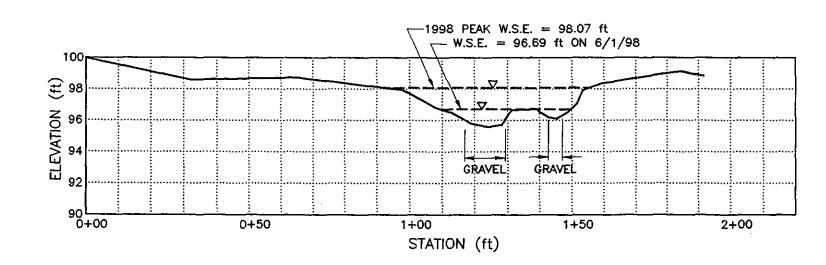
Photo Sheet PLX 15-2: Stream PLX 15 Photographs

Discharge Measurement Notes


Table PLX 15-1: Survey Data



1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.
2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM15A.


REVISION  NO.: DATE:	STREAM PLX15 PLAN
	SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Bake	r	Michael Baker Jr., Inc.				
DATE: 8/	3/98	PROJECT: SADP				
ORAWN: BC		FILE: SADP-X15				
CHECKED: JW		SCATE: 1 = 60'				

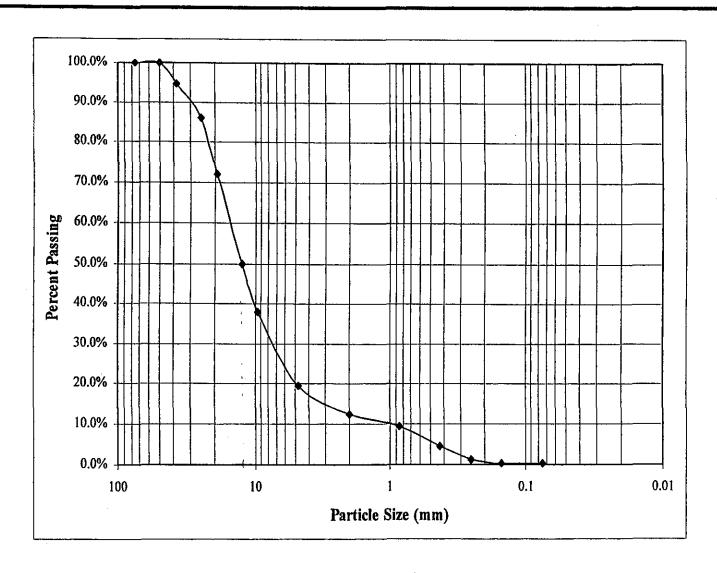


PROFILE: PLX15 UPSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'



PROFILE: PLX15 DOWNSTREAM CROSS SECTION


SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM15A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

$\overline{}$		REVISION	STREAM PLX15
HO.:	DATE:	B1:	PROFILES
<del> </del>	<del></del>		
			SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA
			NORTH SLOPE, ADASKA

Ba	ker	Michael Baker Jr., Inc.					
DATE:	8/3/98	PROJECT:	SADP				
DRAWN;	BC	PLE:	SADP-X15				
CHECKED:	JWA	SCALE:	VARIES				

PLX 15-2



PLX 15-3

Baker	Michael Baker Jr., Inc.
Date: 8/6/98	Project: 23247
рожи: ЛДА	File: gradations.ppt
Checked: JWA	Scate: N/A

STREAM PLX 15
BED MATERIAL GRADATION
SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

		REVISION:	
NO:	DATE:		BY:
		<u>.</u>	
$\overline{}$			
_		<u> </u>	



Photo PLX 15-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 15-2: Looking north at the upstream cross section (6/11/98).

STREAM PLX 15 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

32/02/	Mich	ael Baker Jr., Inc.
Date: 6/7/98		Project: 23247
Drawn: JDA		File: photo 15
Checked: JWA		Scale:

PLX 15-1



Photo PLX 15-3: Looking north at the proposed pipeline crossing (6/3/98).

STREAM PLX 15 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn. JDA	File: photo15				
Checked: JWA	Scale:				

Photo Number:
PLX
15-2

		DISCHA	RGE MEASUREM	IENT NOTES			
LOCATION:	PLX 15 at proposed pip	eline crossing					
	,1998 Party:	T. Riopelle, J. Meckel					****
		3 Vel: 1.0			Disch.:	48.8	cfs
No Secs.	15 G.H. chan		in.:	hrs.:	Lightie.	Susp.:	Rod
Method coef.:		Hor. Angle coef.	1	Sus. Coef.: Noted	Meter No.		1700
	Gage	Readings	*	Type of meter:	Price AA		
Time	Recorder	Inside	Outside	Date rated:	Std No 1	· · · · · · · · · · · · · · · · · · ·	
		!		Meter:		tom of weight.	
	upstream x-sec	WSE=	95.92	Spin before meas.	ok	after	ok
	<u> </u>				proposed pipeli	ne crossing,	
				upstream (	cross section.		
	100 feet downstream	WSE=	95.76				
	of the upstream x-sec						
	<u> </u>						
Weighted M.G.H		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Levels obtained			
G.H. corrections							
Correct M.G.H.		<u> </u>					
Measurement rat				based on following con-	ditions:		
Cross section:	Non-unifor	m long grass/cobbles.	~ # # # # + <b></b>	, 			
Flow:	Fairly well	distributed.		Weather:	Air °F@:		
Gage:					Water °F@:	38.3	
Other:			\$-66.00.000.000.000.000.000.000.000.000.0				
Record Removed				Intake flushed:			
Observer	***********************		# # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = # 4 = #				
Control	Riffle 100-	140 ft downstream, clea	ar no snow or ice. G	Grass and cobbles.			:
ļ				#2200000000000000000000000000000000000	<u> </u>		
Remarks	Grass in ch	annel ^{&lt;} 8" long - cobble	es round & smooth <	< 2 1/2".			
O II . C							
G.H. of zero flow				ft,		Page 1 of 2	

DISCHARGE MEASUREMENT NOTES (PLX 15 Continued)

Angle coef.	Dist. From Initial point	rom nitial Width	Depth			•	VELC	CITY			
				Observ. depth	1 1	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ff)				(fps)	(fps)	(s.f.)	(cfs)	}
	90.0	1.0	0.0					0.00	0.0		Left edge water (0950 hr)
	92.0	1.5	0.5	s	15	58	584.00	0.53	0.8	0.4	
	93.0	2.0	1.1	0.6	15	50		0.67	2.2	1.5	
	96.0	2.8	1.5	0.6	27	49		1.22	4.0	4.9	
	98.5	1.8	1.9	0.6	25	42		1.32	3.3	4.4	
	99.5	2.3	2.8	0.2	30	44	1.51	1.28	6.3	8.1	***************************************
				0.8	25	53	1.05		0.0	0.0	
	103.0	2.8	3.2	0.2	30	44	1.51	1.34	8.8	11.8	
				0.8	2.5	48	1.16		0.0	0.0	
1	105.0	1.5	3.5	0.2	25	40	1.38	1.08	5.2	5.6	
				0.8	15	43	0.78		0.0	0.0	
0.96	106.0	1.5	2.5	0.6	25	51	1.09	1.05	3.8	4.1	
0.95	108.0	2.0	1.9	0.6	25	55	1.01	0.96	3.8	3.8	
0.88	110.0	2.0	1.2		15	48	0.70	0.62	2.4	1.7	
0.80	112.0	2.0	0.6		15	51	0.66	0.53	1.2	0.8	
0.96	114.0	2.0	1.0		15	54	0.63	0.60	2.0	1.3	
0.99	116.0	1.5	1.1		10	69	0.34	0.33	1.7	0.6	
	117.0	0.5	1.0		0				0.5	0.0	
											Right edge water (1020 hr)
		-4									***************************************
											-448P200000000000000000000000000000000000
					-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						***************************************
	27.0	27.0							45.8	48.8	

Table PLX 15-1: Survey Data

Survey				
Point	Easting	Northing	Elevation	•
Number	(ft)	(ft)	(ft)	Description
1	5000	5000		P15 TBM (TBM15A)
2	5156.394842	5000	98.581921	P15 P C/L (TBM15C)
3	5156.394842	5000		GRN P C/L
11	4984.522847		99.971182	l l
12		4759.386967	98.576253	
13		4769.388282	98.723713	1
14		4778.814242	97.931538	
15		4782.992215	96.830313	
16		4785.007475	96.485044	
17		4787.411542	95.774567	
18		4789.109049	95.585362	
19		4789.957516	95.702541	•
20		4790.858081	96.487388	
21	4860.28092		96.658009	
22 23	4853.005756	4794.00618 4794.178986	96.686026 96.473766	
23 24		4794.178988	96.198092	
25		4795.705356	96.083679	
26		4796.530004	96.510742	
27		4797.321261	97.051849	
28		4797.732223	97.917498	
29		4799.372299		CG US (TBM15B)
30		4806.879949	99.132323	· · · · · · · · · · · · · · · · · · ·
31	4803.030723	4809.558163	98.82581	T
32	4855.065575	4749.331198	94.283021	TH/FL
33	4887.636857	4826.257622	94.812763	TH
34	4903.328682	4843.899307	94.330874	TH
35	4922.902586	4844.318889	93.692613	TH
36	4938.659735	4835.060999	93.321654	TH
37		4838.765975	94.539031	
38		4820.170407	94.562483	
39		4817.130898	94.332979	
40	5051.532175		92.976264	
41		4872.905085	94.618863	
42		4902.507164	93.736201	
43	5132.257147		90.981344	
44	-	4987.097707	94.196436	
45		4890.322399	98.921149	
46		4912.776762	98.035227	
47	5194.85776	4932.709542	98.08029	
48	5187.606579	4945.864923	97.340936	
49		4949.475411	96.338174	
50	5181.048258		96.8343	
51	5178.497217	4963.188401	95.49388	LEW

Table PLX 15-1: Survey Data (continued)

Survey					
Point	Easting	Northing	Elevation		
Number	(ft)	(ft)	(ft)	Description	
52	5178.095967	4963.68953	95.286335	G	
53	5178.012185	4963.756048	94.530328	C	
54	5175.876184	4968.720063	94.212563	C	
55	5175.025078	4970.139179	92.916738	C	
56	5173.087492	4974.800684	92.317873	C/TH	
57	5172.824818	4975.933168	92.332948	C	
58	5171.905908	4977.94446	94.650119	G	
59	5169.238062	4982.556555	95.131084	G	
60	5167.454514	4985.169639	95.421043	REW	
61	5164.904896	4989.219664	97.586484	T	
62	5148.105063	5012.049956	98.196572	T	
63	5126.451177	5031.456201 98.584207		T	
64	5089.165936	5060.919942	98.408904	<u>T</u>	
Legend:					
G = grass		TH = thalweg		US = upstream	PK = "pk" nail
T = tundra		CG = crest gage		TWET = wet tundra	
C = cobbles		GB = ground brea	ak .	M = mud	
LEW = left edge o	of water	SH = shoulder		SB = sand bags	:
REW = right edge	of water	DS = downstream	1	CL = center line	
file:plx15.xls					

## APPENDIX S: PLX 16

## TABLE OF CONTENTS

Figure PLX 16-1: Plan

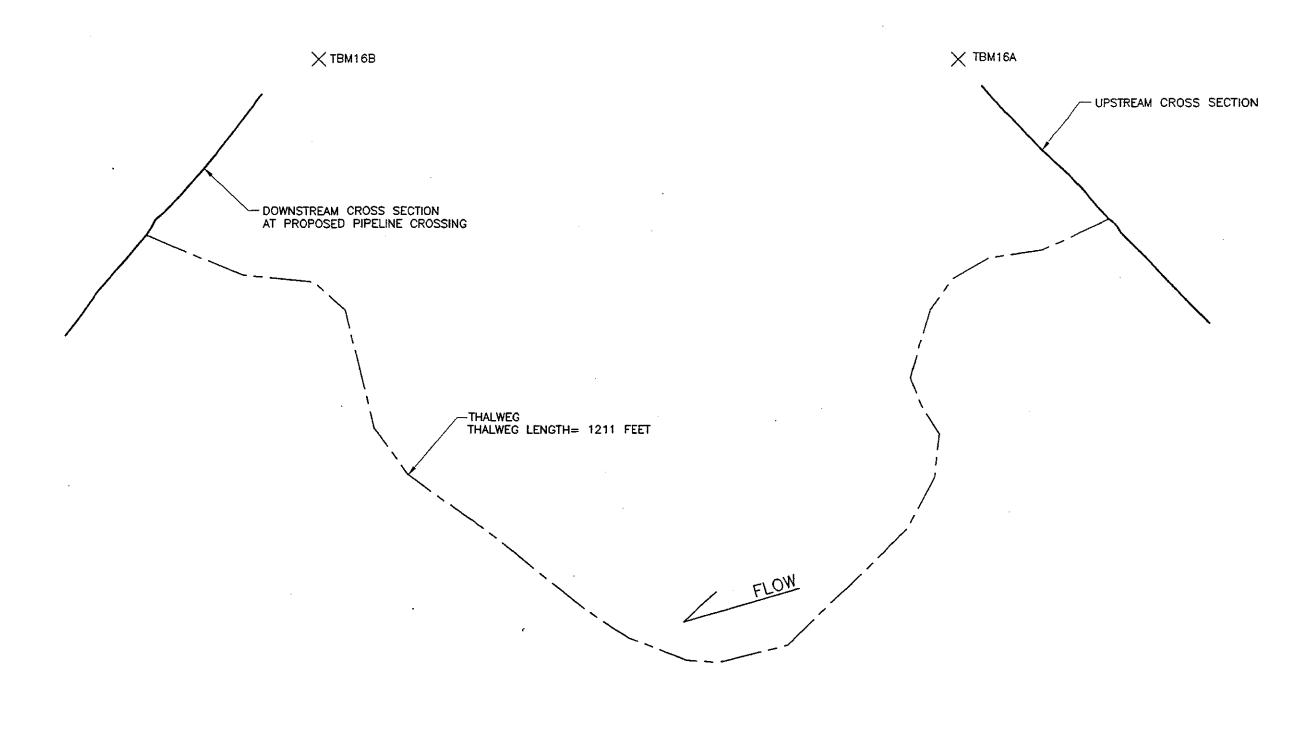

Figure PLX 16-2: Profiles

Figure PLX 16-3: Bed Material Gradation

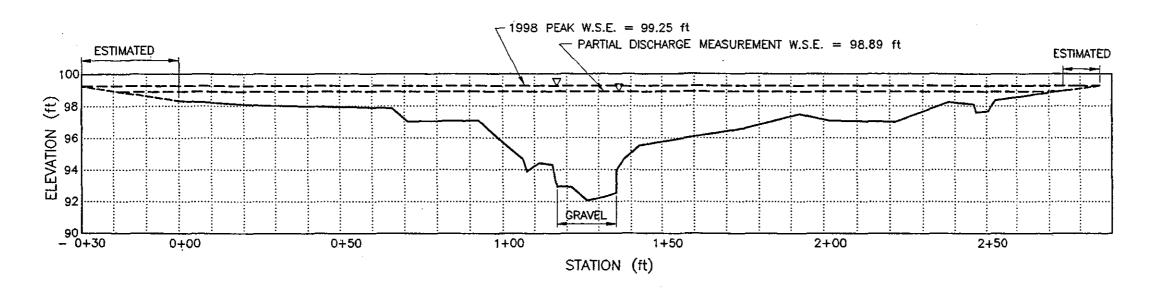
Photo Sheet PLX 16-1: Stream PLX 16 Photographs

Discharge Measurement Notes

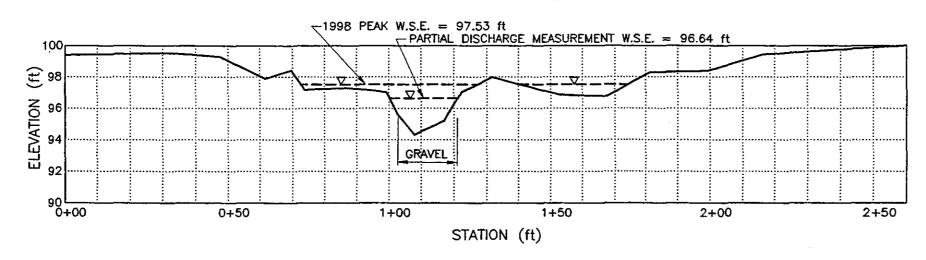
Table PLX 16-1: Survey Data



- 1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.


  2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM16A.

		REYISION		
NO.:	GATE:	 <u> </u>	9Y:	
<u></u>		 <del></del>		
L.		 		


STREAM PLX16 PLAN	
SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA	

Ba	ker	Michael Baker Jr., Inc.				
DATE:	8/3/98	PROJECT: SADP				
DHAWN;	BC	FILE: SADP-X16				
CHECKED:	JWA	SCALE: 1"= 80'				

PLX 16-1



PROFILE: PLX16 UPSTREAM CROSS SECTION



PROFILE: PLX16 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM16A.
2. W.S.E.= WATER SURFACE ELEVATION

		REVISION	· · · · · · · · · · · · · · · · · · ·	ST
NO.:	DATE:		BY:	
				SOURDOUGH AR
<del></del>	<del> </del>			NORT
_	<del></del>			

STREAM PLX16 PROFILES	
RDOUGH AREA DEVELOPMENT NORTH SLOPE, ALASKA	PROJECT

Bal	ker	Michael E	Baker Jr., Inc.
CATE:	8/3/98	PROJECT	SADP
ORAWN;	BC	FLE:	SADP-X16
CHECKED:	JWA	SCALE:	VARIES

PLX 16-2

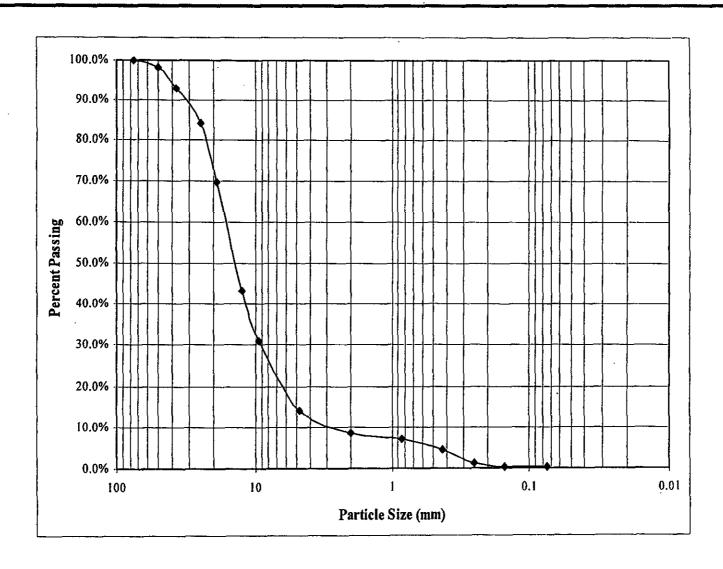



Figure Number:
PLX
16-3

Baker	Michael Baker Jr., Inc.
Date: 8/6/98	Project: 23247
Drawn: JDA	Fuc gradations.ppt
Checkof: JWA	Scale: N/A

STREAM PLX 16
BED MATERIAL GRADATION
SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

REVISION:								
DATE:		BY:						
	DATE:							



Photo PLX 16-1: Looking north at the proposed pipeline crossing (6/2/98).



Photo PLX 16-2: Looking north at the proposed pipeline crossing (6/5/98).

STREAM PLX 16 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn: JDA	File: photo16				
Checked: JWA	Scale:				

PLX 16-1

												•
~							1					i
								,		•		* manual of
	<del></del>				DISCHAR	GE MI	EASUREM	ENT NOTES				
<u></u>	<u></u>			· · · · · · · · · · · · · · · · · · ·	220022							<u></u>
LOCATION			proposed pipe	line crossing	g (Partially l	Estimate	ed)					
Date:	5/30	,1998	Party:	J. Meckel, P	. McGranal	an						
Width:	38	Area:	61.7 ^E	Vel:	4.1 ^E	(	G.H.:			Disch.:	254 ^E	cfs
No Secs.	7		G.H. chang	e:		in.:		hrs.:	***********	·*************************************	Susp.:	Rod
Method c	oef.;		1	Hor. Angle	coef.		1	Sus. Coef.:		Meter No.		
			Gage	Readings				Type of met	er:	Price A		
Time		Recorder		Inside		Outsio	de	Date rated:	Std			
				! !		<u> </u>		Meter:		ft. above botto	m of weight.	
. <b></b>		upstream x	(-sec -		WSE=		98.89	Spin before		ok	after	ok
		`						Method:	Wading at p	roposed pipeline	crossing,	
						]			downstream	cross section.		
		downstrea	m x-sec		WSE=		96.64					
								-				
						]						
		İ 										
Weighted	M.G.H							Levels obtai	ned	this date		
G.H. corr						]				,		
Correct N	M.G.H.											
Measurer	ment rat	ed:	~~~~~~~~~~	8%), Partially				based on fol	lowing condi	tions:	. گا گا ده خد خد چه خدچ بن نور چه خه ی ج	
Cross sec	tion:		Fairly unifo	rm - grass ar	nd small cot	ble.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Flow:			10% <u>+</u> snow	affect.				Weather:		Air °F@:		
Gage:										Water °F@:		
Other:												
Record R	emoved	: :	*********		,			Intake flush	ed:			
Observer	*****											
					*							
Control			Channel - o	verbank flow	v, some ice	on botto	m.					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******									
Remarks			Discharge v	vas partially	measured ai	ıd parti	ally estimat	ed.				
	<b>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</b>		At stations	75 to 80 the	depth was ta	ken fro	m survey n	otes, and the veloc	city was estim	ated at the time	of measuremer	nt.
G.H. of z	ero flow							ft.				
		E = Estima	ated								Page 1 of 2	

Angle	Dist.			1			VELC	CITY		-	
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	42.0	5.5							0.0	0.0	Right edge water (1630 hr)
	53.0	8.5	1.4	0.6	50			2.68	11.9	31.9	
******	59.0	7.5	1.8	0.6	80	40		4.37	13.5	59.0	
	68.0	8.0	2.6	0.6	100	48		4.55	20.8	94.6	
	75.0	5.0						5.00	13.0		Estimated
	78.0	2.5	1.0	1				1.50	2.5		Estimated
	80.0	1.0	0.0	E				0.00	0.0	0.0	Left edge water (1700 hr)
	ļļ										******************************
	<b></b>										
	ļl										***********
	ļ										
	ļ									*******	
						**********					77
	L										
	ļ										
	<u> </u>						+				
	<u> </u>							<u> </u>			
	<u> </u>										
	<u> </u>			<u> </u>				[			
					I						
										************	. ======±±±±±±±±±±±±±±±=
******	<b></b>						-4440022222	*****			
	200										***********************
le: disch	38.0	38.0			1			ll	61.7	254.3	

Table PLX 16-1: Survey Data

Survey				
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)	(ft)	·
1	5000	5000	100	P16 TBM C/L (TBM16A)
2	4472.531131	5000	101.083249	P16 US TBM (TBM16B)
3	4472.536131	5000	100.853281	GROUND P16US
11	4262.768967	4768.062684	99.40077	T
12	4281.31956	4793.752006	99.544981	T
13	4290.324665	4806.889881	99.301371	HWM
14	4299.650097	4817.572515	97.890196	
15	4304.692407	4823.844908	98.420094	T
16		4827.055095	97.176124	
17		4837.307573	97.303895	•
18		4846.429734	97.037942	
19	-	4849.139616	95.572685	
20		4852.923873	94.311606	· · · · · · · · · · · · · · · · · · ·
21		4856.807833	94.72895	· · · · · · · · · · · · · · · · · · ·
22		4860.463002	95.17761	1
23		4863.564417	96.438432	
24		4865.397134	97.016292	
25		4871.537987	97.977869	
26		4886.838184 4898.211411	96.847539 96.757233	
27 28		4908.729967	98.28624	
26 29		4908.729907		T/C.G.U.S.
30		4936.081796	99.449834	
31		4970.717976	100.019118	
32		4875.862552	95.73035	
33		4819.078598	96.092742	
34		4813.228232	95.155153	
35	4493.576836	4789.541975	95.217298	TH
36	4517.429229	4689.335381	94.340157	TH
37	4545.952425	4649.195207	93.437131	TH
38	4616.633383	4596.819153	94.666145	TH
39	4690.957266	4535.65958	93.113944	TH
40	4728.129837	4511.071694	93.232675	
41	4777.686488	4492.486409	92.574306	
42	4805.799211	4490.920068	92.96869	
43	4861.020324	4505.518042	92.967765	
44	4906.518803	4550.626452	93.056261	
45	4957.292102	4602.832461	93.697352	
46	4979.991588	4647.791526	93.269593	
47	4983.968243	4684.436805	93.802715	
48	4969.215019	4707.713891	92.307227	
49	4960.276023	4732.157967	91.90693	
50	4967.528876	4760.144923	92.147203	
51	4976.272548	4789.936115	93.176615	TH

Table PLX 16-1: Survey Data (continued)

Survey				<u></u>	
Point	Easting	Northing	Elevation	Description	
Number	(ft)	(ft)	(ft)	•	
52	4994.555712	4815.81	93.40463	TH	
53	5025.757499	4834.148563	92.59634	TH	
54	5071.380949	4840.92273	91.914413	TH	
55	5138.791138	4880.081232	91.956211	TH/FL	
56	5210.417885	4778.545512	98.316457	T	
57	5193.144941	4797.158141	98.032411	T	
58	5165.466084	4827.177035	97.851411	T	:
59	5162.213756	4830.902505	97.007996	T	
60	5146.818751	4845.832606	97.065334	T	
· 61	5141.96017	4850.934372	95.785929	T	
62	5137.039196	4855.660909	94.655712	LEW	
63	5136.471697	4856.899126	93.876943	G	
64	5134.468709	4860.171391	94.394124	G	
65	5131.84267	4863.221002	94.301491	G	
66	5130.803225	4864.174221	92.948898	C	
67	5127.390102	4867.036298	92.908054	C	
68		4870.535504	92.048102	C/TH	
69		4874.36267	92.280097		
70		4877.164898	92.534873		
71		4877.318956	93.964673		
72		4879.108142	94.649492		
73		4882.531115	95.51 <b>5</b> 988		•
74		4894.372544	96.020492		
75		4906.810327	96.599902		
76		4918.825291	97.479549		
77		4924.759899	97.051935		
78		4938.832749	96.985774		
79		4950.407296	98.238712		•
80		4955.759602	98.098251		
81		4956.195403	97.567956		
82		4959.105559	97.675401		
83		4960.676895	98.348683		
84	5019.7/3114	4977.846097	98.966844	<u> </u>	
Legend:		DPW _ ~!-! 1	<b>C</b>	D0 - 4	C7
G = grass		REW = right edg	e of water	DS = downstream	CL = center line
T = tundra		TH = thalweg		US = upstream	PK = "pk" nail
C = cobbles		CG = crest gage	•	TWET = wet tundra	
LEW = left edge o		GB = ground bre	ak	M = mud	:
		SH = shoulder		SB = sand bags	
file:plx16.xls					

## APPENDIX T: PLX 18

## TABLE OF CONTENTS

Photo Sheet PLX 18-1:

Stream PLX 18 Photographs



Photo PLX 18-1: Looking east at the proposed pipeline crossing (6/3/98).



Photo PLX 18-2: Looking north at the proposed pipeline crossing (6/3/98).

STREAM PLX 18 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.		
Date: 6/7/98	Project: 23247		
Drawn: JDA	File: photo18		
Checked: JWA	Scale:		

PLX 18-1

## APPENDIX U: PLX 19

## TABLE OF CONTENTS

Photo Sheet PLX 19-1: Stream P

Stream PLX 19 Photographs



Photo PLX 19-1: Looking north at the proposed pipeline crossing (6/11/98).

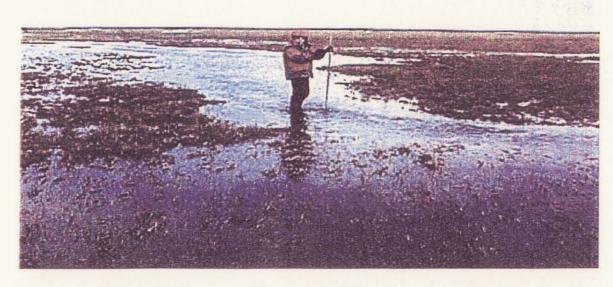



Photo PLX 19-2: Looking north at the proposed pipeline crossing (6/11/98).

STREAM PLX 19 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.		
Date: 6/7/98		Project: 23247	
Drawn: JDA		File. photo19	
Checked: JWA	7	Scale:	

Photo Number:
PLX
19-1

## APPENDIX V: PLX 20, 20A And 20B

### TABLE OF CONTENTS

Photo Sheet PLX 20-1: Stream PLX 20, 20A Photographs

Photo Sheet PLX 20-2: Stream PLX 20B And PLX 21 Photographs



Photo PLX 20-1: Looking north at the proposed pipeline crossing of PLX 20  $\,$  (6/3/98).



Photo PLX 20-2: Looking west at the proposed pipeline crossing of PLX 20A (6/3/98).

STREAM PLX 20 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo20
Checked: JWA	Scale.

PLX 20-1



Photo PLX 20-3: Looking northwest at the proposed pipeline crossing of PLX 20B and PLX 21 (6/11/98).

STREAM PLX 20 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn, JDA	File: photo20
Checked: JWA	Scale:

PLX 20-2

# APPENDIX W: PLX 21

## TABLE OF CONTENTS

Photo Sheet PLX 21-1: Stream PLX 21 Photograph




Photo PLX 21-1: Looking north at the proposed pipeline crossing (6/11/98).

STREAM PLX 21 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo21
Checked JWA	Scale,

Photo Number:
PLX
21-1

## APPENDIX X: PLX 22

## TABLE OF CONTENTS

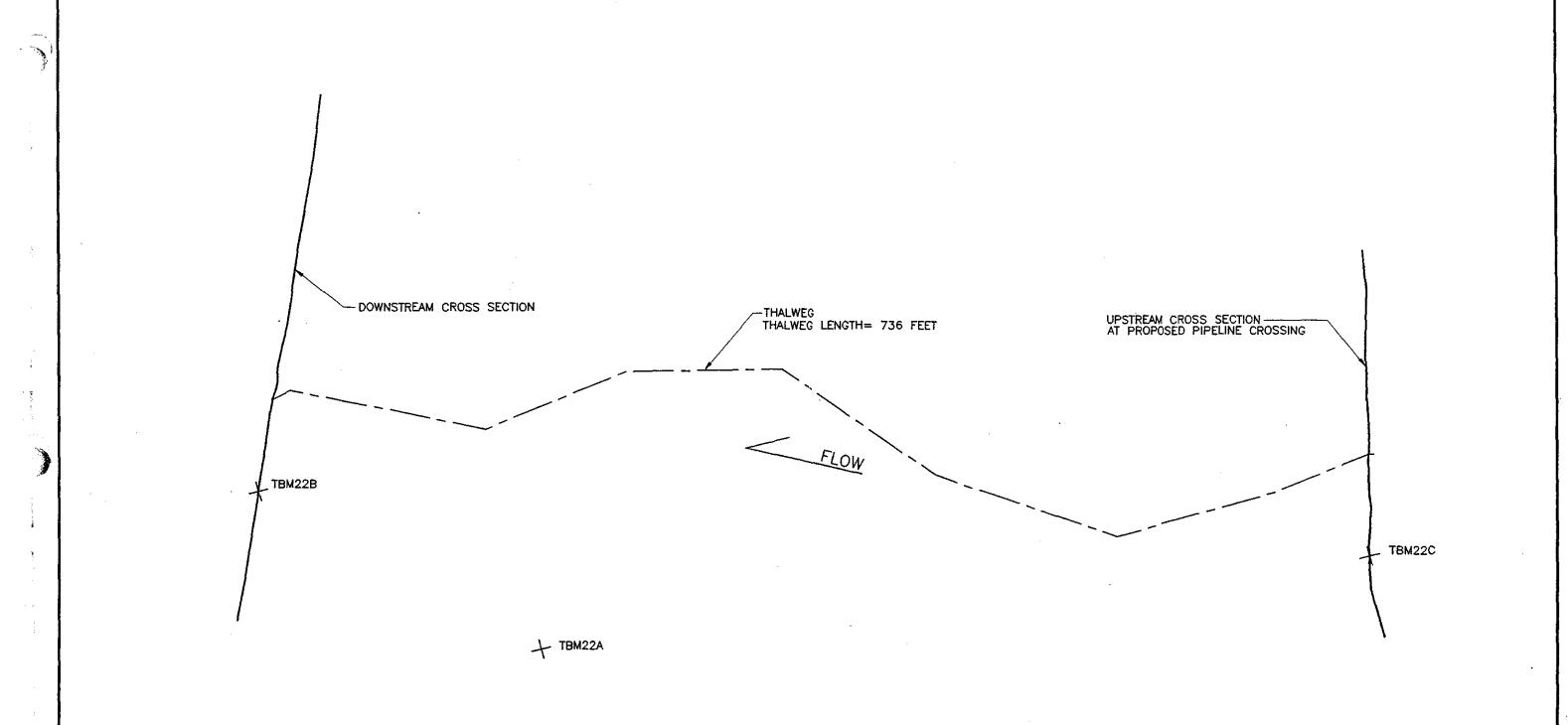

Figure PLX 22-1: Plan

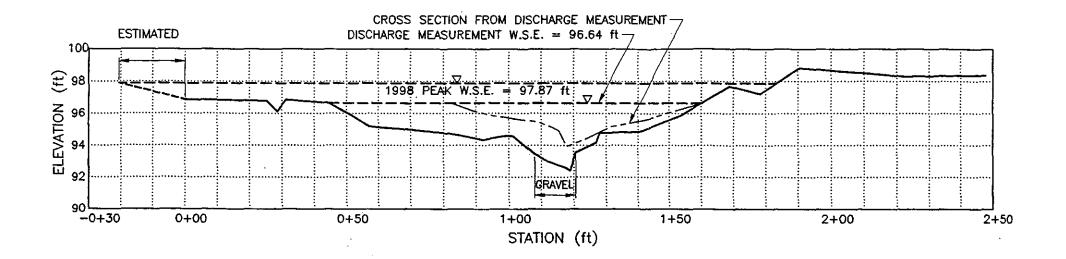
Figure PLX 22-2: Profiles

Photo Sheet PLX 22-1: Stream PLX 22 Photographs

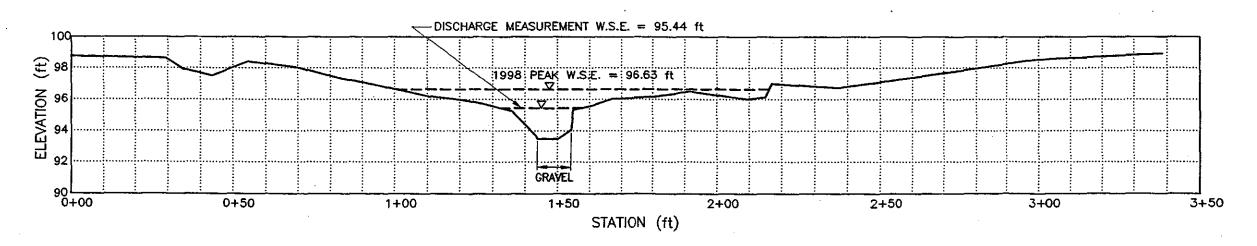
Discharge Measurement Notes

Table PLX 22-1: Survey Data




- 1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.
  2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM22A.

$\overline{}$	REVISION				
NO.:	DATE:		BY:		
<u> </u>					


STREAM PLX22 PLAN SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker		Michael Baker Jr., Inc.			
OATE:	8/3/98	PROJECT: SADP			
DRAWN;	BC	FILE: SADP-X22			
CHECKED:	JWA	SCALE: 1"= 60'			

PLX 22-1



## PROFILE: PLX22 UPSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING



## PROFILE: PLX22 DOWNSTREAM CROSS SECTION

SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM22A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

NO.:	CATE:	REVISION BY:	STREAM PLX22 PROFILES
			SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA
$\stackrel{\sim}{=}$			

Ba	ker	Michael	Baker Jr., inc.
ATE:	8/3/98	PROJE	CI: SADP
RAWN;	BC	PILE:	SADP-X22
HECKEO:	JWA	SCALE	VARIES

PLX 22-2



Photo PLX 22-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 22-2: Looking north at the proposed pipeline crossing (6/5/98).

STREAM PLX 22 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo22
Checked, JWA	Scale:

PLX 22-1

	*		777777					
		<u> </u>	DISCHARG	E MEASUREM	IENT NOTES	<del> </del>	<del></del>	
LOCATION:	PLX 22 at propose	ed pipeline crossing		•				
Date: 5/31	,1998 Party		МсGгапаћа	n				
Width: 78	Area:	86.3 Vel:	1.36	G.H.:		Disch.:	117	cfs
No Secs. 11	G.H.	change:	i	n.:	hrs.:		Susp.:	Rod
Method coef .:	1	Hor. Angle	coef.	1	Sus. Coef.: 1	Meter No.		
Gage Readings					Type of meter:	Price AA		
Time	Recorder	Inside		Outside	Date rated:	Std No 1	**********	
					Meter:	ft. above bot	tom of weight.	**************************************
	upstream x-sec		WSE=	96.64	Spin before meas.	ok	after	ok
				.~~.	Method: Wading a	t pipeline crossin	g, upstream cro	oss Oss
				section.				
	downstream x-sec	======================================	WSE=	95.44	***			
				. Wid na Hus Hus a Lone a	77 74			
				·				
Weighted M.G.H					Levels obtained	this date		
G.H. corrections								
Correct M.G.H.								
Measurement rated: Fair					based on following conditions:			
Cross section:	Uniform, grass 4"	- 8", cobbles 3".						
Flow:					Weather:	Air °F@:		
Gage:						Water °F@:	•	
Other:						****		
Record Removed	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	747448484844		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Intake flushed:			
Observer								
			4 4 <del>- 4 - 4</del>					
Control	Diagonal riffle 100	0-200' downstream o	lear. Flow ji	ust within banks.				
	·							
Remarks								
·								
G.H. of zero flow					ft.	,,,		
i							Page 1 of 2	

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

DISCHARGE MEASUREMENT NOTES (PLX 22 Continued)

Angle	Dist.						VELO	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	109.0	3.5	0.0				<del></del>	\. <u>.</u>	0.0		Left Edge Water (1730 hr)
	102.0	6.5	0.5	S	5	52	0.23	0,21	3.3	0.7	
	96.0	6.5	0.8	S	20	49	0.91	0.82	5.2	4.3	***************************************
	89.0	7.0	1.0	S	20	42	1.06	0.95	7.0	6.7	
	82.0	6.5	1.2	0.6	30	42		1.58	7.8	12.3	***************************************
	76.0	4.3	1.7	0.6	40	43	*****************	2.05	· 7.2	14.8	***************************************
	73.5	4.0	2.7	0.8	20	47	0.95	1.78	10.8	19.2	Edge grass
				0.2	50	42	2.61				Cobbles
	68.0	6.8	2.3	0.6	50	50		2.20	15.5	34.2	Edge grass
	60.0	10.0	1.5	0.6	30	44		1.51	15.0	22.7	
	48.0	14.5	1.0	0.6	3	42		0.18	14.5	2.6	Right edge water (1800 hr)
	31.0	8.5	0.0								
								************			
				1			***********				***************************************
					***********						
				[			7				
	7										
****	T					-446					**************************************
	T										* 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	T									. =======	
	t					-44000000000				, 26040940444	
	<b> </b>										
	t <u> </u>										*
	<del> </del>										***************
	<del> </del>										***************************************
*******	<del> </del>		······································			**********				-244557	
	<b>}</b>										
	} <u>-</u>										-688664 684466 6844 6844 6844
	70.01	70.0							06.3	1172	
e: disch	78.0	78.0	*********	<u> </u>				<u> </u>	86.3	117.3	Page 2 of 2

Table PLX 22-1: Survey Data

Survey			<del> </del>	
Point	Easting	Northing	Elevation	
Number	(ft)	(ft)	(ft)	Description
1	5000	5000	100	P22 TBM (TBM22A)
2	4797.801083	5000		P22 CG PC/L (TBM22B)
3	4797.701163	4999.995096	97.330924	GR
101		4921.988025	98.758263	
102	4817.323665	4949.606319	98.620603	T
103	4815.292564	4954.674228	97.923393	T
104	4811.874844	4962.996586	97.501733	T
105	4808.101546	4973.210666	98.407435	T
106	4802.800458	4987.377279	98.047788	T
107	4794.216581	5007.93038	97.002989	T
108	4787.904106	5025.28569	96.201888	T
109	4783.910342	5035.025766	95.943471	LEW
110		5040.173225	95.730399	
111		5046.014597	95.421651	G
112		5048.933778	95.274071	
113		5055.983581	94.977933	
114	4775.792991	5056.397805	93.489708	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
115	4774.52745		93.479525	
116	4773.237103		94.034208	
117	4773.017583		95.306059	
118	4769.910901	5072.736951	95.604782	
119	4767.604429		96.015429	
120		5090.598686	96.147635	
121 122	4753.852906	5101.711021	96.486029 96.018646	
123	4751.709495		96.107402	
123	4750.810376		96.990313	
125	4743.068354		96.724966	
126	4722.205214		98.510727	
127	4705.848365		98.91	
128	4704.354619		94.155671	
129	4782.590197	5066.301763	93.680294	
130	4900.086799	5105.455365	94.253045	
131	4957.147269		93.445181	
132	5040.625484		94.041421	
133	5157.661739	5219.611673	93.719108	
134	5275.253003	5241.414014	93.26503	
135	5348.4305	5316.091424	93.093722	
136	5405.742717	5380.037988	93.438536	TH/FL
137	5318.074698	5477.5596	98.381456	T
138	5332.766348	5456.824866	98.29349	
139	5348.210841	5429.068041	98.816235	
140	5354.319789	5418.539438	97.221778	T
141	5359.624716	5410.534896	97.679615	Т

Table PLX 22-1: Survey Data (continued)

Survey			<del></del>		
Point	Easting	Northing	Elevation		
Number	(ft)	(ft)	(ft)	Description	
142	5367.265844	5397.537883	95.853106	T	
143	5374.698865	5386.15319	94.840489	T	
144	5381.265158	5375.905602	94.76968	REW	
145	5381.779941	5374.883147	94.149769	G	
146	5384.701777	5369.309769	93.51925	G	
147	5385.558562	5367.875989	92.411928	C	
148	5386.137945	5366.377863	92.587167	C/TH	
149	5388.835383	5361.415969	92.990264	C	
150	5390.953228	5358.347251	93.446122	C/G	
151	5394.474218	5352.580229	94.574987	G	
152	5395.685194	5350.346373	94.579739	G	
153	5399.123029	5344.817776	94.345415	G	:
154	5405.058247	5336.91661	94.720851	LEW	i
155	5411.874963	5323.241528	95.013574	T	
156	5416.616517	5314.24401	95.165596	T	
157	5423.292315	5303.373575	96.650278	T	
158	5430.503223	5292.554433	96.828135	T	
159	5432.263383	5290.560207	96.107095	T	
160	5434.588804	5288.163433	96.786435	T	
161	5452.863064	5269.752307	96.852788		
162	5419.375752	5310.038643		TOP REBAR (TBM22C)	
163	5419.471945	5310.109757	95.811867	GROUND AT CGDS	
Legend:	<del>-</del> -				
G = grass		REW = right edge		DS = downstream	CL = center line
T = tundra		TH = thalweg		US = upstream	PK = "pk" nail
C = cobbles		CG = crest gage		TWET = wet tundra	
LEW = left edge o		GB = ground brea	ık	M = mud	
		SH = shoulder		SB = sand bags	
file:plx22.xls					

## APPENDIX Y: PLX 23

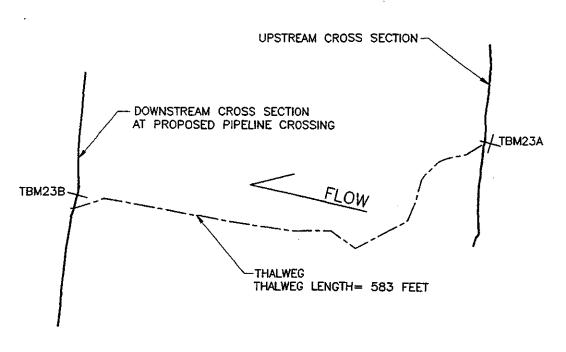

## TABLE OF CONTENTS

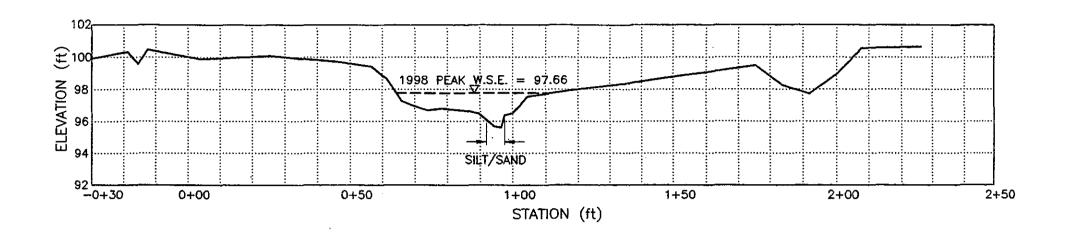
Figure PLX 23-1: Plan

Figure PLX 23-2: Profiles

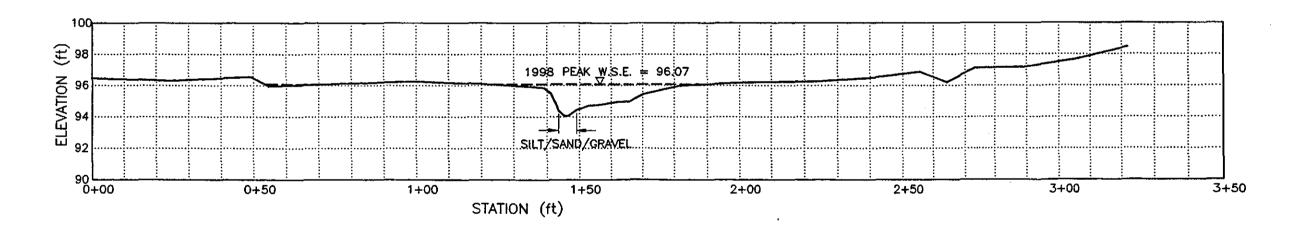
Photo Sheet PLX 23-1: Stream PLX 23 Photographs

Table PLX 23-1: Survey Data For PLX 23 And PLX 24




1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.

2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM24A. THIS IS THE SAME TBM USED FOR THE PLX24 SURVEY.


NO.:	DATE:	REVISION	BY:	STREAM PLX23 PLAN	
				SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA	

Bake	1	Michael E	Baker Jr., Inc.
DATE: 8/3	/98	PROJECI	SADP
DRAWN: BC		FILE:	SADP-X23
CHECKED: JWA		SCALE:	1'= 120'

PLX



PROFILE: PLX23 UPSTREAM CROSS SECTION



PROFILE: PLX23 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM24A.
2. W.S.E.= WATER SURFACE ELEVATION

1			REVISION	` <u>`</u>
1	NO.:	DATE:	Br:	
. [				
·				
ſ				
1				
				_

STREAM PLX23 PROFILES	
SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA	

Ba	ker	Michael Baker Jr., Inc.				
DATE:	8/3/98	PROJECT: SADP				
DRAWN:	BC	PLE: SADP-X23				
CHECKED:	JWA	SCALE: VARIES				

PLX 23-2



Photo PLX 23-1: Looking west (upstream) at the proposed pipeline crossing (6/11/98).



Photo PLX 23-2: Looking upstream at the proposed pipeline crossing (6/4/98).

STREAM PLX 23 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Saker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn; JDA	File: phtot23
Checked: JWA	Scale;

PLX 23-1

Table PLX 23-1: Survey Data For PLX 23 And PLX 24

Survey		<del></del>	<del></del>	
Point	Easting	Northing	Elevation	•
Number	(ft)	(ft)	(ft)	Description
1	5000	5000	100	TBM/P24 (TBM24A)
2	5000.005002	5206.363351	96.209	P24P/CL (TBM24C)
3	4050.7243	4824.871277	98.713	P23
11	5000.215148	5206.406944	95.142	CG/CL
12	4938.627226	5255.745242	96.675	316/T
13	4923.794945	5164.859872	97.544	T
14	4957.909632		96.818	
15	4984.761965		96.122	
16		5217.136397	94.184	
17		5226.066791	94.699	
18	5045.247891		91.347	
19		5231.393314	90.17	
20		5233.835005	90.189	
21		5234.498853	89.701	
22		5234.868313	88.814	•
23		5236,029727	88.985	
24		5238.125947 5238.689535	89.408	
25 26		5239.519126	89.685 89.902	
27		5244.288474	89.886	
28	5080.307986	5248.65892	90.143	
29		5253.687277	89.841	
30		5255.869645	89.722	
31	5095.064931		89.504	•
32	5096.933689	5259.81758	89.287	
33	5100.164731	5260.86244	88.713	C
34	5103.021362	5262.523553	88.455	C
35	5105.804149	5263.78717	88.167	C/TH
36	5107.447332	5264.316731	88.181	C
37	5108.631268	5264.778984	88.732	G
38	5111.037464		89.751	
39	5115.796365	5269.884026	91.439	
40	5126.410527	5275.099641	94.793	
41	5164.87155		96.061	
42	5208.157726	5318.89071	97.113	
43	5372.733806		97.225	
44	5338.565892	5047.607441	96.443	
45	5313.498374		95.72	
46	5304.010356	5015.356171	94.771	
47	5287.916759	5004.020338	91.234	
48	5284.085037	4999.924249	91.68	
49	5281.293449	4996.965541	91.511	
50	5280.412611	4996.193226	91.099	REW
51	5277.447257	4993.676925	90.991	C

Table PLX 23-1: Survey Data For PLX 23 And PLX 24 (continued)

Survey				
Point	Easting	Northing	Elevation	
Number	(ft)	(ft)	(ft)	Description
52	5274.343349		90.57	C
53	5270.832271	4988.49092	90.653	C
54	5267.467734	4985.208823	90.529	C
55	5263.987159	4982.253875	90.47	C
56	5260.407635	4978.851134	90.588	C
57	5257.160477	4976.118794	91.021	LEW
58	5255.20985	4974.339214	90.875	C
59	5252.628184	4972.258344	90.757	С
60	5251.73591	4971.398672	90.272	C
61	5251.159638	4970.594276	89.699	C
62	5249.60374	4968.732006	89.569	C
63	5247.686102	4966.38924	89.112	C/TH
64	5245.426157	4964.220499	89.525	C
65	5243.505295	4961.735033	89.905	C
66	5241.398681	4959.266768	90.293	C
67	5240.62349	4958.334982	90.682	LEW .
68	5240.49451	4958.002959	91.3	T
69	5238.570407	4956.214137	91.872	
70		4952.051753	91.836	
71		4950.111503	93.765	
72		4946.117288	94.08	
73		4940.253735	95.465	
74		4932.353238	95.28	
75		4919.197158	95.811	
- 76	5149.598463		<del>96.58</del> 6	
77	5119.627707	4863.410509	96.876	
78	5202.516647	4935.946994		US/CG (TBM24B)
<i>7</i> 9	5281.665286			TH/FL
80	5200.398305		88.892	
81	5168.991746		88.182	
82	5136.855395		87.89	
83	5120.370355	5232.507568	88.549	
84	5089.599264	5282.571494		TH/FL
101	3985.059053	4603.445377		CG/US (TBM23A)
102	4094.165768		100.643	
103	4077.712784		100.558	
104		4552.941867	98.981	
105	4064.084528		97.724	
106	4057.297151	4562.438693	98.251	
107		4566.885773	99.485	
108	4018.735465		98.381	T
109	4003.13007	4599.588898	97.942	
110	3991.889838	4607.114916	97.511	T
112	3988.211942	4609.838527	96.505	G

Table PLX 23-1: Survey Data For PLX 23 And PLX 24 (continued)

Survey	Tantin a	Marshina	Tilonosti om	
Point	Easting	Northing	Elevation	Description
Number	(ft)	(ft)		Description
113	3986.616352		96.352	
114		4612.716873	95.599	
115		4613.932051	95.676	
116		4616.296991	96.471	
117		4618.254078	96.643	
118		4620.489764	96.712	
119		4622.856938	96.797	
120		4625.334279	96.677	
121		4628.104055	96.971	
122		4630,220465	97.25	
123		4632.531185	98.615	
124		4635.248141	99.414	
125		4642.016238	99.719	
` 126		4653.095689	100.066	
127		4664.007363	99.875	
128		4671.797165	100.453	
129		4673.630202	99.581	
130		4677.375559 4685.870768	100.321 99.916	
131				TH/FL
132 133		4596.600299 4633.300493	96.343 95.292	
133		4657.841228	96.039	
134		4669.125087	95.5	
136		4691.821775	95.091	
137		4698.69532	93.314	
138		4718.345339	93.675	
139		4739.464121	94.935	
140		4812.960261	95.344	
141		4827.701803	95.116	
142		4872.134857	92.976	
143	4062.270426		94.219	
144	4117.228001	4997.095331	94.315	
145	4163.869623	5052.191943	94.254	
146	4193.253419			TH/FL
147	4313.871472	4991.65488	98.449	
148	4300.423352		97.662	
149		5010.683567	97.178	
150	4273.998465	5019.664809	97.12	
151	4267.012329	5025.039354	96.196	
152	4260.047993	5030.015284	96.873	
153	4246.914606	5039.256959	96.481	
153	4233.283479	5048.722024	96.245	
155	4233.283479	5059.360948	96.199	
156	4196.979517	5069.380424	95.979	

Table PLX 23-1: Survey Data For PLX 23 And PLX 24 (continued)

Survey					
Point	Easting	Northing	Elevation		
Number	(ft)	(ft)	(ft)	Description	
157	4187.39375	5075.338496	95.444	REW	
158	4184.179616	5078.140601	94.977	G	
159	4181.38563	5081.277844	94.961	G	·
160	4178.123827	5084.082603	94.796	G	
161	4174.67899	5087.52778	94.701	G	•
162	4171.984897	5090.220062	94.439	M	
163	4170.347476	5091.719341	94.097	M/TH	
164	4169.375462	5092.95612	94.037	C	
165	4168.005522	5094.403059	94.376	<b>C</b> ,	
166	4167.524933	5095.141035	94.884	G	
167	4166.3626	5096.054337	95.48	LEW ·	
168	4165.264583	5098.204622	95.862	T	
169	4150.855481	5109.363248	96.095	T	
170	4133.44518	5123.293583	96.246	T	!
. 171	4097.848065		95.962	T	
172	4093.680391		96.569	T	
173	4073.008108	5165.869725	96.305		
174		5180.315167	96.452		
175		5076.599262		P23/CG/PCL (TBM 23B)	
176		5255.841982		CK361	
177	4999.98999	5206.58056		CKP24PCL	
178	5202.859192	4936.316645	95.534	CKP24US	
Legend:					
G = grass		TH = thalweg		US = upstream	PK = "pk" nail
T = tundra		CG = crest gage		TWET = wet tundra	
C = cobbles		GB = ground brea	ık	M = mud	
LEW = left edge o		SH = shoulder		SB = sand bags	
REW = right edge	of water	DS = downstream	•	CL = center line	
file:plx23&24.xls					

#### APPENDIX Z: PLX 24

#### TABLE OF CONTENTS

Figure PLX 24-1: P

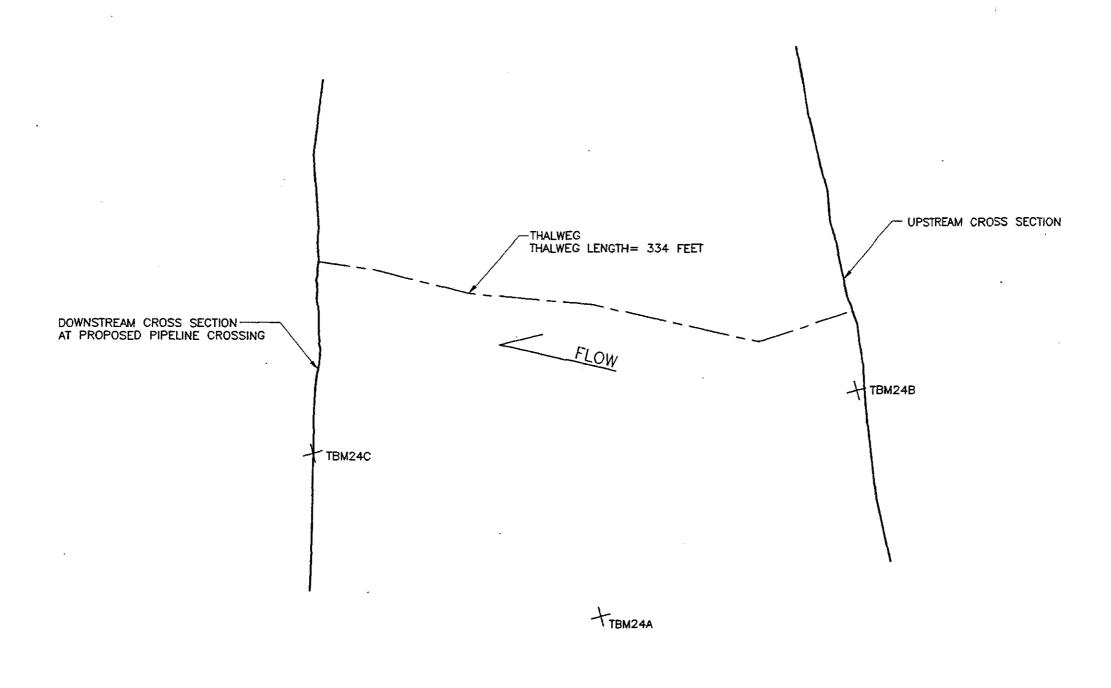
Plan

Figure PLX 24-2:

**Profiles** 

Figure PLX 24-3:

Bed Material Gradation

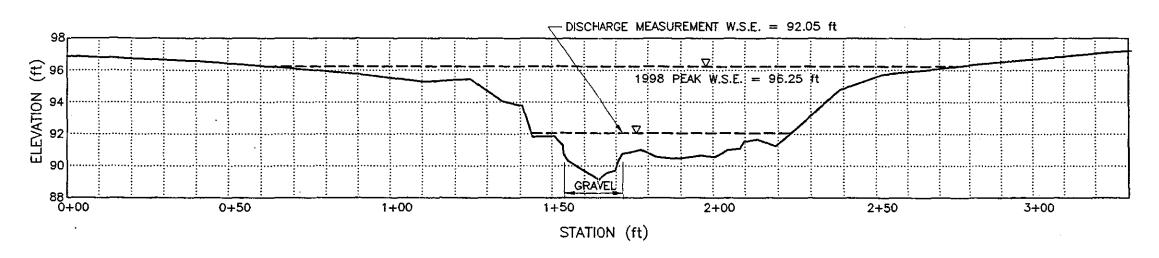

Photo Sheet PLX 24-1:

Stream PLX 24 Photographs

Discharge Measurement Notes

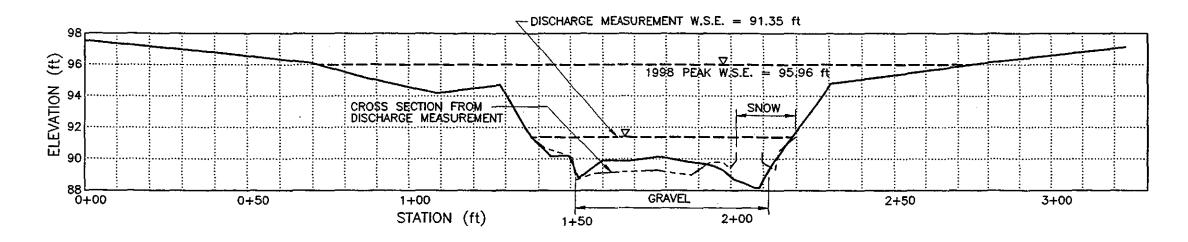
#### Notes:

1. The survey data associated with PLX 024 were collected in combination with the data collected for PLX 23 and are presented in Table PLX 23-1.




1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.
2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM24A.

	REVISION	
NO.: DATE:		
<del> </del>	<del></del>	
<del></del>		<del> </del>
		<del></del> /(


STREAM PLX24 PLAN	
SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA	

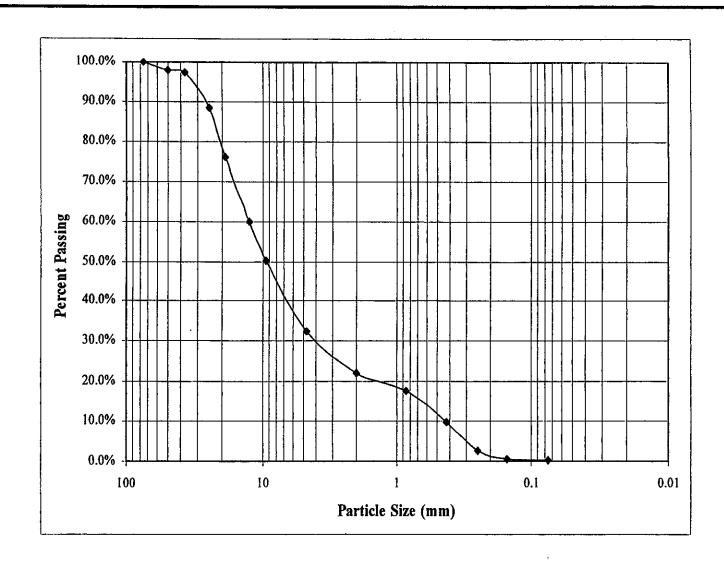
	Baker	Michael Baker Jr., Inc.
┨	DATE: 8/3/98	PROJECT: SADP
ı	ORAWN: BC	FILE: SADP-X24
J	CHECKED: JWA	SCALE: 1'= 60'



PROFILE: PLX24 UPSTREAM CROSS SECTION

SCALE: H 1"= 30' V 1"= 6'




PROFILE: PLX24 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM24A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

NO.:	DATE:	REVISION BY:	STREAM PLX24
			PROFILES SOURDOUGH AREA DEVELOPMENT PROJECT
			NORTH SLOPE, ALASKA

Bal	ker	Michael Baker Jr., Inc.
DATE:	8/3/98	PROJECT: SADP
DRAWN:	BC	FILE: SADP-X24
CHECKED:	JWA	SCALE: VARIES



PLX
24-3

Baker	Michael Baker Jr., Inc.
Date: 8/6/98	Project: 23247
Drawn; JDA	FRe: gradations.ppt
Checked: JWA	Scale: N/A

STREAM PLX 24
BED MATERIAL GRADATION
SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

		REVISION:	3
NO:	DATE;		BY:

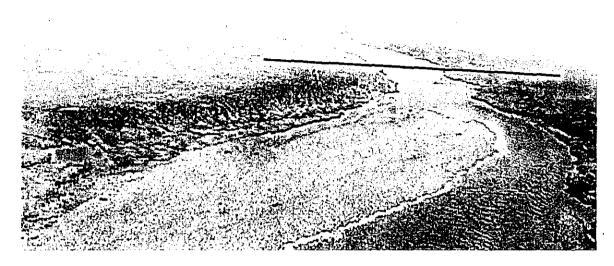



Photo PLX 24-1: Looking northwest at the proposed pipeline crossing (6/11/98).



Photo PLX 24-2: Looking north at the upstream cross section (6/11/98).

STREAM PLX 24 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.					
Date: 6/7/98	Project: 23247					
Drawn: JDA	File: photo24					
Checked: JWA	Scale:					

PLX 24-1

			DISCHAI	RGE MEASUREN	MENT NOTES			<u>:</u>	
								···	
LOCATION:	PLX 24 at proposed			2550				~4	
	l ,1998 Party:		l, P. McLanal			. <del></del>		*	
	4 Area	94.7 Vel:	2.8	6 <b>G.H.</b> :			Disch.:	271	cfs
No Secs. 1	8 G.H. c	hange:		in.:	hrs.:			Susp.:	Rod
Method coef.:	11	Hor. Ang		<u> </u>	Sus. Coef.:		l Meter No.		
		Sage Readings		<del></del>	Type of met		Price AA	******	
Time	Recorder	Inside		Outside	Date rated:	Std No 1			
					Meter:	_~~~~~~~		ttom of weight.	
	upstream x-sec		WSE=	92.05	Spin before		ok	after	ok
	downstream x-sec		WSE=	91.35	Method:			ine crossing, do	wnstream
						cross section	n.	=======================================	
		******			******				
· * * * * * * * * * * * * * * * * * * *								90900000000000000000000000000000000000	
Weighted M.G.I					Levels obtai	ned	this date		
G.H. corrections	1								
Correct M.G.H.							·		
Measurement ra					based on fol	lowing condi	itions:		
Cross section:	Uniform except for	ice and snow a	llong right po	rtion.	·**				
Flow:					Weather:		Air °F@:		
Gage:							Water °F@:		
Other:									
Record Remove	d:				Intake flush	ed:			
Observer	, , , , , , , , , , , , , , , , , , ,	*****							
		# 4				_0=+*********		*******	
Control	Narrow channel 15	0' downstream	uniform clear	of snow and ice.			. # # # # # # # # # # # # # # # # # # #	****************	
					*************		. do a ma mo mo mo mo mo mo mo mo mo mo mo mo mo		
Remarks	Cross section is uni	form. Bed mate	erial smooth,	cobbles 2" and san	d. Grass 4-8" laid	down by flov	v.		
	Snow and ice exten			*************				**************************************	
G.H. of zero flow	w:			. ma no de a vez a de de de a 2 229	ft.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.00 2022202222		
					**************			Page 1 of 2	

•

.

DISCHARGE MEASUREMENT NOTES (PLX 24 Continued)

Angle	Dist.		T				VELC	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)			•	(fps)	(fps)	(s.f.)	(cfs)	
	18.0	2.5	0.0						0.0	0.0	Right Edge Water (16:30)
	23.0	3.0	0.9	0.6	20	48		0.93	2.7	2.5	- * * * * * * * * * * * * * * * * * * *
	24.0	2.5	2.1	0.6	25	48		1.16	5.3	6.1	bottom ice
	28.0	2.0	1.6	0.6	40	46		1.92	3.2	6.1	Left Edge Water (edge snow)
	36.0	1.0	1.5	0.6	60	49		2.69	1.5	4.0	Right Edge Water (edge snow)
	38.0	2.0	2.0	0.6	80	50		3.50	4.0	14.0	cobbles
	40.0	3.0	1.6	0.6	80	50		3.50	4.8	16.8	
	44.0	5.0	1.6	0.6	80	49		3.57	8.0	28.6	4
	50.0	5.5	1.4	0.6	80	46		3.80	7.7	29.3	. (1
	55.0	5.0	1.3	0.6	80	45		3.89	6.5	25.3	11
	60.0	7.5	1.1	0.6	80	45		3.89	8.3	32.1	11
	70.0	10.0	1.2	0.6	60	41		3.21	12.0	38.5	11
	80.0	8.0	1.3	0.6	50	50		2.20	10.4	22.9	11
	86.0	3.5	2.7	0.6	50	42		2.61	9.5	24.7	r)
	87.0	2.5	1.3	0.6	60	45		2.92	3.3	9,5	grass
	91.0	4,5	1.0	0.6	30	42		1.58	4.5	7.1	grass
<del>                                    </del>	96.0	4.5	0.7	S	25	42	1.32	1.19	3.2	3.7	grass
	100.0	2.0	0.0						0.0	0.0	Left Edge Water (17:15)
			*********								
										-422066660000000000000000000000000000000	
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******		
Total	74.0	74.0					L		94.7	271.2	
file: disch	P24.xls										Page 2 of 2

## APPENDIX AA: PLX 25

### TABLE OF CONTENTS

Photo Sheet PLX 25-1: Stream PLX 25 Photographs



Photo PLX 25-1: Looking north at the proposed pipeline crossing (6/11/98).

STREAM PLX 25 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Saker	Michael Baker Jr., Inc.				
Date: 6/7/98	Project: 23247				
Drawn, JDA	File: photo25				
Checked: JWA	Scale:				

PLX 25-1

#### APPENDIX BB: PLX 26

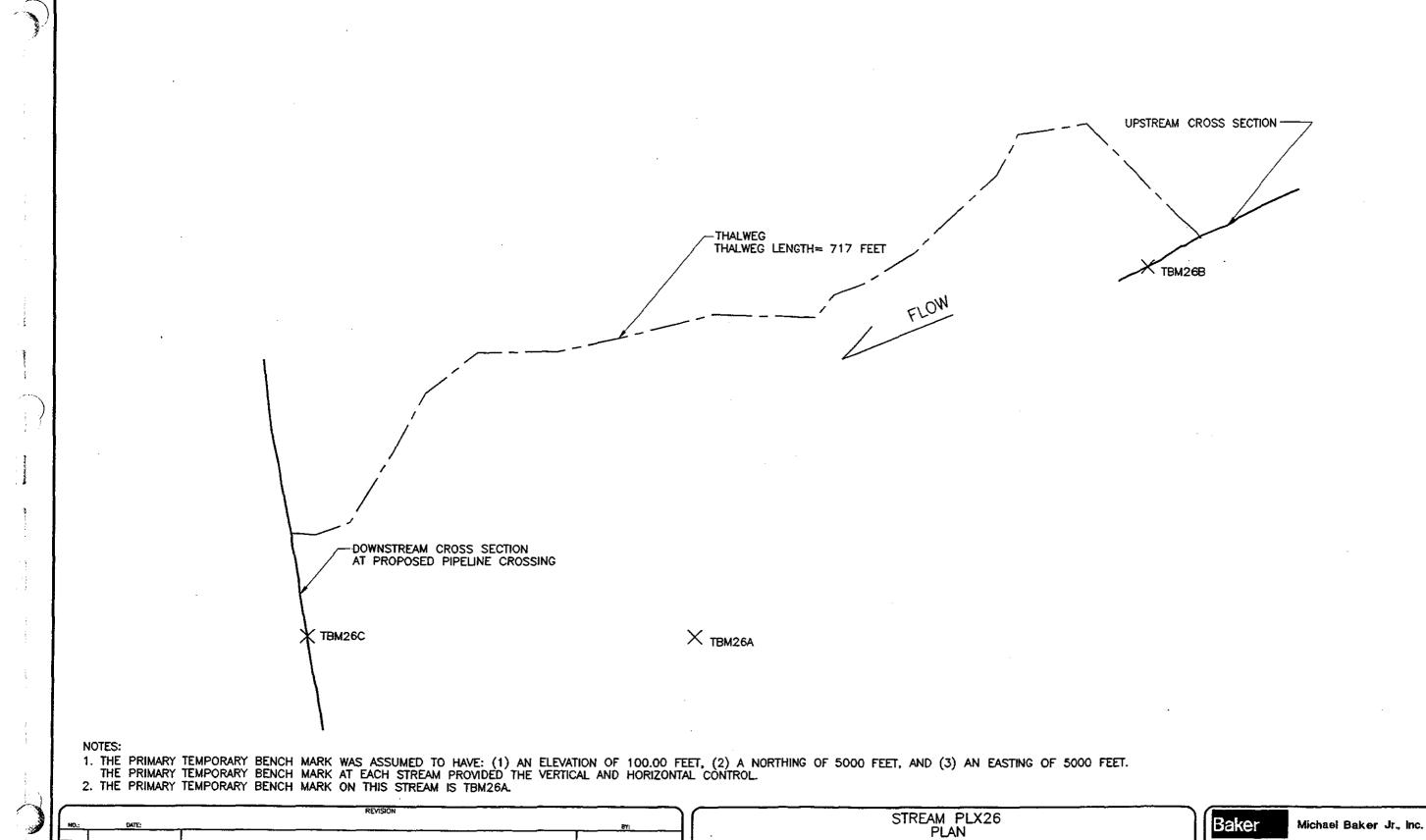

### TABLE OF CONTENTS

Figure PLX 26-1: Plan

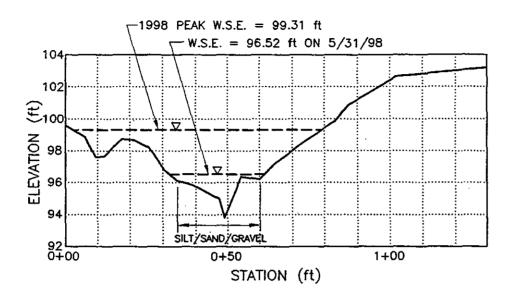
Figure PLX 26-2: Profiles

Photo Sheet PLX 26-1: Stream PLX 26 Photographs

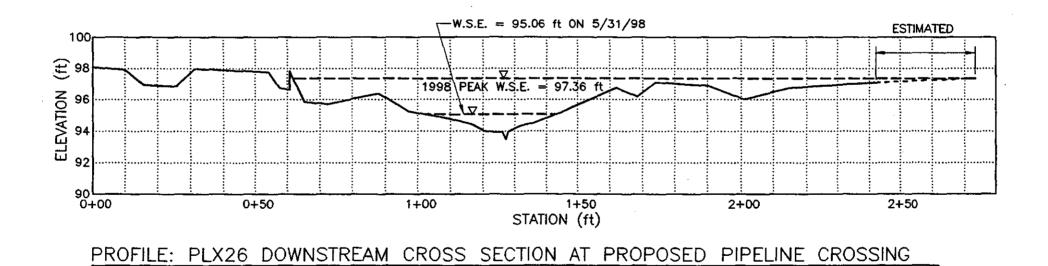
Table PLX 26-1: Survey Data



PLX 26-1


DATE: 8/3/98
DRAWN: BC
CHECKED: JWA

SOURDOUGH AREA DEVELOPMENT PROJECT


NORTH SLOPE, ALASKA

PROJECT: SADP

SADP-X26



PROFILE: PLX26 UPSTREAM CROSS SECTION



- 1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM26A.
  2. W.S.E.= WATER SURFACE ELEVATION

$\overline{}$		REVISION	
_HO.:	DATE:		EY:
<u> </u>	<u> </u> _		
L			
	<u> </u>		

SOURDOUGH AREA DEVELOPMENT PROJECT		 M PLX26 DFILES		
NORTH SLOPE, ALASKA	-	 	-	

Ba	ker	Michael Baker Jr., Inc.			
DATE:	8/3/98	PROJECT: SADP			
ORAWN:	BC	FILE: SADP-X26			
CHECKED:	JWA	SCALE: VARIES			

PLX 26-2




Photo PLX 26-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 26-2: Looking north from upstream of the proposed pipeline crossing (6/11/98).

STREAM PLX 26 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.		
Date: 6/7/98	Project: 23247		
Drawn: JDA	File: photo26		
Checked: JWA	Scale:		

PLX 26-1

Table PLX 26-1: Survey Data

Survey				
Point	Easting	Northing	Elevation	
Number	(ft)	(ft)	(ft)	Description
1	5000	5000	100	TBM.P26 (TBM26A)
2	5000	5242.618129	97.817	P26.P.C/L.REB. (TBM26C)
11	4999.929467	5242.475498	96.625	T.CG.C/L
12	4940.098773	5232.480848	98.06	T
13	4949.974609	5233.873088	97.912	T
14	4955.762017	5235.12247	96,932	T
15		5236.618367	96.851	T
16	4970.864563		97.974	T
17		5242.001632	97.749	
18		5242.467182	96.724	
19		5243.622509	95.864	
20		5244.727352	95.717	
21		5247.280559	96.394	
22		5248.245538	95.256	
23		5250.184834	94.798	
24 25	5058.733578	5251.463419 5252.25401		LEW/G
25 26		5252.535841	94.017 93.934	
27		5252.538261	93.934	
28	5065.791871	5252.779835	93.482	
29	5066.292797	5252.967904	93.92	
30	5070.294115	5253.663402	94.361	
31	5073.784108			REW/G
32	5084.633008	5256.42775	95.34	
33	5099.932677	5259.243504	96.743	T
34	5106.210424	5260.044445	96.189	T
35	5111.762929	5261.024532	97.084	T
36	5127.604293	5264.469158	96.891	T
37	5138.199228	5265.903013	96.002	T
. 38	5152.116679	5267.501943	96.756	
39	5178.981388	5270.197866	97.089	
40		4713.122164		CG/US (TBM26B)
41	5231.266465	4732.455688	99.576	
42		4726.997904	98.857	
43	5235.623836	4724.03867	97.591	
44		4721.518849	97.663	
45	5238.773628	4716.55878	98.734	
46	5242.382406		98.192	
47	5244.224902	4704.768235	96.773	
48	5246.730685	4701.739115		LEW/G
49	5248.999947	4697.909072	95.866	
50	5253.390568	4690.692674	94.999	
51	5253.642319	4688.803619	93.806	
52_	5256.792471	4684.548497	92.674	M/C

Table PLX 26-1: Survey Data (continued)

Survey	<del></del>				
Point	Easting	Northing	Elevation		
Number	(ft)	(ft)	(ft)	Description	<u> </u>
53	5259.4215	4679.355162	92.52	TH/C	
54	5261.196898	4675.410579	93.454	M	
55	5264.648892	4667.621633	94.751	M/G	
56	5266.703708	4661.907155	95.571	G	
57	5268.610194	4658.2484	96.124	REW/G	
58	5271.450486	4655.047963	97.124	T	
59	5278.313158	4640.895369	98.947	T	
60	5289.56592	4616.352585	99.486	T	
61	5190.025616	4651.045823	94.502	TH/FL	
62	5331.394415	4753.310969	91.745	TH	
63	5324.430331	4796.649586	93.604	TH	
64	5298.299723	4810.084084	93.227	TH	
65	5248.544624	4861.18797	92.793	TH	
66	5230.469871	4889.797073	92.073	TH	
67	5221.898745	4911.090809	93.227	TH	
68	5207.336041	4924.125784	92.33	TH	
69		4988.800855	92.91		
70		5048.297847	93.528		
• 71		5086.292913	93.784		
72		5135.967126	93.45		
73		5169.187499	93.137		
. 74		5189.606057	92.722		
75		5216.324504	92.018		
76	5065.322931		93.438		
77	5059.025761	5294.355159	92.61	TH/FL	
Legend:					
G = grass		TH = thalweg		US = upstream	PK = "pk" nail
T = tundra		CG = crest gage	_	TWET = wet tundra	
C = cobbles		GB = ground brea	<b>i</b> k	M = mud	
LEW = left edge o		SH = shoulder		SB = sand bags	
REW = right edge	of water	DS = downstream	l	CL = center line	
file:plx26.xls					

### APPENDIX CC: PLX 27

#### TABLE OF CONTENTS

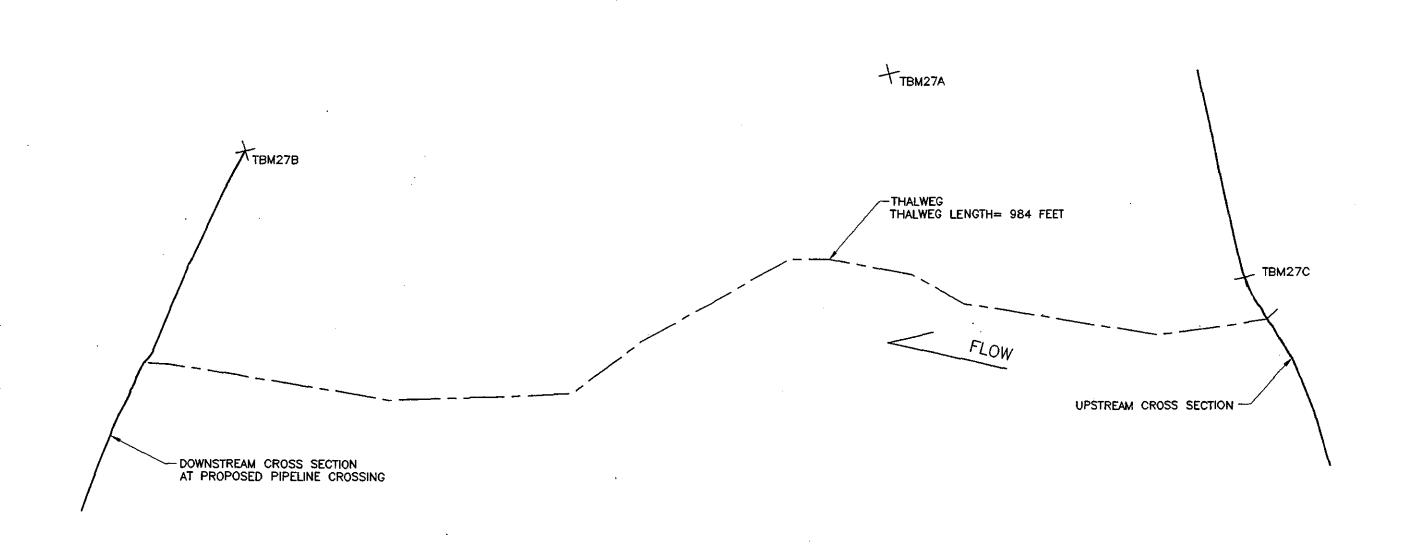

Figure PLX 27-1: Plan

Figure PLX 27-2: Profiles

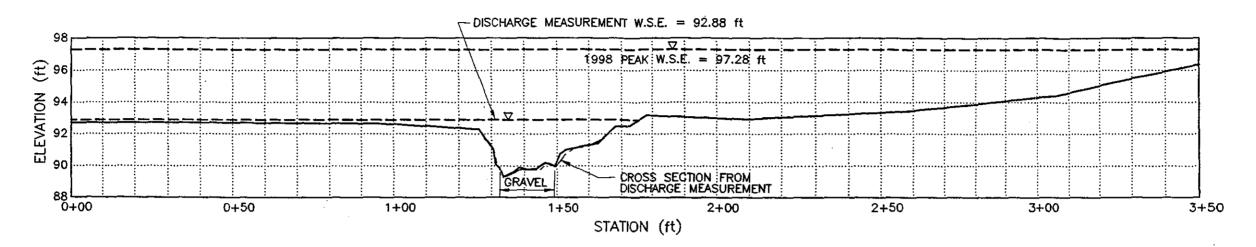
Photo Sheet PLX 27-1: Stream PLX 27 Photographs

Discharge Measurement Notes

Table PLX 27-1: Survey Data

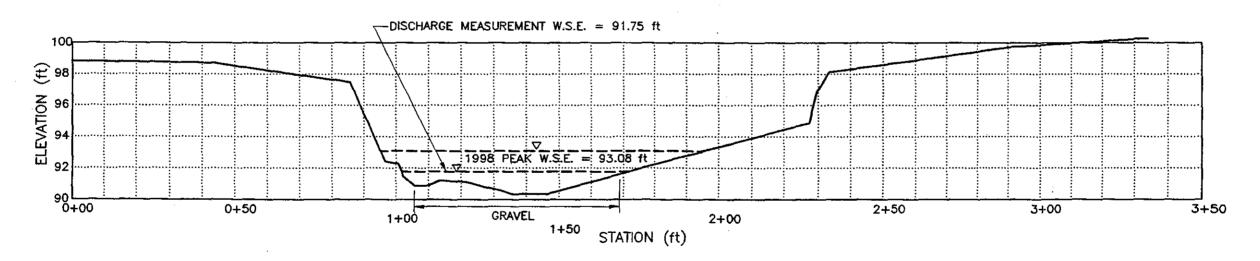


- 1. THE PRIMARY TEMPORARY BENCH MARK WAS ASSUMED TO HAVE: (1) AN ELEVATION OF 100.00 FEET, (2) A NORTHING OF 5000 FEET, AND (3) AN EASTING OF 5000 FEET. THE PRIMARY TEMPORARY BENCH MARK AT EACH STREAM PROVIDED THE VERTICAL AND HORIZONTAL CONTROL.


  2. THE PRIMARY TEMPORARY BENCH MARK ON THIS STREAM IS TBM27A.

1			REVISION	
	NO.:	DATE:		8Y:
П				
ı				
١			<u> </u>	
,	$ \smile $	<u> </u>		

STREAM PLX27 PLAN SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA


Baker		Michael Baker Jr., Inc.			
DATE:	8/3/98	PROJECT: SADP			
DRAWN:	BC	FILE: SADP-X27			
CHECKED:	JWA	SCALE: 1"== 80"			

PLX



PROFILE: PLX27 UPSTREAM CROSS SECTION

SCALE: H 1"= 30'



PROFILE: PLX27 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM27A.
2. W.S.E.= WATER SURFACE ELEVATION
3. THE DIFFERENCE IN THE SURVEY AND DISCHARGE MEASUREMENT CROSS SECTIONS IS DUE TO A SLIGHT DIFFERENCE IN WHERE THE MEASUREMENTS WERE MADE.

NO.; DATE:	BY:	STREAM PLX27 PROFILES
		SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker		Michael Baker Jr., Inc.				
DATE:	8/3/98	PROJECT: SADP				
DRAWN:	BC	FILE: SADP-X27				
CHECKED:	JWA	SCALE: VARIES				

PLX



Photo PLX 27-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 27-2: Looking north at the proposed pipeline crossing (6/4/98).

STREAM PLX 27
PHOTOGRAPHS
SOURDOUGH AREA DEVELOPMENT PROJECT
NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo27
Checked: JWA	Scale:

PLX 27-1

		DISCH	IARGE MEASURE	MENT NOTES			
LOCATION:	PLX 27 at upstream cr	ross section					
	,1998 Party:	J. Meckel, P. McGr					
			1.71 G.H.;		7:L .	80.6	
No Secs. 17			in.:		Disch.:		efs
Method coef.:	1	Hor. Angle coef.		hrs.: Sus, Coef.:	1 Meter No.	Susp.:	Rod
	Gan	e Readings	1		Price AA		
Time	Recorder	Inside	Outside	Type of meter: Date rated:	Std No 1		
	1		Outside	Meter:		tom of welcht	
	upstream x-sec	WSE=	92.88	Spin before meas.	n. above bot	tom of weight. after	, <del></del>
	1		72.00		ing at upstream cross		
					osed pipeline crossing		ctroom
***************	downstream x-sec	WSE=	91.75		section.	15 at the down	Sucan
					+		
					<u> </u>		
				*******		14440000000000000000000000000000000000	
	;;====================================					·************	
Weighted M.G.H	, <del> </del>			Levels obtained			
G.H. corrections				7-04 666	76#867640444		**********
Correct M.G.H.			.an		45		**********
Measurement rat	ted:			based on following	conditions:		
Cross section:	Uniform -	- cross small cobbles. (	Grass 4" - 8"	79222224-i	=====================================	:	
Flow:				Weather:	Air °F@:	*************	*********
Gage:	, = = = = = = = = = , , , = = = = = = = = =	***********			Water °F@:		
Other:				7007272222222277777777748VV			
Record Removed		<u> </u>		Intake flushed:			
Observer				*******************		*******	
Control	Riffle 100	)' downstream. Clear -	no snow or ice. Flor	w well within established c	hannel. STA 28 edge	of grass.	
		o STA 17 edge of gras	·				
Remarks	.e.p=###d=##o==euspp=#####			00100000001445			
G.H. of zero flow	,			ft.	e <u>9</u> 773 #46 6 46 e v 5 è 5 e 5 e 5 e 5 e 5 e 5 e 5 e 5 e 5 e		
						Page 1 of 2	

**DISCHARGE MEASUREMENT NOTES (PLX 27 Continued)** 

Angle coef.	Dist. From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	VELOCITY				
							At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	48.0	3.0	0.0						0.0		Right Edge Water (15:40)
	42.0	4.5	0.5	S	10	50	0.46	0.41	2.3	0.9	
	39.0	3.0	0.6	s	10	42	0.54	0.49	1.8	0.9	
	36.0	3.0	0.9	0.6	7	47		0.35	2.7	0.9	
	33.0	2.5	1.8	0.6	30	49		1.35	4.5	6.1	
	31.0	2.0	1.6	0.6	40	51		1.73	3.2	5.5	
	29.0	1.5	1.8	0.6	30	41		1.62	2.7	4.4	
	28.0	1.5	1.9	0.6	40	47		1.88	2.9	5.4	
	26.0	2.0	2.0	0.6	50	47		2.35	4.0	9.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	24.0	2.0	2.0	0.6	50	45		2.44	4.0	9.8	
	22.0	2.0	1.9	0.6	40	42		2.10	3.8	8.0	
	20.0	2.0	2.2	0.6	40	41		2.15	4.4	9.5	
	18.0	1.5	2.4	0.6	50	48		2.29	3.6	8.2	
	17.0	1.5	2.3	0.6	50	49	,40000	2.24	3.5	7.7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
********	15.0	1.5	1.5	0.6	25	44	- 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2	1.26	2.3	2.8	.#+c====================================
	14.0	2.0	0.7	S	20	50	0.89	0.80	1.4	1.1	
	11.0	1.5	0.0						0.0	0.0	Left Edge Water (16:10)
*********											
								*		-2	
otal	37.0	37.0							46.9	80.6	
le: disch	L	3/.0		L				1	70.7	00.0	Page 2 of 2

Table PLX 27-1: Survey Data

<u> </u>	Survey		N. 45-	<b>D</b> 1	
	Point	Easting	Northing	Elevation	The contration
<u></u>	Number	(ft)	(ft)	(ft)	Description (IRD) (OZ A)
	1	5000	5000		TBMP27 (TBM27A)
	2	5341.98989	5000		P27/CG/CL (TBM27C)
	11		5000.033173	92.510296	· · · · · · · · · · · · · · · · · · ·
	12		5132.215164	96.361012	
	13	5252.550643		94.41074	
	14	5284.600868	5062.428926	93.399048	
	15	5317.239567	5025.942488	92.934134	•
	16	5338.107444	5003.532585	93.167371	· · · · · · · · · · · · · · · · · · ·
	17		4997.257237	92.445516	· · · · · · · · · · · · · · · · · · ·
	18	5349.943529		91.403339	
	19		4987.718954	91.003056	
l	20		4986.748628	90.735135	
	21		4985.943642	89.95785	
	22		4984.690693	90.207839	
	23		4984.40862	90.071867 89.795845	
	24 25		4983.699003 4982.104684	89.793843 89.775465	•
İ	. 26		4980.669653	89.773463	
	27		4979.412596	89.578525	
	28		4978.163507	89.288175	
	29		4977.778896	89.844564	
	30	5377,476244		90.109485	
	31		4976.806798	91,049078	
	32		4974.975665	92,301634	· · · · · · · · · · · · · · · · · · ·
	33		4959.063304	92.642489	
	34		4927.886239	92.712542	
	35	5480.4737	4895.081172	92.706664	T
	36	4572.360492	4679.113653	100,226015	CG/US (TBM27B)
	37	4572.397523	4678.91456	100.26512	T
	38	4574.190129	4635.466299	99.718089	T
	39	4579.978029	4578.672755	98.122402	T
	40	4579.990335	4574.889185	96.829483	CG/US
	41	4579.931933	4572.763567	94.86323	T/S
	42	4591.41904		90.365824	
	43	4590.882916	4487.202015	90.363918	
	44	4589.607198	4481.516397	90.341042	
	45	4589.729371	4477.336749	90.591162	· ·
	46	4590.101517	4472.381229	90.824641	
	47	4590.53246	4467.975494	91.080068	
	48	4591.472286	4463.514928	91.159786	С
	49	4591.884788	4459.449525	91.190994	C
	50	4591.959849	4455.910022	90.877638	С
	51	4592.499597	4451.439158	90.873341	
	52	4592.914641	4448.010953	91.472525	C

Table PLX 27-1: Survey Data (continued)

Survey							
Point	Easting	Northing	Elevation				
Number	(ft)	(ft)	(ft)	Description			
53	4593.09967	4447.729535	91.804468	LEW			
54	4593.135391	4446.514738	92.282602	T			
55	4593.620232	4442.515557	92.420496	T			
56	4593.699032	4431.55374	97.465756	T			
57	4599.774655	4389.651705	98.715443	T			
58	4607.311924	4346.851852	98.813979	T			
59	4534.269729	4480.833868	90.10718	TH/FL			
60	4607.498164	4490.811282	90.570143	TH			
61	4655.871122	4509.141071	90.637918	TH			
62	4779.823796	4555,26751	90.297763	TH			
63	4869.745817	4610.114609	90.088016	TH			
64	4908.074483	4635.301592	90.124138	TH			
65	4935.127473	4701.11043	90.202868	TH			
66	4945.873704	4720.059214	89.160668	TH			
67	5006.334566	4823.746853	88.124961	TH			
68	5035.47533	4840.821317	89.629978	TH			
69	5099.127097	4862.739315	89.781784	TH			
70	5155.968545		88.712151				
. 71	5305.619189		89.175223				
72	5355.292481		88.956632				
73	5388.084825		89.561611				
74	4986.967257	4566.900024	99.97136	HV40, photo control set by o	others		
Legend:							
G = grass		REW = right edge	e of water	DS = downstream	CL = center line		
T = tundra		TH = thalweg		US = upstream	PK = "pk" nail		
C = cobbles		CG = crest gage		TWET = wet tundra			
LEW = left edge o	of water	GB = ground brea	ak	M = mud			
		SH = shoulder		SB = sand bags			
file:plx27.xls							

# APPENDIX DD: PLX 28

### TABLE OF CONTENTS

Figure PLX 28-1: Plan

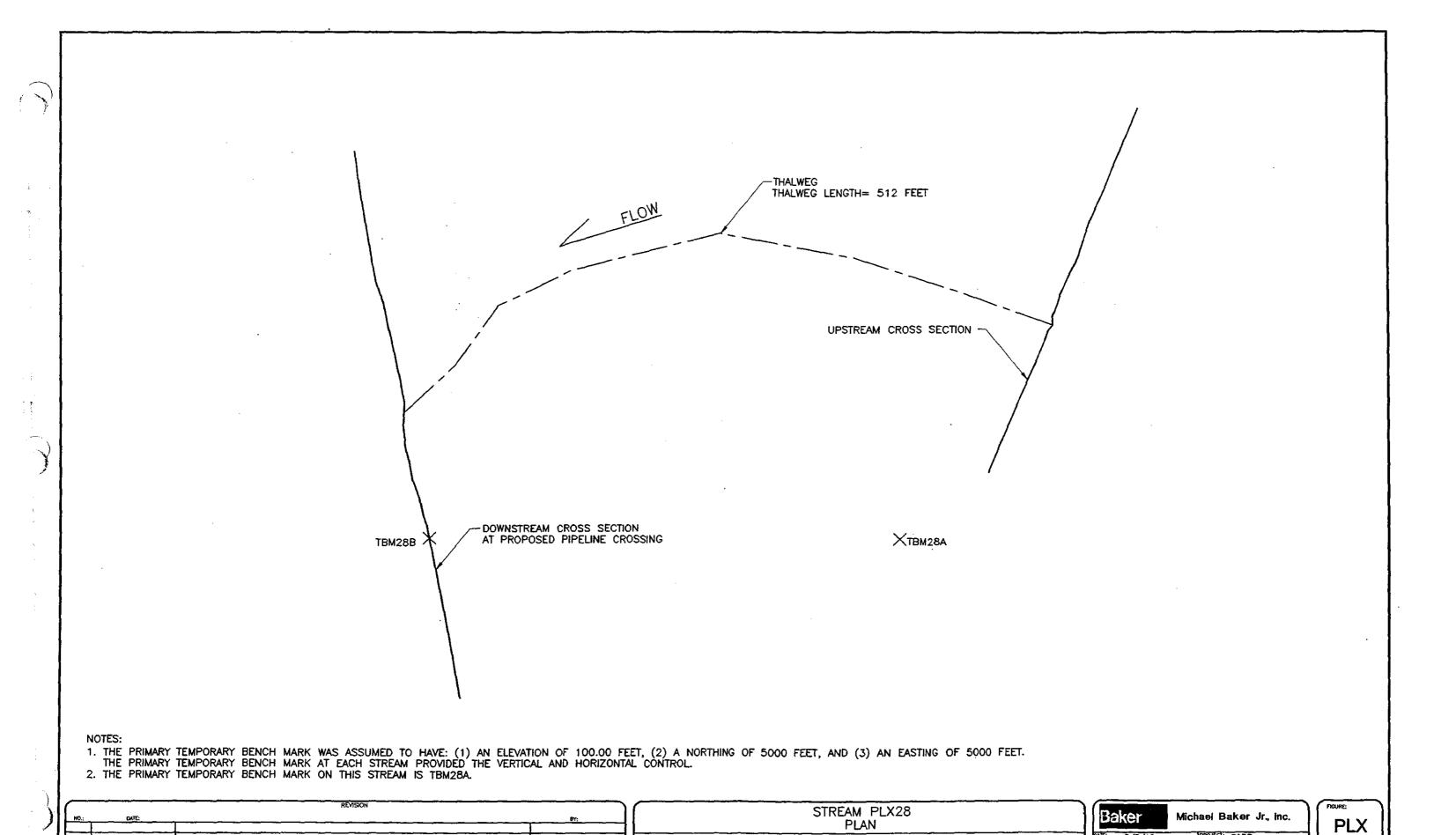

Figure PLX 28-2: Profiles

Figure PLX 28-3: Bed Material Gradation

Photo Sheet PLX 28-1: Stream PLX 28 Photographs

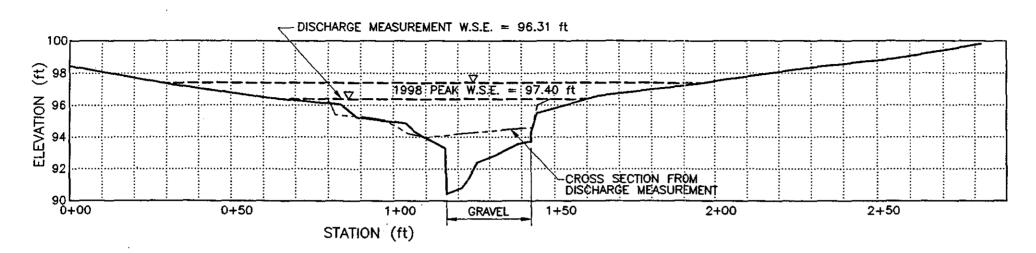
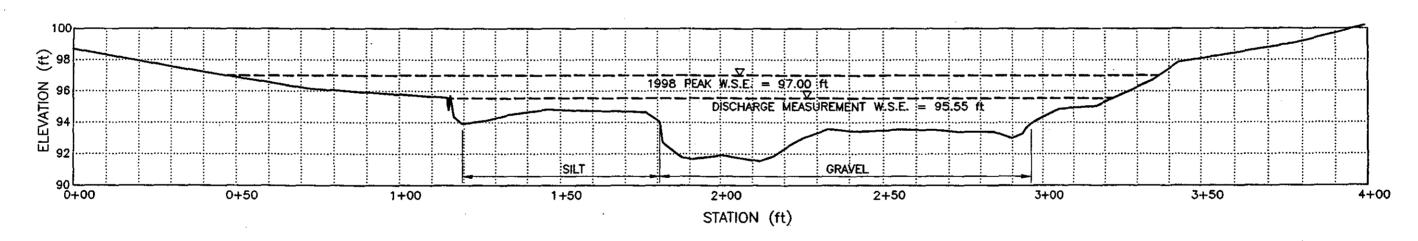

Discharge Measurement Notes

Table PLX 28-1: Survey Data




SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA PROJECT: SADP
FILE: SADP-X28
SCALE: 1"= 60"

28-1



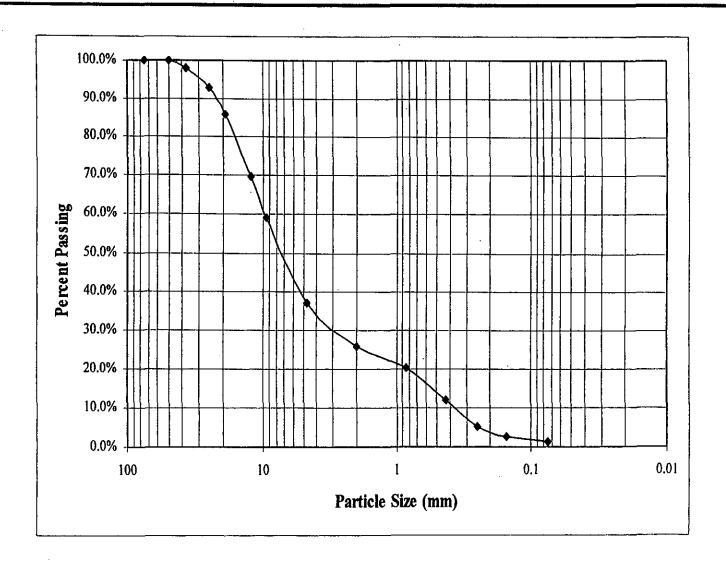
PROFILE: PLX28 UPSTREAM CROSS SECTION

SCALE: H 1"= 30" V 1"= 6'



PROFILE: PLX28 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

SCALE: H 1"= 30' V 1"= 6'


- 1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM28A.
  2. W.S.E.= WATER SURFACE ELEVATION
  3. DISCHARGE MEASUREMENT CROSS SECTION AFFECTED BY ICE IN CHANNEL.

(		REVISION	
NG:	DATE:		BY:

STREAM PLX28 **PROFILES** SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Ва	ker	Michael Baker Jr., Inc.				
CATE	8/3/98	PROJECT: SADP				
OFFAWN:	BC	FILE: SADP-X28				
CHECKED	JWA	SCALE: VARIES				

PLX



Baker	Michael Baker Jr., Inc.
Date: 8/6/98	Project: 23247
Drawn; JDA	File: gradations.ppt
Checked: JWA	Scale: N/A

STREAM PLX 28 BED MATERIAL GRADATION	
SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA	

REVISION:								
NO:	DATE:		BY:					



Photo PLX 28-1: Looking north at the proposed pipeline crossing (6/11/98).



Photo PLX 28-2: Looking north at the proposed pipeline crossing (6/2/98).

STREAM PLX 28 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker	Michael Baker Jr., Inc.
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo28
Checked: JWA	Scale;

PLX 28-1

		DISCHAR	GE MEASUREN	IENT NOTES			<del>-:</del>
LOCATION:	PLX 28, 500 feet upstrea			IENI NOTES			
		J. Meckel, P. McGranah					
		Vel: 3.31			Disch.:	201	
No Secs.	10 G.H. chang	H##H==================================	in.:	hrs.:		391	cfs
Method coef.:		Hor. Angle coef.	. 111:i 	Sus. Coef.:		Susp.:	
1/20/10/03/03/03/03	Саде	Readings	·	Type of meter:	Meter No.	-#	
Time					Price AA		
	upstream x-sec	WSE=	96.31	Date rated: Std N Meter:		·	
		W 012-	70,J1	Spin before meas.	ft. above bottom	n oi weight. after	
				·			ok
		 	 	section section	ng 500 feet above the up	ostream cross	
	downstream x-sec	WSE=	95.55			-441- 1	
-4	downstream v-sec MSE= 32.22				sed pipeline crossing is	at the downs	iream
.===					section.		
************	! 						
Weighted M.G.H.				Levels obtained	### e= 56# +##################################		
G.H. corrections				Devels obtained			
Correct M.G.H.							
Measurement rat	ed: Poor (over 8	3%). Uniform short grass	- some ice.	based on following	conditions:	l- (ll) dis est spt spt sit sps ten sps ten top set sit; i	
Cross section:		innunce construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of th		Dasca on tonowing			
Flow:	4				At. 0170.	}-=±=======	
				Weather:	Air °F@:		
Gage:				<u></u>	Water ⁰F@:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Other:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Record Removed	; ; ,			Intake flushed:			
Observer			a _ o d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	======================================	·			&&&&	·~ ****	
Control	Channel exp	oanding - mostly clear of	snow and ice. Gr	ass 4-8" high, cobbles 2-4'	", and sand.		
· • • • • • • • • • • • • • • • • • • •					# <del> </del>		
Remarks	s= .76/512=	.0015 ft/ft.	, , , , , , , , , , , , , , , , , , ,			· · · · · · · · · · · · · · · · · · ·	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
G.H. of zero flow	, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ft.	e		
				•	]	Page I of 2	

**DISCHARGE MEASUREMENT NOTES (PLX 28 Continued)** 

Angle	Dist.			\			VELO	CITY			
coef.	From Initial point	Width	Depth	Observ. depth	Revo- lutions	Time In seconds	At Point	Mean in- vertical	Area	Discharge	Description
	(ft)	(ft)	(ft)				(fps)	(fps)	(s.f.)	(cfs)	
	44.6	3.9							0.0	0.0	Left Edge Water (14:30)
	52.4	7.7	1.0	0.6	10	48		0.47	7.7	3.6	
	60.0	7.6	1.1	0.6	40	46		1.92	8.3	15.9	,
	67.5	7.5	1,3	0.6	80	50		3.50	9.8	34.1	
	75.0	6.8	2.2	0.6	80	42		4.16	14.9	61.8	
	81.0	16.0	2.4	0.6	100	43		5.08	38.4		Grounded ice
	107.0	16.3	1.9	0.6	50	43		2.55	30.9		Grounded ice
	113.5	4.0	1.8	0.7	5	47		0.25	7.2	1.8	Grounded ice
	115.0	2.8	0.4	5.0	3	70	0.11	0.10	1.1	0.1	
	119.0	2.0							0.0	0.0	Right Edge Water (15:00)
						J					/
							l				
		)	,								
************											
		~~~~~~			**********						
								[
				.0774444							
								[
b								 			
otal	74.4	74.4							118.2	391.2	
otai ile: disch		l	L	LJ		L	L <i></i>	1		L	Page 2 of 2

Table PLX 28-1: Survey Data

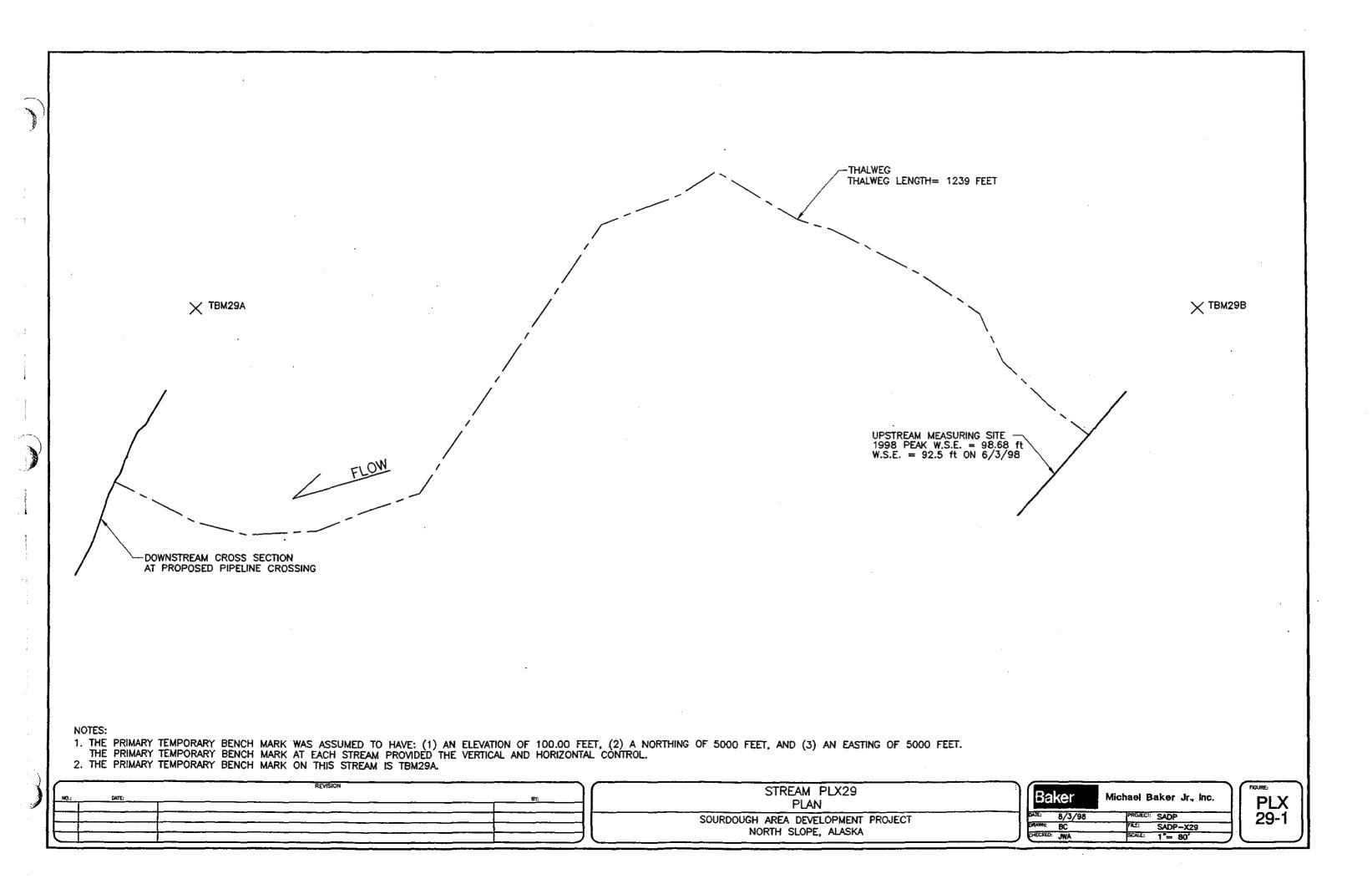
Survey		_		
Point	Easting	Northing	Elevation	
Number	(ft)	(ft)	(ft)	Description
1	5000	5000	100	TBM-P28 (TBM28A)
2	5000	5330.1548	95.701	P28/CL/CG (TBM28B)
3	4886.240296	5309.004891	98.71	T
4	4918.212999	5314.579028	97.483	T
5	4957.363927	5321.983234	96.177	T
6	4999.032089	5329.992282	95.59	T
7	4999.552019	5330.009673	94.806	LEW
8	5001.065161	5330.382622	94.369	G ·
9	5003.764304	5331.091684	93.925	MUD
10		5332.205554	94.108	MUD
11		5334.705444	94.49	:
12	_	5337.000554	94.827	
13		5341.847908	94.718	·
14		5344.693128	94.657	
15		5345.727833	94.048	
16		5346.225891	92.741	
17		5347.197801	91.795	
18	5082.921059	5347.065364		C/POSS.TH
19 20		5348.21594 5347.444261	91.936	
20 21	5099.623745		91.544 91.867	
21 22		5348.416968	92.616	
23		5349.045925	93.038	i
24		5350.362566	93.574	
25		5352.299674	93.431	
26		5354.730108	93.552	
27	5147.675056	5356.984076	93.532	,
28	5154.372257	5358.687683	93.398	
29	5165.778297	5361.096303	93.399	С
30	5171.208539	5361.808492	93.009	c
31	5174.457765	5363.194659	93.312	C
32	5175.737009	5363.372096	93.704	C/G
33	5176.987731	5363.975252	93.974	REW
34	5186.318905	5367.144329	94.868	T
35	5197.557331	5369.216171	95.043	Т
36	5215.129313	5372.073144	96.703	Τ
37 .		5373.517018	97.868	T
38	5235.973278	5375.546433	98.279	T
39	5257.885894	5378.973346	99.081	T
40	5278.686639	5381.863581	100.211	T
41	5309.293216	4829.016334	99.829	T
42	5285.000269	4839.747208	98.894	T
43	5257.980409	4850.896474	98.263	T
44	5229.014727	4863.915864	97.346	T

Table PLX 28-1: Survey Data (continued)

Survey						
Point		Easting	Northing	Elevation	٠	
Number		(ft)	(ft)	(ft)	Description	
4	5	5199.949395	4874.308411	96.586	T	
4	16	5182.525471	4882.107177	95.472	T/TB	
4	17	5181.091548	4883.070669	94.281	REW	
4	18	5180.969665	4883.043671	93.719	M	
4	19	5177.826834	4884.573053	93.586	M/C	
5	0	5171.239418	4886.700883	92.896	С	
5	51	5165.307495	4888.941238	92.394	С	
5	52	5162.874015	4890.111365	91.389	С	
5	53	5160.77338	4890.681542	90.825	С	
5	54	5155.423544	4890.467921	90.449	C/TH	
5	55	5155.08353	4890.538661	93.282	G	
) 5	6	5150.980891	4893.565936	93.795	G	
5	57	5146.893094	4894.861801	94.302	LEW/G	
5	8	5144.239005	4896.099059	94.858	T	
5	9	5130.470109	4902.045217	95.211	T	
6	60	5126.011113	4904.212664	96.034	T ,	•
6	51	5105.349386	4913.512073	96.451	T	
6	52	5078.60395	4925.095587	97.278	T/IPP28/HWM	
6	53	5048.880233	4937.367335	98.452	T	
6	4	5203.249738	5030.557231	92.585	TH	
6	5	5220.79868	5125.332013	91.23	TH	
6	6	5194.510369	5230.115359	91.901	TH	
6	7	5169.156343	5281.987735	92.732	TH	
6	8	5126.413197	5312.186207	92.746	TH	
6	9 :	5095.168215	5344.169602	92.057	TH	
Legend:						
G = grass			REW = right edge	of water	DS = downstream	CL = center line
T = tundra			TH = thalweg		US = upstream	PK = "pk" nail
C = cobbles			CG = crest gage		TWET = wet tundra	
LEW = left edg	ge of	water	GB = ground brea	k	M = mud	
			SH = shoulder		SB = sand bags	
file:plx28.xls						

APPENDIX EE: PLX 29

TABLE OF CONTENTS


Figure PLX 29-1: Plan

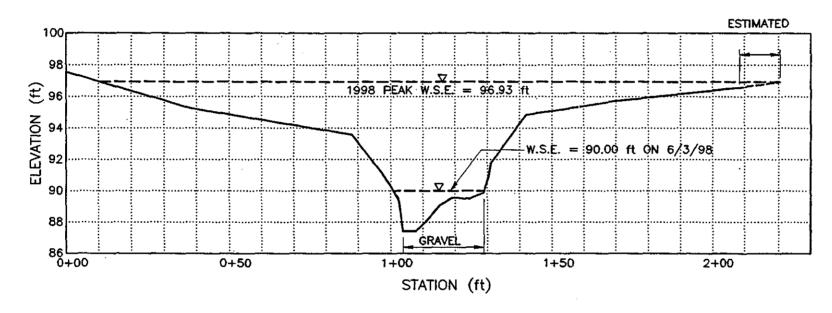

Figure PLX 29-2: Profile

Photo Sheet PLX 29-1: Stream PLX 29 Photographs

Photo Sheet PLX 29-2: Stream PLX 29 Photographs

Table PLX 29-1: Survey Data

PROFILE: PLX29 DOWNSTREAM CROSS SECTION AT PROPOSED PIPELINE CROSSING

1. THE ELEVATIONS SHOWN ARE BASED ON AN ASSUMED ELEVATION OF 100.00 AT TBM29A.
2. W.S.E.= WATER SURFACE ELEVATION

$\overline{}$		REVISION	
NO.:	DATE:		BY:
<u></u>			
<u> </u>			
<u></u>			

STREAM PLX29 PROFILE SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker		Michael Baker Jr., Inc.			
DATE:	8/3/98	PROJECT	SADP		
ORAWN:	BC	FILE:	SADP-X29		
CHECKED	JWA	SCALE:	VARIES		

PLX 29-2

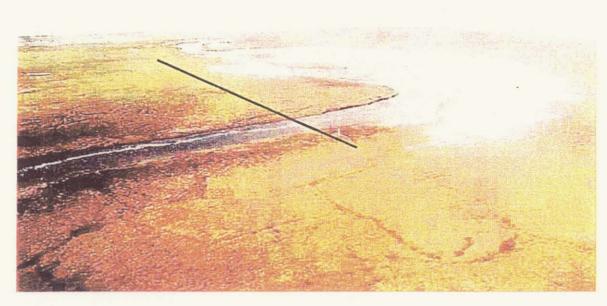


Photo PLX 29-1: Looking northeast at the proposed pipeline crossing (6/2/98).

Photo PLX 29-2: Looking northeast at the proposed pipeline crossing (6/11/98).

STREAM PLX 29 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Baker Michael Baker Jr., In				
Date: 6/7/98	Project: 23247			
Drawn: JDA	File: photo29			
Checked: JWA	Scale:			

PLX 29-1

Photo PLX 29-3: Looking north at the proposed pipeline crossing (6/3/98).

STREAM PLX 29 PHOTOGRAPHS

SOURDOUGH AREA DEVELOPMENT PROJECT NORTH SLOPE, ALASKA

Saker	Michael Baker Jr., Inc
Date: 6/7/98	Project: 23247
Drawn: JDA	File: photo29
Checked: JWA	Scale:

PLX 29-2

Table PLX 29-1: Survey Data

Point Number	Easting	** .* .		
	_	Northing	Elevation	
	(ft)	(ft)	(ft)	Description
1	5000	5000	100	TBM/CL/P29 (TBM29A)
2	4008.94	5000	100.33	TBM/UPS/P29 (TBM29B)
101	4097.470492	5109.573261	96.562	SG
102	4076.634779	5084.506776	97.816	T
103	4103.692388	5117.183395	96.16	T
104	4107.055037	5121.480383	92.468	REW
105	4107.903538	5121.783456	91.227	C
106	4111.713693	5126.575648	90.915	C
107	4113.744168	5128.610657	87.852	TH
108	4154.537493	5098.155668	89.677	TH
109	4199.886019	5053.474696	90.256	TH
110	4222.738848		89.225	TH
111	4284.724441	4965.277888	88.542	TH
112		4920.712882	89.665	
113		4910.665113	90.533	
114		4863.401537	90.297	
115	4518.821434		88.974	
116	4598.861575		89.509	
117	4664.306012		89.856	
118	4779.536391	•	90.583	
119	4829.133696		89.826	
120	4881.193047		89.428	
121	4948.297513		88.632	
122	4998.041966		87.452	
123	5114.226815	5151.324452		TH/FL
124 125	5057.399231 5029.455533	5124.484746	95.354	
125	5050.056649		96.572	
120		5117.77523 5139.911077	95.688 94.831	
127	5068.63488	5150.296435	94.831	
128	5068.151327		90.945	
130	5069.227427	- 10 0.11 10 000	90.943 89.884	
130	5071.493922		89.503	
131	5073.032468		89.583	
132	5074.423144	5165.052964	89.066	
133	5075.939922	5169.017819	88.035	
135	5078.257975	5171.380051	87.415	
135	5080.224302	5174.76596	87.414	
130	5080.224302	5174.76396	89.547	
	5082.671129	5180.754594		
138 5082.671129 5180.754594 91.129 LEW (continued on next page)				
	,	continued ou lic	vr bake)	

Table PLX 29-1: Survey Data (continued)

		 			
Survey					
Point	Easting	Northing	Elevation		
Number	(ft)	(ft)	(ft)	Description	
139	5086.684095	5189.019646	93.575	T	
140	5102.263454	5236.962766	95.263	T	
141	5119.678209	5270.990923	97.565	T	
Legend:					
G = grass		REW = right edg	e of water	DS = downstream	CL = center line
T = tundra		TH = thalweg		US = upstream	PK = "pk" nail
C = cobbles		CG = crest gage		TWET = wet tundra	_
LEW = left edge of	f water	GB = ground bre	ak	M = mud	
		SH = shoulder		SB = sand bags	
file:plx29.xls					

PROJECT REPORT

TEXT AND FINAL ADJUSTED VALUES

SOURDOUGH PHOTO CONTROL PROJECT

JULY 1997

FOR

AeroMap U.S., Inc. 2014 MERRILL FIELD DRIVE ANCHORAGE, ALASKA 99501-4116

BY

C.A. HERSCHBACH, R.L.S. SURVEYING CONSULTANT P.O. BOX 521084 BIG LAKE, ALASKA 99652 PHONE: (907) 892-7839

I. INTRODUCTION

AeroMap U.S. had a requirement for horizontal and vertical control for photogrammetric mapping of the Sourdough Project area situated between Bullen Point and the Staines River and extending seven to thirteen miles inland from the Beaufort Sea coastline on the North Slope, Alaska. After preliminary discussions and the submission of several written and verbal proposals by the survey consultant, a contract was executed 26 June, 1997.

The contract required the determination of X, Y, and Z coordinates and postmarking of a total of 93 HV points, 48 being entirely new locations in the southerly portions of the project area and 41 to coincide, where possible, with HV points set under the consultant's direction some fourteen years ago in the northerly portions of the project area. Also, four were to be set on existing NGS monumentation, also in the northerly portions of the project area. The survey was to be accomplished by a combination of conventional spirit differential leveling and utilization of GPS technology, as the consultant had proposed.

The vertical datum was to be Mean Sea Level, East Dock, Prudhoe Bay, to be established by extending vertical control from the Badami mapping project immediately to the west and adjoining this project. The consultant emphasized he could not vouch for the accuracy of the vertical tie from the Badami project to East Dock itself, as this had been done previously by others.

Horizontal control was to be based on NGS monumentation within or adjacent to the project area, taking care to assure consistency of the horizontal datum between the Badami and Sourdough projects. Final submission of the horizontal data to AeroMap would be in Alaska State Plane Coordinates, NAD 1927, Zone 3.

BPX would provide helicopter support with a ERA Bell 206 Long Ranger helicopter based in Deadhorse. The helicopter would be available for night time use by the consultant's team from the night of 10 July, 1997 to the night of 6 August, 1997, if the project so required.

A project control map with numbered photo control points, a listing of coordinates of new points digitized from USGS 1" = 1 mile maps and the approximate coordinates of the old points was furnished the consultant by AeroMap. AeroMap also provided a 70mm camera with sufficient film to accomplish the postmarking requirement.

It was expected all field work would be completed by 6 August, 1997 and all required elevations, coordinates and postmark data furnished AeroMap during August 1997.

The consultant provided all personnel, equipment, software, vehicle, room and board for field personnel and miscellaneous supplies as required on this project. This report details that logistical support and describes in detail the techniques utilized to accomplish the project. A primary control diagram, project point plot, final elevations and coordinate values are included in the attached appendices. Also included are photographs of recovered NGS monumentation in the project area and photographs of primary equipment utilized.

II. QUALIFICATIONS OF CONSULTANT

The lead consultant and project manager was Clarence A. "Bud" Herschbach, registered land surveyor and certified inshore and offshore hydrographic surveyor. Mr. Herschbach is a 43 year Alaska resident and registered as a professional surveyor in Alaska and 12 other States. His experience as a surveyor on the North Slope, Alaska began during Dewline construction in the 1950s, extended through nearly all phases of oil exploration and production and, though now retired, continues on occasional specific projects.

The primary assistant consultant was Thomas C. Herschbach. Thomas Herschbach is also registered as a professional land surveyor in Alaska. He was born and raised in Alaska and has been involved on major survey projects throughout the State for the past 17 years. He is especially well experienced in GPS surveys and survey related computer operations. Thomas was in charge of those aspects of the Sourdough project.

III. PREMOBILIZATION AND PLANNING PRIOR TO FIELD ACTIVITIES

This activity was completed between June 26 and July 9, 1997. The consultant and AeroMap professionals met in detailed planning sessions to determine a project plan that would meet the analytical triangulation requirements, while at the same time be feasible from a survey and site access point of view. A project planning map indicating the old and new point positions was developed.

The planning map was carefully studied to determine the suitability of various survey approaches to accomplish the desired result. Control recovery requirements were determined and field logistics were planned. Several additional copies of USGS 1" = 1 mile maps of the project area were acquired and the proposed photo control layout plotted thereon. Latitude and longitudes were digitized by AeroMap of all new postmark positions. State Plane coordinate values of the old points were converted to Latitudes and Longitudes and all Latitudes and Longitudes converted to NAD 83 datum as this is the datum the ERA helicopter GPS utilizes. All available NGS control data was acquired, thoroughly reviewed so the data could be coordinated in the field, and control that was deemed desirable to recover was highlighted.

Supplies such as mosquito repellent, field books, computer paper, computer disks, and monumentation material were purchased. All equipment was packaged to protect it during shipment to the field. Lease of four Trimble 4000 SSI Geodetic GPS receivers was arranged from Accupoint Incorporated in Anchorage. Airline reservations were made and tickets purchased. Availability of room and board, vehicles and other supplies at Deadhorse was determined by telephone communications, and reservations made where required.

A portable postmarking panel of highly reflective 10" wide material was fabricated. Each leg was six foot in length except one which was eight foot in length, this to always be aligned to the North. A grommet was placed in the center to fit over the rebar planned to be used to mark each postmark location. The ends of each panel leg had weights sewn within to facilitate placement and positioning in windy conditions, natural or helicopter induced.

A Hasselblad 70mm camera was acquired from AeroMap and tested to assure it was working properly. A bull's eye leveling bubble was glued on the film magazine to facilitate the perpendicular positioning of the camera, since it was to be hand held during postmarking photography due to the model helicopter to be utilized.

Planning was completed and mobilization to the field was possible on the preplanned date. The survey crew and all equipment was in place ready to begin field work on the night of July 10. Room and board and field office space was obtained from The Arctic Caribou Inn as The Prudhoe Bay Hotel, the consultant's first choice, was filled to capacity by other oil field contractors. A four wheel drive crew cab vehicle was leased for the length of field activity from Nana Oil Field Services. The living arrangements, field office arrangements and vehicle proved to be entirely satisfactory.

IV. CHRONOLOGY OF FIELD OPERATIONS

Mobilization:

Two consultant personnel with basic equipment as baggage traveled to Deadhorse on the afternoon of 10 July, 1997 via Alaska Airlines Flight 55. The remaining equipment and supplies had been airfreighted to Deadhorse on the 8th and was already at the air cargo terminal in Deadhorse upon personnel arrival. A lease truck, as had been arranged by telephone, was picked up at Nana Oil Field Services and the equipment and supplies picked up. Rooms were secured at The Arctic Caribou Inn and a field office was set up. Field work began on the night of July 10th. A third crew man, who would serve as rodman and survey helper, arrived on Alaska Airlines Flight 55 on July 14th, the flight having been delayed by one day due to fog at the Deadhorse Airport.

Personnel:

C. A. "Bud" Herschbach, R.L.S., Project Manager and Principal Consultant Thomas C. Herschbach, R.L.S., GPS Manager and Data Reduction Manager Douglas Herschbach, Rodman and Survey Helper

Equipment:

The consultant supplied all equipment, except the camera. This included:

- 4 Trimble 4000 SSI Geodetic GPS receivers with antennas, tripods and software.
- Hasselblad Model 500 EL/M camera with Distagon 40mm F4 lense with yellow filter. Battery powered and equipped with detachable handle and bull's eye leveling bubble.
- 1 Sokkisha automatic level with tripod and 16 foot rod.
- 1 Topcon DL-102 electronic digital level with 3 meter rod, tripod and software.
- 4 FM Hand-held radios.

- 1 Four-wheel drive crew cab pickup truck.
- 2 Magellan hand-held GPS navigation receivers.
- 1 Trimble hand-held GPS navigation receiver.
- 1 Pentium based computer with printer.

Miscellaneous small survey tools and equipment.

A variety of appropriate surveying software packages.

Supplies:

Various supplies were carried with the survey team, which included:

- 1 Collapsible postmarking panel.
- 8 70-exposure rolls of 70 millimeter Kodak Tri-X film.

Monumentation, lath and flagging materials.

Miscellaneous maps, computer disks, printer paper, field books, etc.

Field Operations:

With the availability of the helicopter, field operations began on the night of July 10, 1997. The scheduled work day was from 7:00 p.m. in the evening until 7:00 a.m. in the morning. This varied significantly in practice due to the non-availability of the helicopter and prevailing dense fog in the early morning hours. The earliest the crew ever departed Deadhorse was 7:30 p.m. and the latest 12:30 a.m. in the morning. The average was 8:00 to 8:30 p.m. The crew sometimes returned early due to dense fog which not only hampered helicopter flight but prevented leveling by curtailing visibility directly and coating the instrument lenses with water droplets. One night was not worked as fog totally prevented the helicopter from flying. In addition, two nights were not worked due to non-availability of the helicopter because of required maintenance. The survey team took advantage of these shutdowns by catching up on data reduction and computations. A flight log is attached detailing helicopter usage. Although the extensive amount of helicopter non-availability was

frustrating, the pilot, Ron Adair, was exceptional in both capability and interest. Without his expertise and cooperation this project would have taken considerably longer to complete and many more hours of flight time expended. GPS observations were completed on the night of July 27/28 and all remaining field work completed on the night of July 29/30. The GPS receivers were shipped via Alaska Airlines on July 28th and the personnel and remaining equipment departed by Alaska Airlines late afternoon on July 30th, 6 days ahead of the original estimated completion date.

Unpacking of equipment and final computations were begun the following day. Final elevations, coordinates and this project report were delivered to AeroMap on August 29, 1997.

V. FIELD PROCEDURES

Field procedures on the Sourdough Project consisted of four primary functions: recovery of NGS control and existing photo control points in northern project area and setting of rebar and lath on new photo control points in southern project area, collapsible panel emplacement and low level photography, GPS procedures, and differential leveling procedures. All, of course, required various levels of logistical support and other sub-functions fell within these four primary functions. Following, this report details how each of the primary functions was accomplished.

A. Recovery:

Eight NGS control monuments were to be searched for in the project area. Only five were located and all were in poor condition. A summary of the results of this investigation is as follows:

Station Comments

SAVAK Recovered. Monument 2.38 feet above ground and leaning slightly.

Curiously, the NGS CD-ROM based data files does not list this station but a
phone call to NGS secured positional data.

GORDON Destroyed or covered by beach gravel.

HOBSON Recovered. Monument 4.09 feet above ground and leaning.

NORA Destroyed or covered by beach gravel.

TUNDRA Recovered. Monument 4.35 feet above ground and leaning. Rebar found at base set by F. Robert Bell and Associates in 1993.

RODA Recovered. Monument 4.05 feet above ground and leaning.

NYGREN Recovered. Monument has been hit by vehicle and bent dramatically. Cap missing. Found rebar at base of monument.

LILY Monument destroyed. Has relatively recently fallen over eroding bluff.

Note: Photographs of all recovered monuments in the project area are provided in Appendices to this project report.

Due to the weakness of the control stations directly within the project area the search and recovery was extended to stations immediately outside the project area. These consisted of "TIGVARIAK EAST BASE", "IOVIK" and "ELIZA" in the Badami area as these had been previously recovered during the survey of photo control for that mapping project. These stations were again recovered. The helicopter was also landed west of the Staines River and a foot search made for "FINISH" in ANWR. It was recovered in good condition. Also recovered were photo control points 537 and 538 of the Badami Survey Project. These were later to be utilized as beginning bench marks for the differential leveling for the Sourdough Project. Also points 304, 311, 313, 314, and 315, recently set by Mike Schoder of AeroMap and included in his GPS static survey were recovered for inclusion in the Sourdough mapping control net. To prevent duplicate and/or confusion these were given new numerical identification numbers as follows: 304=1304, 311=1311, 313=634, 314=637 and 315=636.

Of the 41 old photo control points in the northerly project area 38 were found, generally in good condition although all of the mechanically driven aluminum rods were jacked one to three feet due to frost action. New points were set in the general area of the three missing points.

In addition, two control rebar set by F. Robert Bell and Associates in 1993 in the Yukon Gold area were recovered in good condition.

B. Monumentation:

Following recovery work all new postmark locations were marked with 30" x 1/2" rebar, lath and hi-vis flagging. These were set by navigating to the previously digitized latitudes and

longitudes by use of the helicopter GPS unit and the points set at the desired locations as indicated by this instrument. In all cases a flat area was selected of a relatively dark color so as to attain high contrast with the white panel to be later utilized. By chance, this procedure was accomplished in dense fog conditions and no visual reference to surrounding land marks was possible. The later accurate survey, however, indicated all were very close to preselected desired locations.

Postmark locations were similarly monumented at the three northerly locations where the old panel points were not found and also near the locations of unrecovered NGS stations "LILY" and "GORDON". These last two were given identification names "LILY OFFSET" and "GORDON OFFSET".

C. Postmarking and low level photography:

The low level postmarking photography was accomplished during four separate sessions when weather and light conditions permitted. The postmarking was accomplished utilizing a 10" x 12' (6 foot legs) retrievable panel which was placed at each panel location, photographed, and then removed. One leg was two foot longer (8') than the other three, and, using a hand compass, this leg was always aligned in a northerly direction to assist the photogrammetrist in later alignment of the low level photography with the high level photograph. The panel was made of impregnated canvas material of a high white gloss color. A weight of approximately one pound was sewn into each end so as to hold it down in windy conditions. A grommet was placed in the center as an aid to centering the panel on the rebar that was emplaced in the ground.

The postmarking was accomplished by a two man survey team, plus pilot. The helicopter normally landed slightly to one side of the premarked panel location. After one individual with the panel, hand held radio and compass embarked, the helicopter would ascend to the

predetermined height over the panel. During this time the individual on the ground would lay out the panel, properly orienting the long leg in a northerly direction. After the photo runs were achieved, the pilot notified the individual on the ground by use of the VHF radio that suitable photography had been attained. At this signal the individual on the ground refolded the panel and put it in an accompanying laundry-type bag to prevent it from being blown around by the rotor blast during the subsequent helicopter reboarding operation. The helicopter would then land, pick up the individual on the ground and proceed to the next postmark point. Approximately ten points per flight hour could be postmarked in this fashion.

The right rear door was removed from the helicopter prior to all postmarking photo missions. All loose items were removed from the back seat area of the helicopter to avoid their being blown about. Photography was accomplished using a Hasselblad, Model 500 EL/M, 70mm camera hand-held outside the rear doorway from which the door had been removed. A bull's eye bubble was glued to the back of the camera to facilitate pointing the camera perpendicularly downward. By holding the camera at door sill level and just outside the door, the skid was outside the photo image and an unobscured view was attained.

70 millimeter Kodak Tri-X film was used in oversized magazines which allowed approximately 70 exposures per roll of film. Three or more photographs were taken of each panel as the helicopter made runs at approximately 60 miles per hour across the panel location. One photograph was normally taken when the panel was approximately one-third into the frame from the direction of flight, one was taken when directly over the panel and one was taken approximately one-third of a frame past the panel point. Where possible, all runs were made from south to north, toward the long leg of the panel.

Where the photographer or pilot felt the run was not suitably aligned over the target, or that

a camera tilt exceeding 5 degrees existed at the time the exposures were made, the helicopter would make a 180 degree teardrop turn and make a return run in a North-South direction to attain more photos while holding flight time to a minimum.

The pre-planned photo height was ideally 1,000 feet above ground level. The height above ground was determined by the helicopter pilot utilizing his radar altimeter. All photos were taken at, or very near, the pre-determined height.

The first photos were taken the night of July 14 and some trial and error was required to properly coordinate the actions of the pilot, photographer and ground crewman. The field party had concern some photo runs were sufficiently to one side or the other that the panel was not suitably in the frame. AeroMap did not have a problem in this respect, however, and no reflights were required. In all cases exposed film was shipped to Anchorage by Alaska Airlines counter to counter service the day after exposure so its suitability could be determined and adjustments made in the photo process if the developed film indicated this was desirable. This proved very successful as a quality control procedure. No reflights were required, however, on this project.

In all case, except as mentioned in the following paragraph, a shutter speed of 1:250 or 1:500 of a second was utilized with the lens openings varied to meet the existing light conditions. Light availability was determined intermittedly with a hand held light meter. Camera lenses were taped in position so as to prevent them inadvertently rotating due to vibrations in the helicopter. The photographer had a light meter available at all times to check the light conditions as he felt necessary. Kodak Tri-X film proved to be versatile under poor light conditions at high shutter speeds and would be highly recommended for any future photography of the type taken.

On the final postmark panel photographed a series of frames were exposed at 1:125 of a second shutter speed as it was near midnight and light conditions very poor. This shutter speed was thought to be undesirable due to the speed of the helicopter over the panel target and the unavoidable vibrations in the Bell Long Ranger type helicopter. Later analysis by AeroMap, however, indicated this photography was suitable for its desired purpose if light conditions did not allow a faster shutter speed. If this relatively slow shutter speed is used in the future, however, care must be taken by the photographer not to rest his camera or arms on the doorsill so as to isolate the camera from the rotor induced vibrations.

The only difficulty in the postmarking photography occurred on the second photo mission on the night of 20 July. On the third panel the camera lens suddenly jammed and all efforts by the photographer failed to remedy the problem so photography was suspended and leveling undertaken instead. Consultation by phone with AeroMap the following day could not identify the problem so the camera was sent by one day air service to AeroMap in Anchorage. They were able to identify and remedy the problem and returned the camera to Deadhorse one day later. The camera performed satisfactory during the rest of the project. On any future project the photographer should discuss the potential and solution for camera lens jamming with Steve Sparks of AeroMap in Anchorage.

D. GPS Survey:

A total of 107 points were surveyed on this project utilizing GPS, 14 by static GPS methods for inclusion in the primary control network and 93 by rapid static methods to fill in the intermediate points. One NGS station "LEFFINGWELL" was not actually occupied during this project survey but the long static GPS observations taken by Mike Schoder of AeroMap utilizing Trimble 4000 SSI Geodetic GPS receivers the first week of July, 1997, were utilized.

Equipment:

GPS equipment was leased by the consultant from Accupoint, Incorporated of Anchorage, Alaska. This equipment included four Trimble 4000 SSI, nine channel, dual frequency geodetic receivers and associated L1/L2 geodetic antennas, cables, tribrachs, tripods, batteries and chargers. Trimble's GPSurvey post-processing software package, Version 2.20, was used for GPS data computations.

The Trimble 4000 SSI dual frequency geodetic receivers utilized are small in size, packaged in compact units well-suited to helicopter operations, and are supplemented by flexible, comprehensive software. The Geodetic Surveyor SSI offers the highest productivity and accuracy available in a dual frequency GPS receiver for post-processed land surveying and mapping applications. Utilizing Trimble's Super-Trak technology for robust satellite tracking, even in difficult locations, these receivers maintain a firm lock on signals once acquired, and are capable of very short occupation times in fast static mode with a published accuracy of 5 mm horizontally, 1 cm vertically, and 1 are second of azimuth.

All primary control stations on this project were observed for a minimum of 60 minutes, and in most cases several hours, with the receiver operating in static mode. Many of these control vectors were observed multiple times on different occasions, thus giving many redundant baselines for verification purposes. All panel points were observed a length of time wherein the receivers indicated an accurate position had been attained. Generally three base stations were operated in static mode and one rover unit operated in fast static mode. A network of multiple, interconnecting vectors was thus established. By utilizing the 7 recovered horizontal control stations and 37 vertical bench marks surveyed by differential levels (33 surveyed on this project and four from the Badami Survey Project), the network was subsequently rotated and scaled to the existing control and tipped and tilted to agree with the local geoid (leveling datum).

Field Computations:

Field computations were done on a daily basis and included the routine downloading and backup of the GPS data, running satellite predictions for the following day, as well as baseline computations. A Pentium based computer was available in the field for the duration of the project for these tasks. The GPS data would be downloaded from the receiver into a subdirectory of the hard drive. Station ID's, session number and HI's were then verified. All discrepancies were resolved before archiving the data to 3-1/2" floppy disks.

After data backup, satellite predictions for the following night were performed to ascertain the ideal times for observing and to avoid any windows of poor satellite availability and/or high PDOP. Once these predictions were done and plots made for the next nights use, baseline computations were performed. This processing consisted of using the Trimble WAVE baseline processor, version 2.20, to compute the delta X, delta Y, and delta Z vector components for each baseline. Each baseline consisted of four separate solutions:

- L1 code
- Iono free triple
- P/C1 Lw Ln float
- L1 fixed (or Iono free fixed)

After the vectors were processed, the various statistical indicators were examined and in most cases the high ratios and low reference variances obtained indicated acceptable results. These statistics also gave confidence to which solution should be used. The vector components were then loaded into a database and various combinations of Cartesian loop closures were computed. These loop closures gave an additional indication of the quality of the data.

After loop closures were computed, the vectors were further analyzed through least squares methods. This was done through Trimble's Network Adjustment Module. The approximate

coordinates, observed vectors and estimated weights were input into the adjustment program. The preliminary adjustment was executed and the statistics in the form of the standard error of unit weight and the normalized residuals were analyzed. These "daily" adjustments are of a minimally constrained type, i.e., one arbitrary station is held fixed.

Once all the field observations were completed, the daily adjustments were combined into one large adjustment for the entire project area. This adjustment insured the internal integrity of the observed network and any weak vectors were located through this process and reobserved prior to project demobilization. The final minimally constrained adjustment for the project area produced a standard error of unit weight of 0.98 and includes 336 vectors. All vectors used in the adjustment were based on the double difference solution. The average coordinate precisions were in the 5 mm range, with the majority of vector accuracies meeting or exceeded the 1.0 ppm (1:1,000,000) range. Based on this minimally constrained adjustment, a decision was made to demobilize the GPS field operation for this project.

E. Differential Leveling:

Care must be taken when acquiring elevations by GPS methods, as GPS heights are referenced to a surface called the ellipsoid, whereas real world elevations as normally utilized are referenced to a surface called the geoid. The ellipsoid and geoid are of differing heights and are tilted a small amount about both North-South and East-West axis. The latest available geoidal separation computer program (Geoid 96) provides only an approximate correction for any given local area. Bench marks determined by differential levels are thus mandatory every five to ten miles if elevations determined by GPS are to be properly correlated to the local datum. In this case, 33 new bench marks were determined by differential levels throughout the project area, a considerable over kill.

Top of rebar of Point 537 of the Badami Project was utilized as the origin bench mark for this

project. It's elevation was first verified by leveling to existing Badami Point 538. The two points agreed with record values by 0.01 of a foot.

Over 43 miles of levels (actual distance traveled was actually much more due to water bodies to be detoured) were carried out on this project. All runs were double-rodded so as to provide a check closure without returning in the opposite direction. The level was pegged to verify it was in adjustment, foresights and backsights were balanced and all shots were held to 200 foot or less in length. The night work minimized heat waves and the resulting refraction. Third order standards were attained or the segment in question was rerun. Three segments, totaling approximately three miles, had to be rerun to meet this requirement. Approximately five miles forward progress per shift was attained, although fog terminated most shifts early. A two man leveling crew remained on site all one day to make up for the numerous shortened night shifts. Bench marks were established at all geographical limits of the project. In addition, elevations were set by differential levels on a considerable number of interior points. All GPS derived elevations were computer-adjusted to match the spirit level derived datum.

The hand-held Magellan GPS units proved themselves of great value during the leveling process. Few visible landmarks exist at ground eye level in the project area and guidance from point to point was entirely by these units, especially in foggy conditions.

The water surface of the Beaufort Sea was shot from 14 HV points near the shoreline. The night was windy and water quite rough making accurate readings difficult. These shots, however, serve as an excellent quality control procedure, especially on the East-West vertical component of the project. These readings indicate a possible maximum 0.20 foot vertical deviation from the westerly to easterly limits of the project area, a distance of approximately 20 miles. These readings do indicate, however, the entire project datum to be from 0.60 foot

to 1.20 foot low, relative to mean sea level. The exact amount is uncertain due to the scarcity of tidal information in this area and the impact environmental conditions can have on coastal water levels at any particular point in time.

Visual observations indicated a low tide stage at the time the water readings were taken. Assuming a tide range of 0.65 to 0.70 foot in this area a datum error of approximately 0.60 foot is indicated. GPS observations taken by Mike Schoder of AeroMap from this project's point 637 (Mike's 314) to NGS station "Leffingwell" on Flaxman Island, when reduced by this consultant, however, would indicate a datum error of nearer 1.20 foot. Station "Leffingwell" has an elevation leveled from a bench mark established by three days of tidal observations in 1981. See conclusions for more thoughts on this issue.

VI. POST FIELD COMPUTATIONS

Following return from the field, a meeting was held with AeroMap to review preliminary data. An intense period of computations followed. All field notes were double checked and variously weighted adjustments were run by computer and the results analyzed. Various plots were made to facilitate use of the data by the client.

Post field GPS computations consisted of completing a constrained adjustment, in NAD 1927, for the entire project area. This adjustment, performed with the Trimble Network Adjustment Module software, is where known horizontal and vertical stations were held fixed to their published values. The adjustment output consists of the final adjusted coordinates and the associated statistics. Many iterations were attempted with this final adjustment to ascertain which horizontal control stations to hold fixed. The final constrained adjustment held the following stations fixed:

Horizontal: "TIGVARIAK EAST BASE", "IOVIK", "SAVAK", "FINISH",

"YUKON GOLD GPS CONTROL POINT E", "LEFFINGWELL",

"YUKON GOLD GPS CONTROL POINT YG-1"

Vertical: H.V. control points 306, 325, 395 (Nora Offset), 418, 423, 603, 607, 611, 612, 613, 614, 615, 616, 618, 619, 628, 635, 637, 638, 640, 641, 642, 643, 644, 645, 646, 647, 648, TUNDRA_REBAR, 1311(AeroMap's 311), 1304 (AeroMap's 304), and Badami H.V. Points 383, 537, 538, and "ELIZA".

Note: Elevations determined by differential leveling procedures based upon given height for rebars at panel points 537 and 538, Badami Mapping Project.

There are 108 stations and 336 vectors in the final adjustment. The final adjustment for this project produced the following statistics:

Standard Error:

1.02

Deflection in Latitude:

0.6801"

Deflection in Longitude:

-0.4888"

Azimuth Rotation:

-14.0481"

Network Scale:

1.000021487118

Due to distortions in the network control (incorrect shapes of geometric figures defined by the fixed network) the highly accurate GPS network was artificially degraded to conform to the existing NGS control stations. The majority of horizontal control stations used in the final adjustment are second order (1:20,000) stations and the final positions derived in this GPS survey can therefore not be said to exceed that accuracy.

Final adjusted X, Y, and Z values were delivered to AeroMap on August 29, 1997.

VII. SUMMARY AND CONCLUSIONS

The techniques and procedures utilized followed the pre-work plan very closely and proved to be an efficient time and cost-effective method to accomplish the goals of the field program. Only minor modifications were necessary in the field work plan to meet localized conditions.

A close review and analysis of the data herein leads the consultant to believe all goals of the contract were achieved. Stations TIGVARIAK EAST BASE, IOVIK, ELIZA, LEFFINGWELL and FINISH were incorporated outside the scope of the contract to offset the poor conditions of the control stations within the project area. Bell's rebars, "Yukon Gold GPS Control Point E" and "Yukon Gold GPS Control Point YG-1" were also incorporated into the survey in order to bring all survey points in the project area into a single, consistent net.

The consultant believes all desired accuracy specifications were achieved and, in fact, exceeded. The horizontal accuracy achieved by GPS far exceeded that of the existing control net, and was artificially degraded to conform to existing NGS control monuments, whose published values will undoubtedly be used by others in the future in the project area. The vertical values, within this and the Badami Project area, within themselves, appear to be excellent and to meet all specifications required for accurate mapping of the area. The mapping tie to the Badami area mapping should be seamless. As noted previously, however, the entire vertical datum may vary from true mean sea level by up to 1.20 foot. Many questions remain on this issue. The most obvious include:

1. Is the East Dock bench mark truly representative of mean sea level for the area as it originally involved only a very short period of tidal observations?

- 2. Is the vertical tie from East Dock to Badami accurate?
- 3. Are single water surface shots in this area meaningful considering potential environmental impact on coastal water levels and minimal tidal data in this project area?
- 4. Is the "Leffingwell" vertical data meaningful considering the short duration observations and 16 year potential movement of bench marks?

Several steps could be taken to shed further light on this issue.

- 1. A long static GPS observation from the Badami or Sourdough project datum could be made back to East Dock to confirm their relationship.
- A long static GPS observation could then be made from East Dock to the NGS
 tidal bench mark on West Dock to determine East Dock's relationship to true
 mean sea level. The West Dock NGS bench mark was established by long and
 on going observations.
- 3. A long term tide gauge could be established in the Sourdough or Badami Project area and an accurate tidal bench mark established. NGS may be agreeable to establish a tidal bench mark on the newly constructed Badami dock.
- 4. As long as the Badami and Sourdough vertical datums are good within themselves their accurate relationship to mean sea level may not be meaningful and nothing further may need to be done.

Senior project managers should further consider this issue.

Weather conditions were very difficult during the field operations, especially for night operations, but about what one must expect and be prepared for on the North Slope of Alaska. An earlier start of each night's operation would be very beneficial as the nightly fog usually does not envelope the area until after midnight. Time of use of the helicopter needs to be more clearly defined in future such operations as much survey crew time was wasted awaiting transportation in the ERA hanger. Use of a helicopter totally dedicated to the survey effort possibly would be cost effective even if a helicopter need be mobilized specifically for this effort. A Bell 206 (not Long Ranger) with range extender would be satisfactory for this type survey program and an ASTAR ideal due to its unique suitability for aerial photography (i.e. low rotor vibrations and port suitable for hard mounting of camera).

The helicopter operation, after ERA became familiar with the unique requirements of this project, proceeded reasonably well but only through outstanding cooperation and effort by the assigned pilot. As always, pilot technique and attitude is an all important factor in a helicopter supported survey operation. The helicopter was equipped with a GPS receiver which was extremely useful in navigating to specific operational areas and in recovery of existing points and locating ground crews. The ongoing fog would have proven much more of a hampering factor without the GPS unit.

Likewise, the consultant-supplied, hand-held GPS navigation receiver were of great value in finding one's way around in poor visibility conditions on the ground and should be a required item on any survey program on the North Slope occurring away from the immediate Deadhorse area.

Few changes would be made in any similar survey effort in the future. The procedures and techniques utilized were deemed to be time and cost-effective and to meet all desired accuracy parameters.

Helicopter Flight Log Sourdough Survey Project (AeroMap Photo Control)

DATE	FLIGHT HOURS	COMMENTS
7/10/97	2.8	Terminated work at 1:30 AM due to fog.
7/11/97	4.0	Terminated work at 4:45 AM due to fog.
7/12/97	4.7	•
7/13/97	0.0	No field work or flight due to bad weather.
7/14/97	8.0	<u>-</u>
7/15/97	0.0	No flight due to helicopter maintenance.
7/16/97	6.6	·
7/17/97	7.7	
7/18/97	4.0	Terminated work at 3:30 AM due to fog.
7/19/97	7.0	Work & flight hampered by fog.
7/20/97	2.1	Terminated work at 3:36 AM due to fog.
7/21/97	1.8	Flew to project area but no work due to fog.
7/22/97	3.7	Terminated work at 3:00 AM due to fog.
7/23/97	6.5	Two men ran levels during the day to avoid
		fog, in addition to night work.
7/24/97	3.4	Helicopter was not available until 12:30 AM
		due to maintenance.
7/25/97	4.6	Light rain but relatively good weather.
`7/26/97	7.1	-
7/27/97	0.0	No field work or flight due to helicopter
		maintenance.
7/28/97	2.4	
7/29/97	2.2	

78.6 Hours total helicopter flight hours on project.

Note: Total days 2nd pilot required for survey support - 20.

FINAL ADJUSTED VALUES - SOURDOUGH PHOTO CONTROL PROJECT - 8/29/97

Ellipsoid: NAD27

Dutput: State Plane Zone 3, Pt #, Northing, Easting, Elevations(Feet)

Notes: * = Indicates elevation derived by differential levels.

Elevations based off rebar height for pt 537, 1994 Badami Survey
Points labeled with 1994 are from the 1994 Badami Survey

Elevation

PT#	Northing	Easting	(Top Rebar, Alum. Rod or Monument)		Comments
302	5893997.739	468910 167	50.76	50.42	
304			24.55	24.28	
305			21.70	21.21	
306			18.61	18.29 *	
310			40.23	39.93	
316			13.96	13.60	
	5900794.416		13.08	12.71	
	5901547.619			37.81	
324				42.17	
	5901633.952			41.99 *	
	5901402.695			41.72	
	5901299.913			36.53	
329				40.87	
`36	5903854.279	469384.863	20.48	20.09	
37د	5903782.513	487029.035	8.80	8.48	
342	5906183.562	468918.117	12.94	12.51	
344	5906288.415	458278.703	24.83	24.58	
346	5905487.637	448114.520	29.55	29.31	
348	5906336.263	437075.459	29.21	28.99	
350	5906832.312	427143.792		21.08	
351	5906926.737			22.74	
359	5910216.807			14.55	
361	5908904.007		7.58	6.86	
362	5908856.218		9.42	9.02	
364	5910420.987		4.94	4.54	
367	5912970.377		3.62	3.32	
371	5911640.937	437447.989		14.45	
375	5911432.446		14.86	14.65	
377	5912353.017		10.91	10.58	_
383	5915131.723				1994 Survey
385	5915477.987	405989.327		6.66	
	5914390.349	426703.422		2.60	
391	5914773.941		3.20	3.05	
395		446793.025			NORA_OFFSET
398	5917438.548	433195.869	3.56	3.32	
413	5904664.798	407512.047	22.30	22.05	
414	5910257.220	407725.889	10.97	10.74	
418	5909624.234	446567.560	18.56	18.31 *	
419	5910081.447	458280.426	12.67	12.43	
22	5913319.051	467967.561	3.24	2.65	

```
447288.230
                                     7.27
                                                  6.89 *
. 23
      5914464.888
  39
      5919126.073
                     435937.547
                                     4.76
                                                  4.13
                     395679.154
                                   51.175
                                                49.995 *
                                                         1994 Survey
 .37
      5891346.116
                                                37.775 * 1994 Survey
 ،38
      5896953.082
                     393018.176
                                   38.875
      5901966.098
                     395595.499
                                   34.050
                                                32.540 * 1994 Survey
 ٠39
      5900438.012
                     410747.644
                                   39.99
                                                 39.87
 :01
      5897340.581
                                                 43.71
                     406924.415
                                   43.79
 :02
                                                 57.76
                     410710.078
                                   57.89
 :03
      5892160.449
      5887485.535
                                                 71.46
                     409066.917
                                   71.68
 :04
                                                 85.45
 :05
      5883279.225
                     409787.570
                                   85.58
      5897669.104
                     423336.213
                                   42.83
                                                 42.62
 :06
                     426374.810
                                   65.15
                                                 65.03 *
 :07
      5892336.620
                                                 80.74
      5886894.476
                     424878.122
                                   80.91
 :08
                     426679.876
                                   94.57
                                                 94.39
      5882812.788
 :09
                                                 55.69
      5896931.800
                     439770.211
                                   55.81
 110
                                                 68.90
      5892109.642
                     442729.824
                                   69.05
 ;11
      5886956.676
                     440835.037
                                   85.01
                                                 84.90
 ;12
                                                 97.92
                     443968.495
                                   98.02
 ;13
      5882589.131
                     446806.816
                                  114.65
                                                114.49
      5877693.002
 ;14
                                                130.80
                     444461.926
                                  130.93
 ;15
      5873153.556
                                                 68.54
      5891872.730
                     451449.423
                                   68.64
 ;16
                     461951.473
                                   48.94
                                                 48.68
      5896403.660
 517
                                                 63.07 *
      5892128.591
                     458616.329
                                   63.22
 ;18
      5886907.746
                     463204.652
                                   73.63
                                                 73.49
 519
                                                 92.69
                                   92.83
      5882223.329
                     458500.002
 ;20
                                  107.51
                                                107.37
                     459417.463
 ;21
      5877287.453
 122
                                                125.57
      5872043.880
                     458487.383
                                  125.70
                     457182.172
                                  140.82
                                                140.64
  23
      5868172.839
                                  151.59
                                                151.44
 524
      5863540.637
                     458606.183
 325
      5859652.103
                     460412.780
                                  161.00
                                                160.84
      5854369.419
                     458364.295
                                  182.62
                                                182.47
 526
                                                 49.00
 527
      5891731.913
                     474732.975
                                   49.08
                     478860.044
                                   55.98
                                                 55.82
      5886271.528
 528
                                                 70.96
                                   71.09
      5882277.371
                     475522.641
 529
                                                 86.46
                     474324.962
                                   86.57
      5877475.728
 530
                                                 99.50
      5872090.284
                     475003.291
                                   99.61
 531
                     469652.997
                                  119.56
                                                119.49
      5868549.222
 532
                                                133.73
 533
      5863154.805
                     469602.799
                                  133.88
                                                152.25
                                                          AeroMap's 313
      5858207.934
                     468517.657
                                  153.04
 534
                                                151.86 *
                     471312.786
                                  151.91
 535
      5854378.978
                                                          AeroMap's 315
                                                  2.20
 536
      5903827.366
                     493522.550
                                     2.63
                                                          AeroMap's 314
                     498669.298
                                     1.81
                                                  1.33
 537
      5900795.145
      5899030.551
                     495628.990
                                                  5.51
                                     5.65
 538
                                                 38.04
                     485960.166
                                   38.15
 539
      5890864.829
      5891090.927
                                   20.89
                                                 20.72
                     491866.222
 540
                                                 35.26
 541
      5886876.950
                     489954.118
                                   35.46
      5881733.259
                     486365.010
                                   53.99
                                                 53.85
 542
      5876747.172
                                   61.68
                                                 61.59
                     486993.330
 543
                                                 74.24
                     485408.482
                                    74.33
      5872516.026
 544
                                                 81.84
                                    82.04
      5870540.494
                     483036.095
 545
                                                 91.91
                     480313.616
                                   92.02
      5868747.301
 546
                                                109.20
      5863941.656
                     477322.394
                                  109.28
- 547
                     475893.008
                                  123.98
                                                123.87
      5859923.885
  18
                                                          GORDON_OFFSET
                                    16.56
                                                 16.40
 ±002 5914299.163
                     417021.631
```

1 003	5914194.916	434704.362	16.90	12.81	HOBSON
006	5907663.907	481832.158	8.77	8.49	LILY OFFSET
1012	5910503.721	455113.967	15.29	14.69	* TUNDRA REBAR
1304	5880245.283	485736.172	55.32	54.73	* AeroMap's 304
1311	5851169.293	468716.748	173.54	173.05	* AeroMap's 311
1359	5909770.816	398210.375	14.07	13.57	* Badami359(1994)
	•				•

. 1

- INAL ADJUSTED VALUES - SOURDOUGH PHOTO CONTROL PROJECT - 8/29/97

Ellipsoid: NAD27

Output: Point #, Latitude, Longitude, Elevations (Feet)

Notes: * = Indicates elevation derived by differential levels.

Elevations based off rebar height for pt 537, 1994 Badami Survey
Points labeled with 1994 are from the 1994 Badami Survey

PT#		atitude				Elevation (Top Rebar, Alum. Rod or Monument		Comments
302	70 07	17.182416 34.358913 29.577671 26.708380 50.279783 11.461004	146	14	58.643084	50.76		
304	70 07	34.358913	146	07	23.369146	24.55		
305	70 07	29.577671	146	04	40.771240	21.70		
306	70 07	26.708380	146	03	53.083733	18.61	*	
310	70 07	50.279783	146	14	41.888772	40.23		
316	70 08	11.461004	146	04	04.402702	13.96		
317	70 08	24.508274	146	0.7	25.015170	13.08		
322	7 0 08	30.943176	146	20	05.937989	38.41		
324	70 08	29.290396	146	24	59.448517	42.37		
325	70 08	30.821778	146	27	25.151034	42.13	*	
326		28.083369						
328	70 08	26.137635	146	35	23.821179	36.88		
329		25.484547						
336		54.150534						
337		53.943801						
342		17.042676						
344		17.571062						
346		09.076981						
348	70 09	16.601006	146	30	41./45300	29.21		
350	70 09	20.604347	146		09.400298			
351 359	70 09	21.005371	146		45.147772 31.640645			
361	70 09	53.822828	146		47.599251			
362	70 09	43.818364 43.679790	146		59.825033			
364	70 09	58.928156	146	12	17.781941	4 94		
367	70 00	23.286650	146	20	13 009041	3 62		
371	70 10	08.806553	146	30	13.009041 12.229918	14 67		
375	70 10	08.806553 04.907943	146	39	41.338109	14.86		
377	70 10	12.696179	146	45	03.212510	10.91		
383	70 10	38.951690	146	49	09.572140	5.19	*	(1994 Survey)
385	70 10	38.951690 43.344373	146	45	24.934978	7.11		(,
387	70 10	34.900056	146		24.269338	2.86		
391		41.042182			04.821521			
395		04.954193			42.648915	2.73	*	NORA OFFSET
398		05.472293			16.897634	3.56		
413		57.178595			36.976901	22.30		
414		52.207170			32.760918	10.97		
418		49.657991			47.619391	18.56	*	
419		54.879094			08.448794	12.67		
422		27.188238			28.252456	3.24		

```
7.27
        70 10 37.319394
                             146 25 27.723467
 423
        70 11 22.303554
                             146 30 57.825053
                                                   4.76
 429
        70 06 44.676890
                                                  51.175
                                                              (1994 Survey)
                             146 50 14 127890
 537
        70 07 39.457290
                             146 51 33.284990
                                                  38.875
                                                              (1994 Survey)
 538
                             146 50 20.770450
        70 08 29.113810
                                                  34.050
                                                              (1994 Survey)
 539
                             146 43 01.894701
                                                  39.99
        70 08 15.988449
 601
                             146 44 51.382068
                                                  43.79
        70 07 45.072173
 602
                                                            ÷
                             146 43 00.164489
                                                  57.89
        70 06 54.571368
 603
                             146 43 46.024104
                                                  71.68
 604
        70 06 08.400114
        70 05 27.114018
                             146 43 23,772971
                                                  85.58
 605
                             146 36 56.951176
                                                  42.83
 606
        70 07 50.109645
                                                            *
                                                  65.15
        70 06 57.957584
                             146 35 27.591725
 607
        70 06 04.286598
                             146 36 09.284214
                                                  80.91
 608
        70 05 24.313748
                             146 35 16.121746
                                                  94.57
 609
                                                  55.81
        70 07 44.316517
                             146 29 01.570329
 610
                                                  69.05
        70 06 57.112169
                             146 27 34.943318
 611
                                                  85.01
        70 06 06.285667
                             146 28 28.535095
 612
                             146 26 57.122583
                                                  98.02
        70 05 23.560835
 613
                             146 25 34.220675
                                                 114.65
        70 04 35.603594
 614
                             146 26 40.895200
                                                 130.93
        70 03 50.789274
 615
        70 06 55.379782
                             146 23 22.936185
                                                  68.64
 616
                             146 18 20.127769
                                                  48.94
        70 07 40.535199
 617
                                                  63.22
        70 06 58.314033
                             146 19 55.883584
 618
                                                            *
                                                  73.63
                             146 17 42.564144
        70 06 07.194172
 619
                                                  92.83
        70 05 20.879808
                             146 19 57.682257
 620
        70 04 32.379193
                             146 19 30.445074
                                                 107.51
 621
                             146 19 56.444377
                                                 125.70
        70 03
              40.753935
 622
                                                 140.82
                             146 20 33.434188
        70 03 02.607174
 623
                             146 19 51.689580
                                                 151.59
        70 02 17.122038
 624
        70 01 38.968512
                             146 18 59.099286
                                                 161.00
 625
                                                 182.62
        70 00 46.900351
                             146 19 57.212864
 626
                                                  49.08
                             146 12 10.119886
        70 06 55.108285
 627
                                                  55.98
                             146 10 10.425079
        70 06 01.523483
 628
                             146 11 46.421941
                                                  71.09
        70 05 22.138004
 629
                             146 12 20.519194
                                                  86.57
        70 04 34.869666
 630
                                                  99.61
                             146 12 00.444966
 631
        70 03 41.919990
                                                 119.56
        70 03 06.898421
                             146 14 34.240735
 632
                             146 14 35.067144
                                                 133.88
        70 02 13.836296
 633
                                                               AeroMap's 313
        70 01 25.134885
                             146 15 05.717825
                                                 153.04
 634
                             146 13 44.891415
                                                 151.91
        70 00 47.581077
 635
                                                    2.63
                                                               AeroMap's 315
                             146 03 07.472861
        70 08 54.466956
 636
                                                               AeroMap's 314
                                                    1.81
                             146 00 38.498281
        70 08 24.667807
 637
                                                    5.65
        70 08 07.299821
                             146 02 06.427449
 638
                                                  38.15
        70 06 46.865466
                             146 06 45.652008
 639
                                                             *
                             146 03 55.015899
                                                  20.89
        70 06 49.174235
 640
                                                  35.46
                                                             *
                             146 04 50.102795
        70 06 07.702482
 641
                                                  53.99
        70 05 17.053402
                             146 06 33.481637
 642
                                                  61.68
                             146 06 15.103450
        70 04 28.020298
 643
                             146 07 00.575378
                                                   74.33
        70 03 46.373776
 644
        70 03 26.893738
                             146 08 08.828242
                                                   82.04
 645
                                                  92.02
        70 03 09.191161
                             146 09 27.144738
 646
                                                 109.28
                             146 10 52.906354
        70 02 21.840229
 647
                                                 123.98
                             146 11 33.693603
        70 01 42.277604
 648
                                                             * ELIZA (1994)
                             147 08 14.389498
                                                   21.15
        70 09 20.984905
1000
```

ゥ

C. A. "Bud" Herschbach

Surveying Consultant
Registered Land Surveyor Certified Hydrographer

August 29, 1997

AeroMap U.S. 2014 Merrill Field Drive Anchorage, Alaska 99501-4116

ATTN: Steve St. Peter

RE: Sourdough Survey - Letter of Transmittal

DECEIVED AUG 2 9 1997

AEHÜMAP U.S.

Dear Steve:

Transmitted herewith are final vertical and horizontal values for the photo control points established during the recently completed field work. Also included are three copies of the final project report and an invoice for the final 25% of the project contract amount.

We appreciate the opportunity to work with you on this project. Give me a call if any questions arise.

Very truly yours,

C. A. "Bud" Herschbach, R.L.S.

TNAL ADJUSTED VALUES - SOURDOUGH PHOTO CONTROL PROJECT - 8/29/97

llipsoid: NAD27

utput: State Plane Zone 3, Pt #, Northing, Easting, Elevations (Feet)
otes: * = Indicates elevation derived by differential levels.
Elevations based off rebar height for pt 537, 1994 Badami Survey Points labeled with 1994 are from the 1994 Badami Survey

'T#	Northing	Easting		Elev. (Panel)	Comments
.02	5893997.739	468910.167	50.76	50.42	
i04	5895695.816	484664.517	24.55	24.28	
:05		490287.912	21.70	21.21	
:06	5894906.800		18.61	18.29 *	
:10		469503.333	40.23	39.93	
116	202220	491550.672	13.96	13.60	
-	2200.20.	484617.929	13.08	12.71	
		458320.178	38.41	37.81	
124		448174.795	42.37	42.17	
	••••	443140.149	42.13	41.99 *	
126	5901402.695	437167.633	41.94	41.72	
128	5901299.913	426592.097	36.88	36.53	
	5901290.634	420913.566 469384.863	41.19	40.87 20.09	
	5903854.279	487029.035	20.48 8.80	8.48	
337	5903782.513	468918.117	12.94	12.51	
342	5906183.562 5906288.415		24.83	24.58	
344		448114.520	29.55	29.31	
346	5905487.637 5906336.263	437075.459		28.99	
348		427143.792	21.40	21.08	,
350		421765.039		22.74	
351 359		426408.487	14.66	14.55	
361		469352.579	7.58	6.86	
362		479288.910	9.42	9.02	
364	5910420.987		4.94	4.54	
367	5912970.377	458138.970	3.62	3.32	
371		437447.989	14.67	14.45	
375		417800.597	14.86	14.65	
377	5912353.017		10.91	10.58	
383	5915131.723	398233.694			1994 Survey
385	5915477.987			6.66	-
387	5914390.349	426703.422	2.86	2.60	
391	5914773.941	458431.438	3.20	3.05	
395	5917277.973	446793.025	2.73	2.56 *	NORA OFFSET
398	5917438.548	433195.869	3.56	3.32	
413	5904664.798	407512.047	22.30	22.05	
414	5910257.220	407725.889	10.97	10.74	
418	5909624.234	446567.560	18.56	18.31 *	•
119	5910081.447	458280.426	12.67	12.43	
.22	5913319.051	467967.561	3.24	2.65	

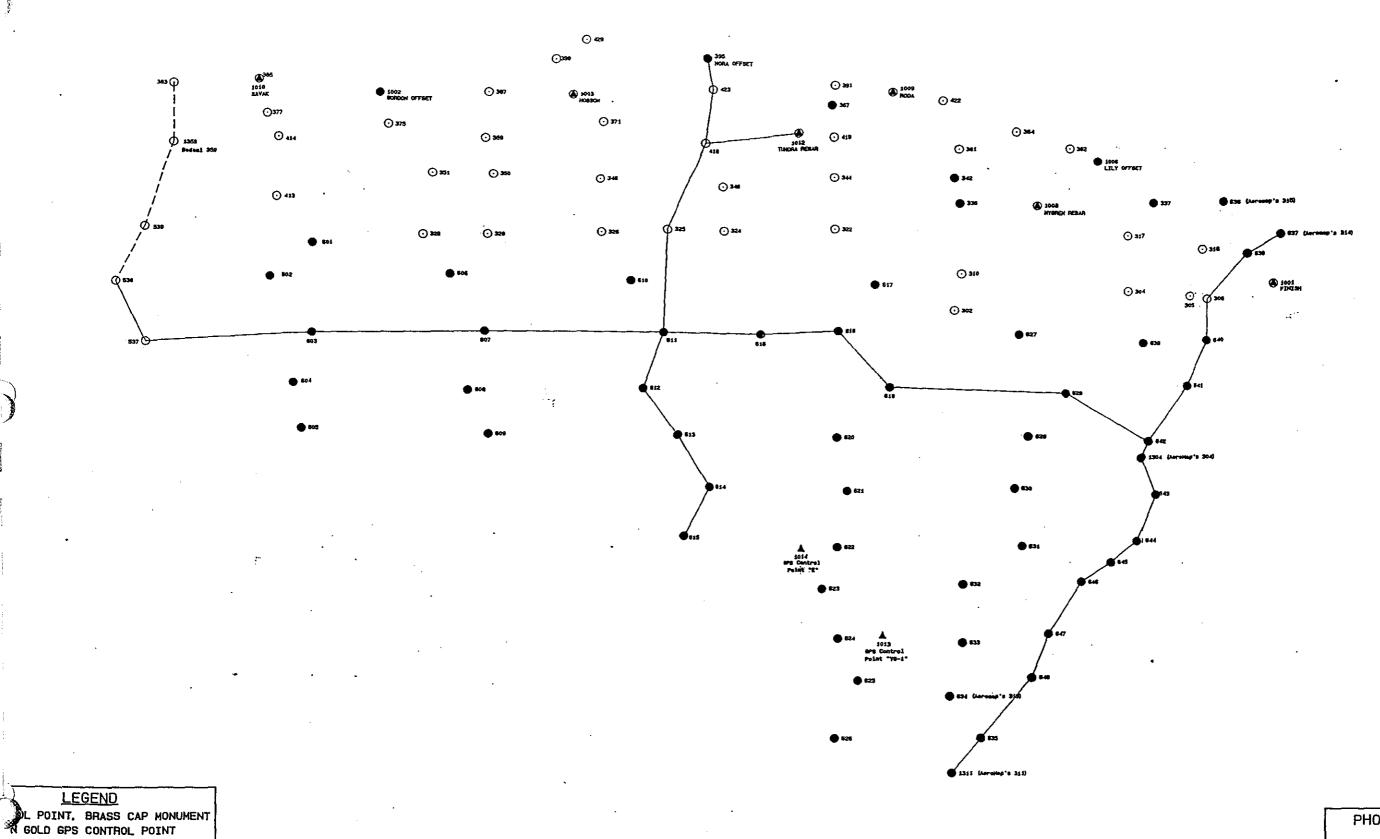
```
447288.230
                                   7.27
                                                6.89 *
٦3
    5914464.888
 9
    5919126.073
                   435937.547
                                   4.76
                                                4.13
    5891346.116
                   395679.154
                                  51.175
                                              49.995 * 1994 Survey
37
                                  38.875
                                              37.775 * 1994 Survey
                   393018.176
38
    5896953.082
                   395595.499
                                  34.050
                                              32.540 * 1994 Survey
    5901966.098
39
                   410747.644
                                  39.99
                                               39.87
    5900438.012
11
                   406924.415
                                  43.79
                                               43.71
2
    5897340.581
                   410710.078
                                  57.89
                                               57.76 *
23
    5892160.449
    5887485.535
                   409066.917
                                  71.68
                                               71.46
14
                   409787.570
                                  85.58
                                               85.45
    5883279.225
25
                                               42.62
                   423336.213
                                  42.83
36
    5897669.104
                                               65.03 *
                   426374.810
                                  65.15
    5892336.620
27
                                               80.74
                   424878.122
                                  80.91
38
    5886894.476
                   426679.876
                                  94.57
                                               94.39
    5882812.788
ე9
                   439770.211
                                  55.81
                                               55.69
    5896931.800
10
                   442729.824
                                  69.05
                                               68.90 *
    5892109.642
11
                                  85.01
                                               84.90 *
                   440835.037
    5886956.676
12
                   443968.495
                                  98.02
                                               97.92
    5882589.131
13
                                114.65
                                              114.49
                   446806.816
14
    5877693.002
15
    5873153.556
                   444461.926
                                130.93
                                              130.80
    5891872.730
                   451449.423
                                  68.64
                                               68.54
16
                   461951.473
                                  48.94
                                               48.68
    5896403.660
17
                   458616.329
                                  63.22
                                               63.07
    5892128.591
18
                                               73.49 *
                   463204.652
                                  73.63
    5886907.746
19
    5882223.329
                   458500.002
                                  92.83
                                               92.69
20
                   459417.463
                                107.51
                                              107.37
21
    5877287.453
                                125.70
                                              125.57
`2
    5872043.880
                   458487.383
                                140.82
    5868172.839
                   457182.172
                                              140.64
23
    5863540.637
                   458606.183
                                151.59
                                              151.44
24
                                161.00
                                              160.84
    5859652.103
                   460412.780
25
                                              182.47
                   458364.295
                                182.62
26
    5854369.419
                   474732.975
                                  49.08
                                               49.00
    5891731.913
27
                   478860.044
                                  55.98
                                               55.82 *
28
    5886271.528
                                               70.96
29
    5882277.371
                   475522.641
                                  71.09
    5877475.728
                   474324.962
                                  86.57
                                               86.46
30
                                               99.50
    5872090.284
                   475003.291
                                  99.61
31
                   469652.997
                                119.56
                                              119.49
    5868549.222
32
                                              133.73
    5863154.805
                   469602.799
                                133.88
33
                                                        AeroMap's 313
    5858207.934
                   468517.657
                                153.04
                                              152.25
34
                                              151.86 *
    5854378.978
                   471312.786
                                151.91
35
                   493522.550
                                   2.63
                                                2.20
                                                        AeroMap's 315
    5903827.366
36
                                                1.33 *
                                                        AeroMap's 314
    5900795.145
                                   1.81
                   498669.298
37
                                   5.65
                                                5.51 *
                   495628.990
    5899030.551
38
                                               38.04
                                  38.15
                   485960.166
39
    5890864.829
    5891090.927
                                  20.89
                                               20.72
40
                   491866.222
                   489954.118
                                  35.46
                                               35.26
41
    5886876.950
                   486365.010
                                  53.99
                                               53.85
    5881733.259
42
                   486993.330
                                  61.68
                                               61.59
43
    5876747.172
                   485408.482
                                  74.33
                                               74.24
    5872516.026
44
                   483036.095
                                  82.04
                                               81.84
45
    5870540.494
46
    5868747.301
                   480313.616
                                  92.02
                                               91.91
                   477322.394
                                109.28
                                              109.20
47
    5863941.656
                   475893.008
                                123.98
                                              123.87 *
 8
    5859923.885
```

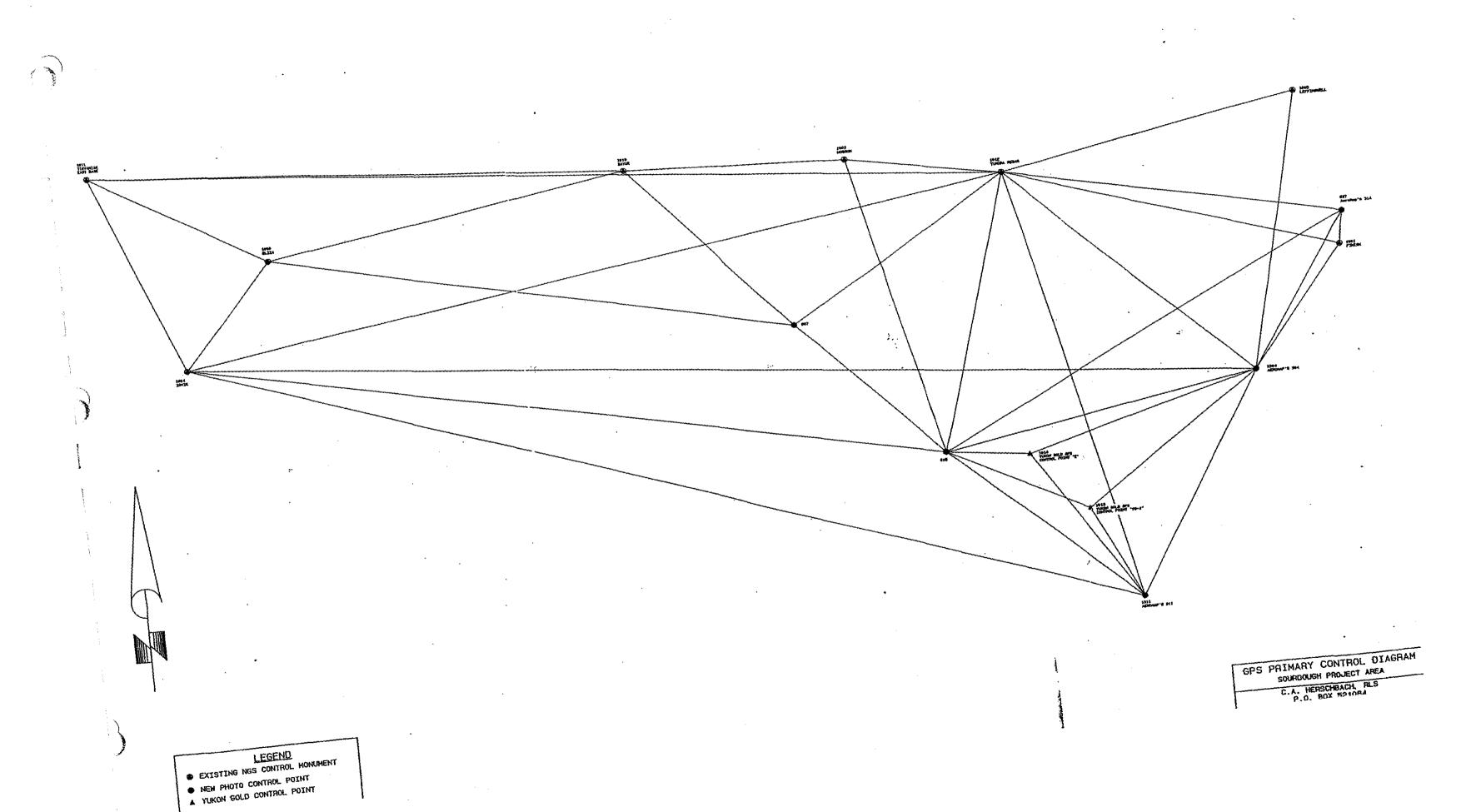
^ `02	5914299.163	417021.631	16.56	16.40	GORDON OFFSET
03	5914194.916	434704.362	16.90	12.81	HOBSON
006	5907663.907	481832.158	8.77	8.49	LILY OFFSET
)12	5910503.721	455113.967	15.29	14.69 *	TUNDRA REBAR
304	5880245.283	485736.172	55.32	54.73 *	AeroMap's 304
311	5851169.293	468716.748	173.54	173.05 *	AeroMap's 311
359	5909770.816	398210.375	14.07	13.57 *	Badami359(1994)

•

•

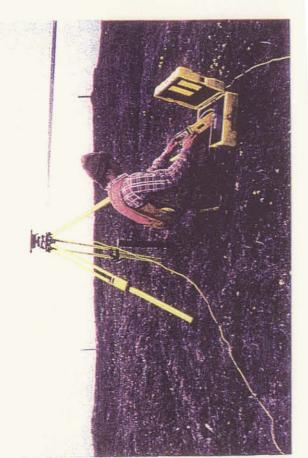
•



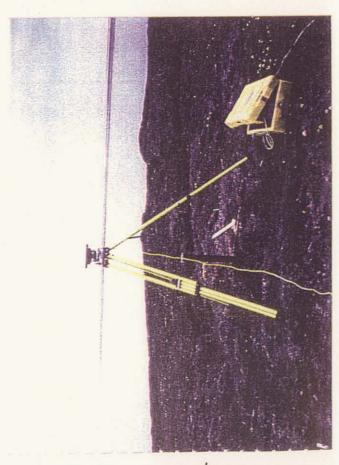

PHOTO CONTROL POINT

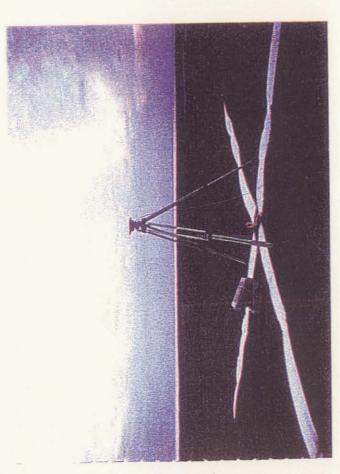
L RUNS BADAMI PROJECT

TING PHOTO CONTROL POINT FROM IOUS MAPPING PROJECTS


PHOTO CONTROL POINT PLOT SOURDOUGH PROJECT AREA

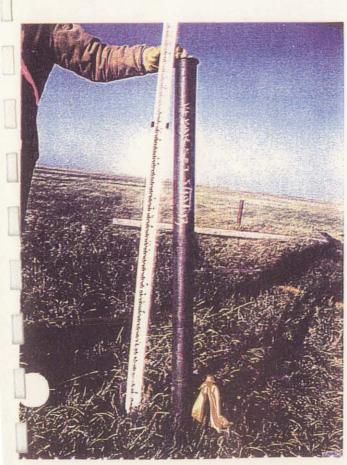
C.A. HERSCHBACH, RLS P.O. BOX 521084 BIG LAKE, ALASKA, 99652 Phone: 907-892-7839

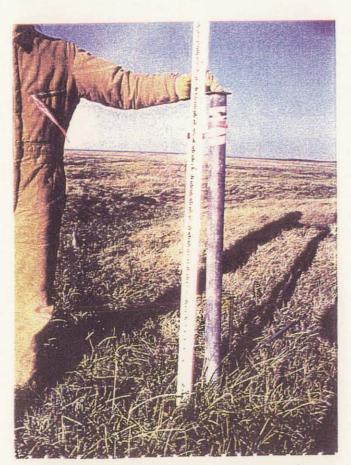



Trimble 4000551 GPS

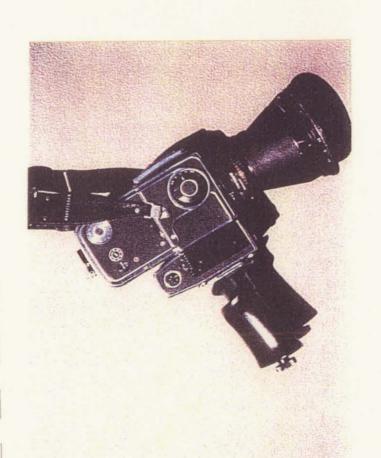
GPS operation

GPS operation


GPS operation


NGS Station "SAVAK"

NGS Station "Hopson"


NGS Station "TUNDRA"

NGS Station "RODA"

NGS Station "NYGREN"

Hasselblad model 500 EL/M

Bell 206 Long Ranger

Differtial Leveling

Sourdough Area Development Project Economic Screening Study February 1998

TABLE OF CONTENTS

1.0	INTRODUCTION	
2.0	COST ESTIMATION ACCURACY	
3.0	COST ESTIMATION PROCEDURE	5
4.0	INITIAL SCREENING STUDIES	9
5.0	Conclusions	12
	APPE	NDICES
	Appendix A	Estimate Accuracy Definition
		Base Cost Indices
		Estimate Model Output (Screening)

Executive Summary

BPXA is evaluating the opportunity to develop the Sourdough Area prospects, which include both the condensate from the Point Thomson gas field as well as neighboring oil reservoirs. The development prospects are linked in that the condensate by itself does not offer favorable economics, and the oil fields are difficult to produce. The BPXA concept is to tap the gas reserves, and produce the condensate from that gas, resulting in a rich and favorable export product. In addition, a portion of the gas stream would then be processed into miscible injectant (MI) to be injected into the oil reservoirs to improve the well yields for those Brookian deposits. The separate products would then be mixed into a single export stream for transmission back to Pump Station #1 of the Trans Alaska Pipeline System (TAPS) for delivery to Valdez and final export destination.

This document reports the outcome of an economic evaluation of a number of possible development options. An estimating strategy was developed for the Sourdough Area Development Project, and applied uniformly to the various development options using cost indices benchmarked to existing and developing North Slope projects. Although drilling costs are not included, the project drilling group supplied their initial estimates of optimal pad locations and processing requirements to aid the evaluation.

The recommended option based on this screening study is a scenario which co-locates the processing facility to an onshore single drill pad used to develop both the Point Thomson gas field and near shore Flaxman reserves. A significant processing component is involved to handle the gas and production of MI, and is included in a main facility located close to this drill pad. The transmission pipeline would also originate at this point, travel in an aboveground mode to the Badami unit, and then follow the Badami and Endicott pipelines to PS#1 of TAPS. The current economics are based on a new pipeline, although concurrent studies are underway which focus on the use of existing horsepower and pipeline segments along this route to improve the project economics.

Additionally, two scenarios which are expansions of this first option are introduced which allow further development of Point Thomson prospects as well as the Flaxman reserves

further offshore. These scenarios can be viewed as incremental to the base option, thus improving the project cash flow during startup of the development project. In addition, the base option is seen to be compatible with further developments of neighboring prospects, if and when those reservoirs are further proved.

The options #7, #8 and #9 are the recommended options, with option #7 as a base option and #8 and/or #9 viewed as expansions to that base option. More detailed design definition and cost estimating will focus on this development scenario.

1.0 Introduction

British Petroleum Exploration (Alaska), Inc. (BPXA) is evaluating the opportunity to develop the Point Thomson condensate reserves and neighboring Sourdough Area prospects. The project development area is located approximately 25 miles east of the Badami Development Project or approximately 60 miles east of the Prudhoe Bay Unit (Figure 1).

The development prospects of the Point Thomson gas field and neighboring Brookian oil fields are linked in that the condensate by itself does not offer favorable economics, and the oil fields are difficult to produce. The BPXA concept is to tap the gas reserves, and produce the condensate from that gas, resulting in a rich and favorable export product. In addition, a portion of the gas stream would then be processed into miscible injectant (MI) to be injected into the oil reservoirs to improve the well yields for those Brookian deposits. The separate products would then be mixed into a single export stream for transmission back to Pump Station #1 of the Trans Alaska Pipeline System (TAPS) for delivery to Valdez and final export destination.

The proposed Sourdough Area Development Project (SADP) involves a central processing facility, an approximately 63.5 mile pipeline transmission to PS#1, both well and injection lines to well pads, an airfield, an infield road system, a gravel source, and associated drilling pads.

As part of the conceptual engineering effort numerous infrastructure layout scenarios were investigated. A large part of this investigation was cost estimates for various scenarios to facilitate finding the most cost effective, "fit for purpose" layout. The infrastructure layouts evaluated took into account drilling considerations, environmental issues, and commercial viability. The next section, Chapter 2, explains the approach to the estimation process, while Chapter 3 defines the cost items included in the estimate. Chapter 4 defines the options evaluated in the screening process, and presents the results of the cost estimation.

2.0 COST ESTIMATION ACCURACY

2.1 General

The principal difference between project estimates is the design and plan information available and the accuracy required of the estimate. The accuracy of the estimate will change depending on the level of design definition. The terminology used for this estimate process is contained in Appendix A.

In the conceptual stage of design, the project is typically defined in terms of major components, e.g. linepipe, stations, major facilities. At this level, estimates can only be made using broad industry and experience based guidelines, such as the concept of "dollars per indiameter mile" used in pipeline estimating. Broad factors are then applied to express perceived variations such as geographical factors. As design progresses, more definition of the components of the major elements are better known and can thus be separately costed using specific vendor and contractor quotes or recent analogous project experience. Thus, accuracy of the cost estimation increases with design.

Contingency is the additional amount that is added to the estimate to account for the uncertainties in the estimated amounts. Uncertainty in estimation for hardware items can be attributed to a large number of factors such as lack of detail in the item being estimated, lack of basic information about unit costs, uncertainty in supply/demand factors at the time of bid, etc. In most cases, the uncertainty is greatest for those items that require an estimation of labor. Labor estimation has all of the uncertainty factors associated with hardware estimation, but in addition can include productivity, weather, contracting, permitting and a number of other unknowns. Note, in particular, that contingency is not intended to address cost changes associated with scope change, but is rather intended to address the uncertainty range in the estimate for the project as described to the estimator.

The level of contingency should take the increase in accuracy into account. In the early stages of a project, a 90% level would not be expected to be close to the mean estimate (the "P50" estimate value). As the project progresses, the confidence in the design and estimation should increase, i.e. the 90% level is "closer" to the mean value. Thus, for the same level of uncertainty, say 90%, the estimate value should be closer to P50.

For example, say that at the original phase of design the P50 estimate is \$1000, and that through a risk analysis it is ascertained that the actual bid would come in at \$2000 90% of the time. Later in design, the estimate indicates that the P50 value is still \$1000, but that increased information allows us to say that the actual bid would come in at \$1500 90% of the time. The estimate P50 value has not changed, but the accuracy increase allows us to decrease the money for contingency and retain the same confidence in the estimate. It follows that it is not necessary to change the project view of the acceptable level of risk of a project as the project progresses, but that increased design definition and estimating unit costs would lead to a lowered required funding of the project for the same desired confidence level. Again, note that this process is distinct from savings due to changes in the design scope and/or improved technology to accomplish the scope.

2.2 Project Specific

For this project, estimates are to be made using the best available information referenced, and all assumptions listed. The estimate values are to be the "P50" values, i.e. if the item went for bid a large number of times and/or to a large number of contractors, the estimated value would equal the average of all the bids. In other words, the estimated values are expected to be the "mean" actual cost for the service or equipment being estimated.

The contingency level that is acceptable to the project can only be decided by the project management, and is an expression of the risk that they are willing to undertake. To aid in this decision process, it is worthwhile to show how the estimate would vary depending on the full range of contingency. This is done through a formal estimate risk analysis which assigns the range of uncertainty for each element in the estimate, and then combines the individual range estimates through a numerical process to find the range of uncertainty of the combined total of all estimated elements.

At this conceptual stage of the project, the estimates are considered Level 0. This is considered adequate for economic screening of alternative options. With the scant information available during this early stage of conceptual design, a formal risk analysis provides little additional information. The screening evaluation benchmarked, to the degree possible, major cost items against similar experience on developed or developing North

Slope projects. Based on these benchmarks and experience, it is our judgement that an additional amount of 40% of the mean estimates provided for the screening options should provide about a 90% confidence level that the actual costs will be at or below the mean estimates contained in this report, e.g. if the mean estimate quoted is \$100 million, then 90% of the time the actual costs would be \$140 million or below.

3.0 Cost Estimation Procedure

3.1 Methodology

The initial screening studies were done using the FAST-EST computer software developed by OPC Engineering, Inc. of Houston, Texas. FAST-EST is a system of computer programs designed for performing field development planning, feasibility studies and cost estimates for onshore oil and gas field developments. The software used in this study was licensed to BP Exploration (Alaska), Inc. (BPXA) and was used with their permission. Basic cost indices input into the FAST-EST model are presented in Appendix B.

The software was used to model the BPXA Liberty Project and the results were compared to a detailed estimate to determine accuracy and to validate the cost indices used by the program. This comparison was done by BPXA "in-house" and was not part of the conceptual engineering effort. The results of this comparison indicate that, while on a line by line basis that results are not always comparable to other project estimates, the overall results are comparable. This is considered reasonable since estimation techniques and individual estimators will often allocate individual cost factors to different cost items at this level of analysis. An adjustment of a few of the default values increased the accuracy of the line by line comparison, but did not affect the overall accuracy. For example, increasing the erection productivity and the erection cost per hour to more reasonable values resulted in a more reasonable number of manhours while not significantly altering the cost.

A number of minor problems with the software were identified during the screening efforts, none of which seriously impaired the screening process.

3.2 Project Cost Items

A checklist of the major items used for cost estimating at this level of project development is shown in Table 3-1.

Table 3-1
Project Cost Item Checklist

Project Cost Item	Included in this Cost Analysis?
Central Processing Facility - Civil (Pad, Buildings)	Yes
Major Drivers (Pumps, Compressors)	Yes
Well Pads	Yes
Well Pad equipment (manifolds)	Yes
Infield Gathering Lines	Yes
Infield Injection Lines	Yes
Infield Pipeline Support System .	Yes
Infield Roads	Yes
Transmission Pipeline	Yes
Transmission Support System	Yes
Dock	Yes
Airstrip	Yes
Construction Indirects (Camps, Catering,)	Yes
Drilling – Labor and Material	No
Freight	Yes
Finance Costs	No
Engineering Costs	Yes
Contingency	No
Operating and Maintenance	No
Permitting Costs	No

From the above list, the most significant item that is not included in this cost analysis is an estimate of the drilling costs. However, the estimation group worked as closely as possible with the drilling group to select pad locations and scenarios that reflect the current reservoir and drilling scenarios of interest.

The specifics of the individual major cost items used in this study are explained in the following sections.

3.2.1 Central Processing Facility

The CPF estimate includes costs for gravel pad, permanent camp, communication system, and all process facilities (equipment and structures). The size of the gravel pad is assumed to be 1750-feet long by 850-feet wide by 5-feet thick.

3.2.2 Export Pipeline

The export pipeline is a 16-inch diameter elevated line extending about 63.5 miles from the CPF to Pump Station 1. The actual length is dependant on the location of the facilities for each option. Crossings of East Badami Creek, No Name River, Shaviovik River, Kadleroshilik River and the Sagavinirktok River are all to be accomplished using conventional open-ditching techniques. Additional costs associated with these river crossings were not included in the economic screening studies since they are the same for all options. These costs will be included in the detailed estimate.

3.2.3 Dock

The gravel dock will extend approximately 1500-feet offshore and will have a 15-foot freeboard. The maximum water depth is 10-feet. A 50-foot wide drive lane will extend from shore 1100-feet to a 400-foot by 400-foot lay-down area. The seaward end will have a vertical sheet-pile face, while all other sides will be dressed to a 7 horizontal to 1 vertical (7:1) slope. A 50-foot wide module road from the dock to the CPF is included in this estimate. The gravel road will be 5 feet thick and have 2:1 sideslopes.

3.2.4 Airstrip

The gravel airstrip is 5500-feet long by 150-feet wide by 5-feet thick. The last 300-feet at each end will be widened an additional 50-feet, for a total width of 200-feet and the sideslopes will be 2:1. Runway lights will be installed as well as fueling facilities and minimal maintenance/emergency/passenger facilities. An access road from the airstrip to the CPF is included in this estimate. The gravel access road will be 32-feet wide and will be 5-feet thick with 2:1 sideslopes.

3.2.5 Construction Camp

The estimate for the temporary construction camp includes housing and catering costs to handle up to 500 workers, depending on the option.

3.2.6 Drill Pads

The estimate for the main drill pads includes costs for the gravel pad, well houses, manifolds, gathering lines and re-injection lines. There will be two manifolds on some pads, one for the Point Thomson gas and the other for the Brookian oil. The length of all lines is estimated based upon the mapping for that option. All line sizes are estimated using the piping requirements of API 5LX grade X65. The size of drill pads, for civil quantity estimates, are 800-feet long by 500-feet wide by a uniform 5-feet thick.

4.0 Initial Screening Studies

A number of possible alternatives were considered as viable options for further consideration and economic evaluation. An economic evaluation was undertaken for each option using the FAST-EST program, after review of the unit cost indices used by the program to estimate cost for the major equipment and labor items. The same program and unit cost indices were used for the evaluation of all alternatives. This is considered a Level 0 estimate study, suitable for evaluating the relative cost indices of project development alternatives.

4.1 Description of Options

Following are the descriptions of the alternatives investigated in this screening study:

<u>Case_1</u> was the initial scenario considered and consisted of a centrally located process facility, with a nearby airstrip, and six drill pads: Callaway, Chilkoot, Flaxman, Point Thomson East, Point Thomson West, and Sourdough. Callaway was co-located with Point Thomson West, while Flaxman was co-located with Point Thomson East. This scenario also had a dock located approximately 1-mile east of the existing Point Thomson Unit #3 pad. Case 1 is presented on Figure 2.

Case 2 differed from Case 1 only in the location of the CPF and airstrip. The CPF was located nearer the shore, very close to the Point Thomson West pad. The airstrip was also located nearer the shore. While this scenario actually required a longer export pipeline, it reduced the length of the high-pressure injection lines considerably. Case 2 is presented on Figure 3.

<u>Case 3</u> is the same as Case 1 with the addition of a drill pad at Lynx. Case 3 is presented on Figure 4.

Case 4 is the same as Case 2 with a Lynx Pad. Case 4 is presented on Figure 5.

<u>Case 5</u> differed from the others in CPF location, airstrip location, dock location, and the addition of another drill pad located at Point Hopson, significantly further west than the remainder of the drill pads. A cursory analysis showed that the added cost was not

warranted due to the significant distance from the actual penetrated hydrocarbon reserves central to this development.

<u>Case 6</u> was aimed at identifying possible cost savings through consolidation of the Sourdough and Chilkoot Pads. After cursory evaluation; Cases 7, 8 and 9 were found to be superior.

Cases 5 and 6 were dropped from further evaluation.

<u>Case 7</u> evaluated the scenario that Point Thomson and Flaxman would be developed, if possible, from a single drill pad located adjacent to the existing North Staines River #1 pad. The Central Process Facility would be located nearby with an airstrip approximately 1 mile to the southwest. A dock would be located on the point immediately west of the CPF. Case 7 is presented in Figure 6.

<u>Case 8</u> is the same as Case 7 with an additional drill pad located at the existing Point Thomson Unit #3 pad. This would allow development of additional Point Thomson reserves as well as the potential Callaway reserves and, to a lesser extent, Lynx. Case 8 is presented in Figure 7.

Case 9 further builds on Case 8 with an additional drill pad being located on Flaxman Island to allow further development of the Flaxman formation. In addition to the drill pad, a small landing pier, and minimal maintenance/camp facilities would be required. Case 9 is presented in Figure 8.

4.2 Results

Cost breakdowns for Cases 1, 2, 3, 4, 7, 8 and 9 are presented in Table 4-1. Summary output for these cases from the FAST-EST models is presented in Appendix C. (The FAST-EST output report contains a known error in computing the freight costs on the gathering/support lines, this error has been hand corrected on the copies contained in this report.)

The results indicate a preference for the last three options investigated, Options #7, 8 and 9. Although the co-location of the main drill pad and facilities further east involves higher export pipeline costs, the cost of the associated development infrastructure (well lines, injection lines, etc) more than make up for this loss in these options. In addition, there are

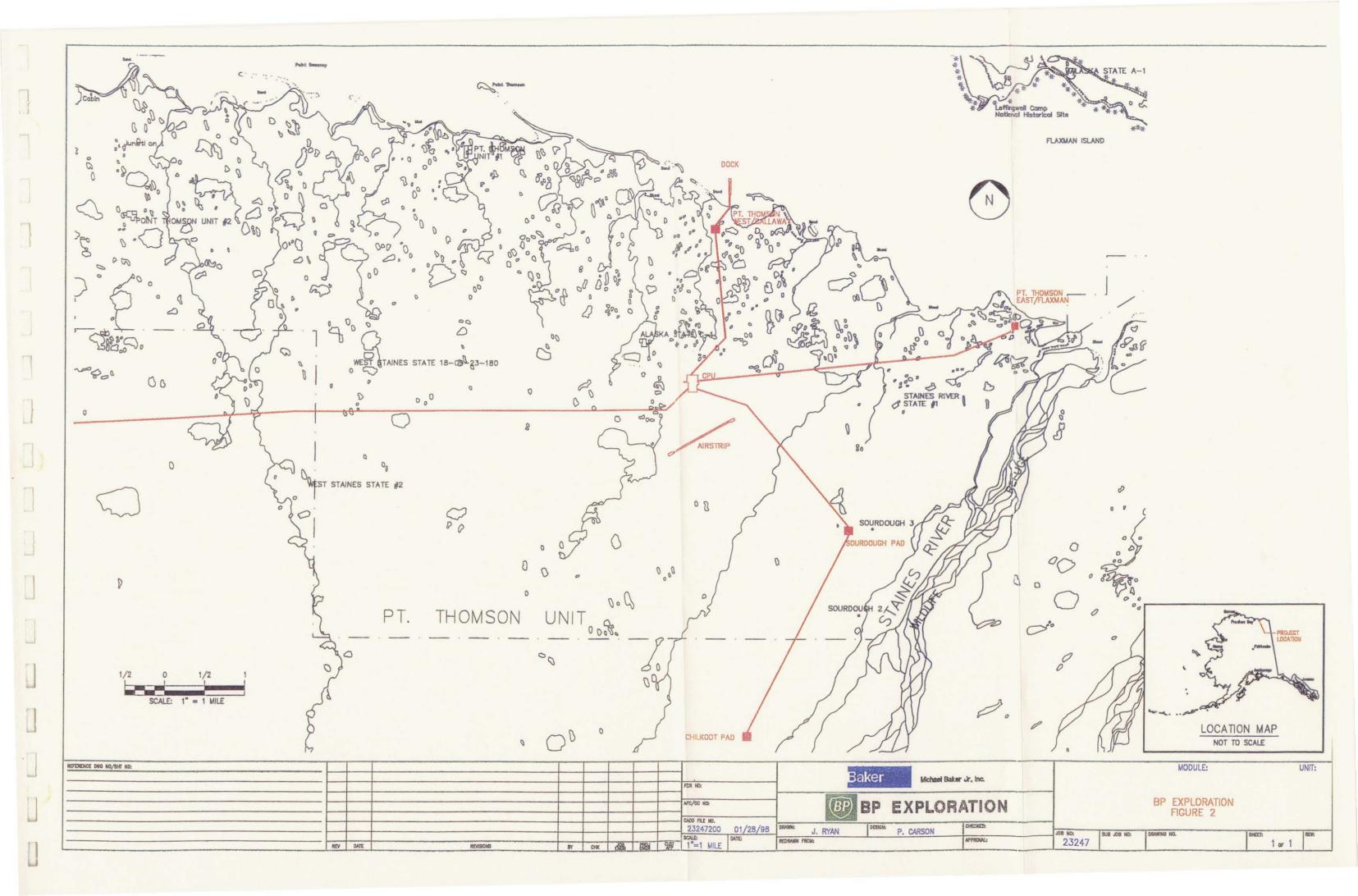
other savings not immediately evident in this cost analysis due to expected lower operational and maintenance costs that should be realized with the operating personnel closely located to the main facilities and drilling location. Further examination of these favorable options prompted renewed interest in the co-location of a dock near the central facilities location. Using the available bathymetry data, a dock location near the facilities is possible and will be further examined in planned field studies.

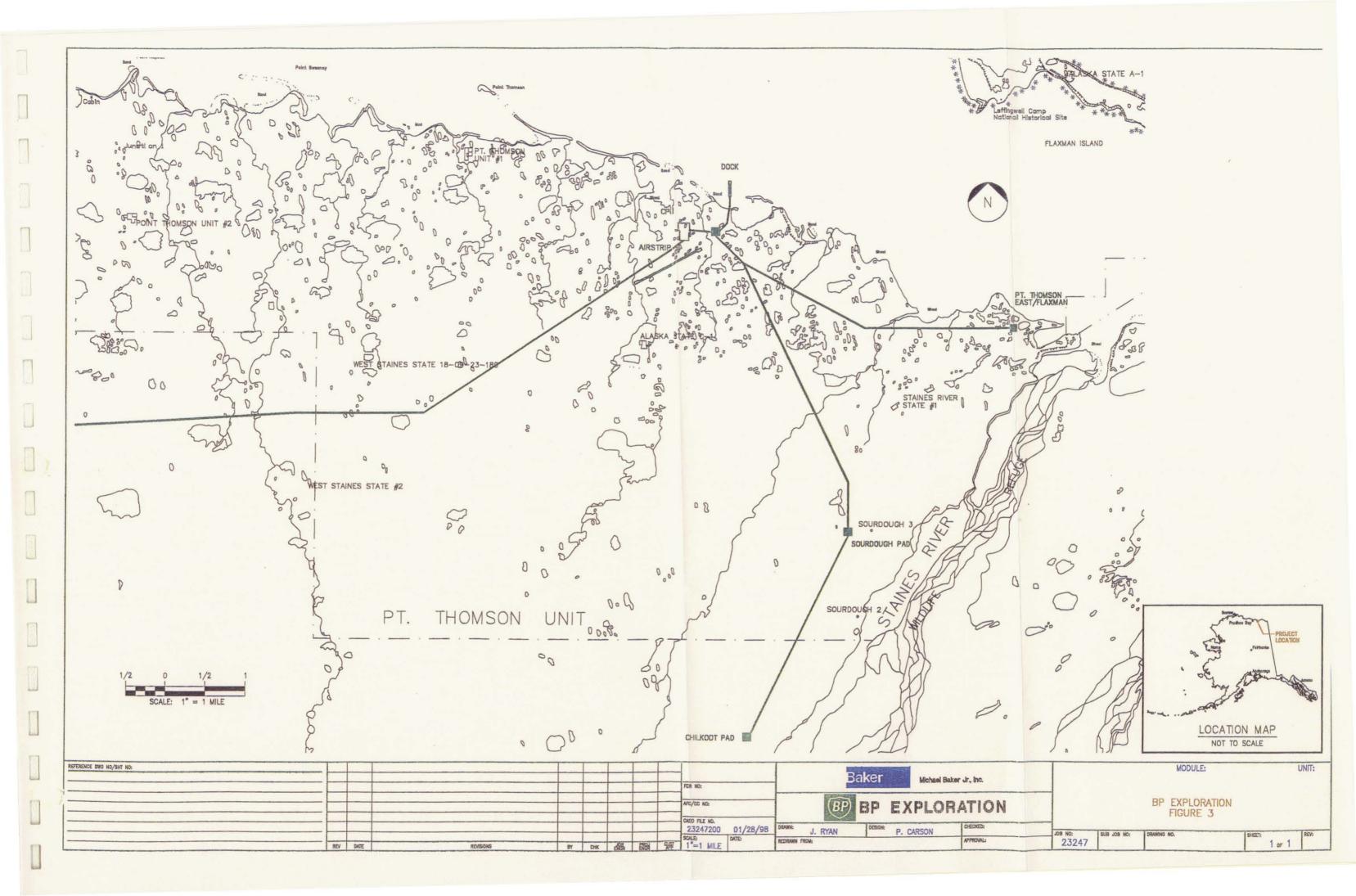
The favorable cost outcome coincides with the project preference to focus initially on only those areas containing known hydrocarbon deposits, i.e., Point Thomson, Flaxman and Sourdough.

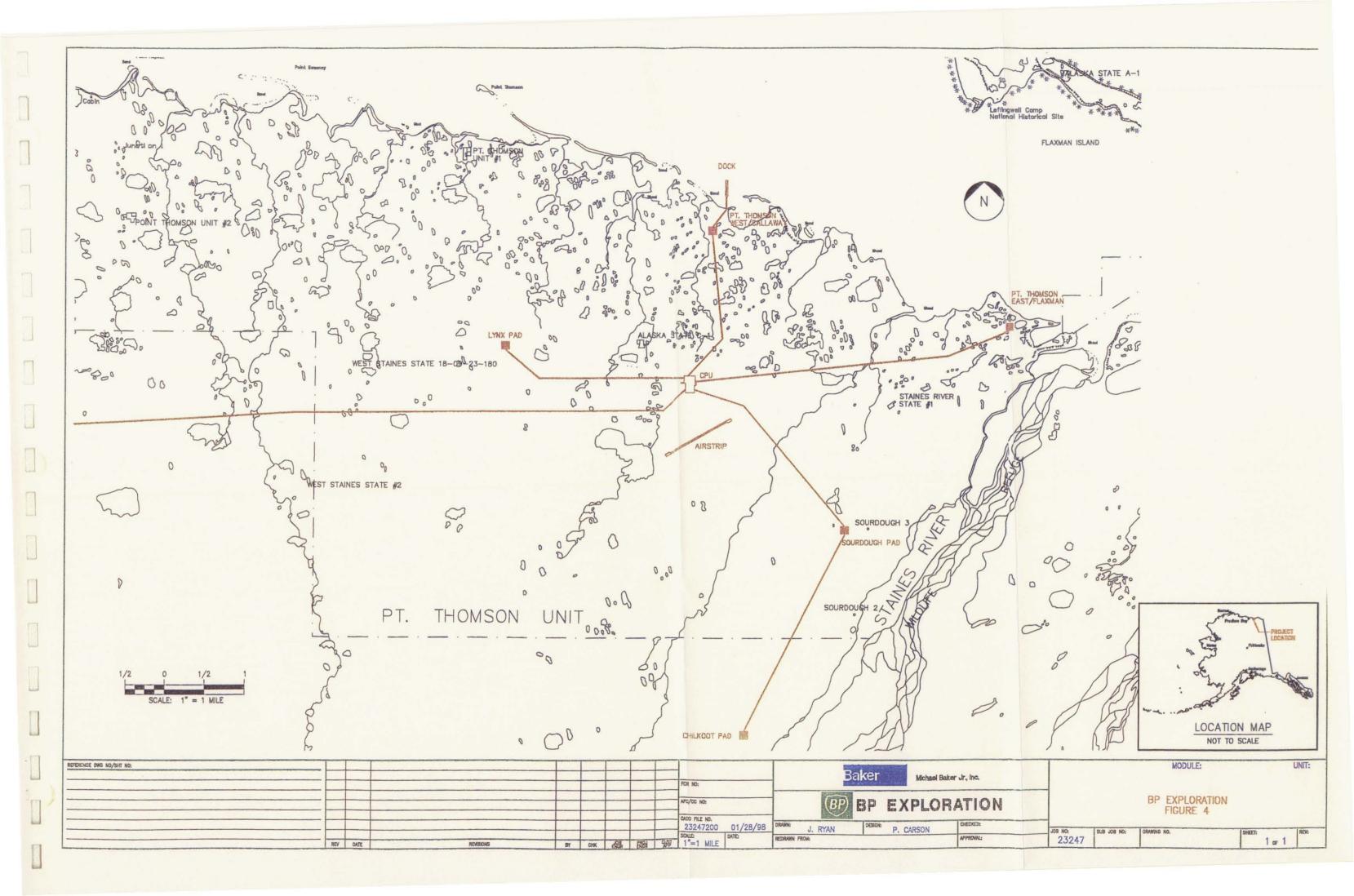
Table 4-1
Initial Cost Estimate Comparison (in \$1000's)

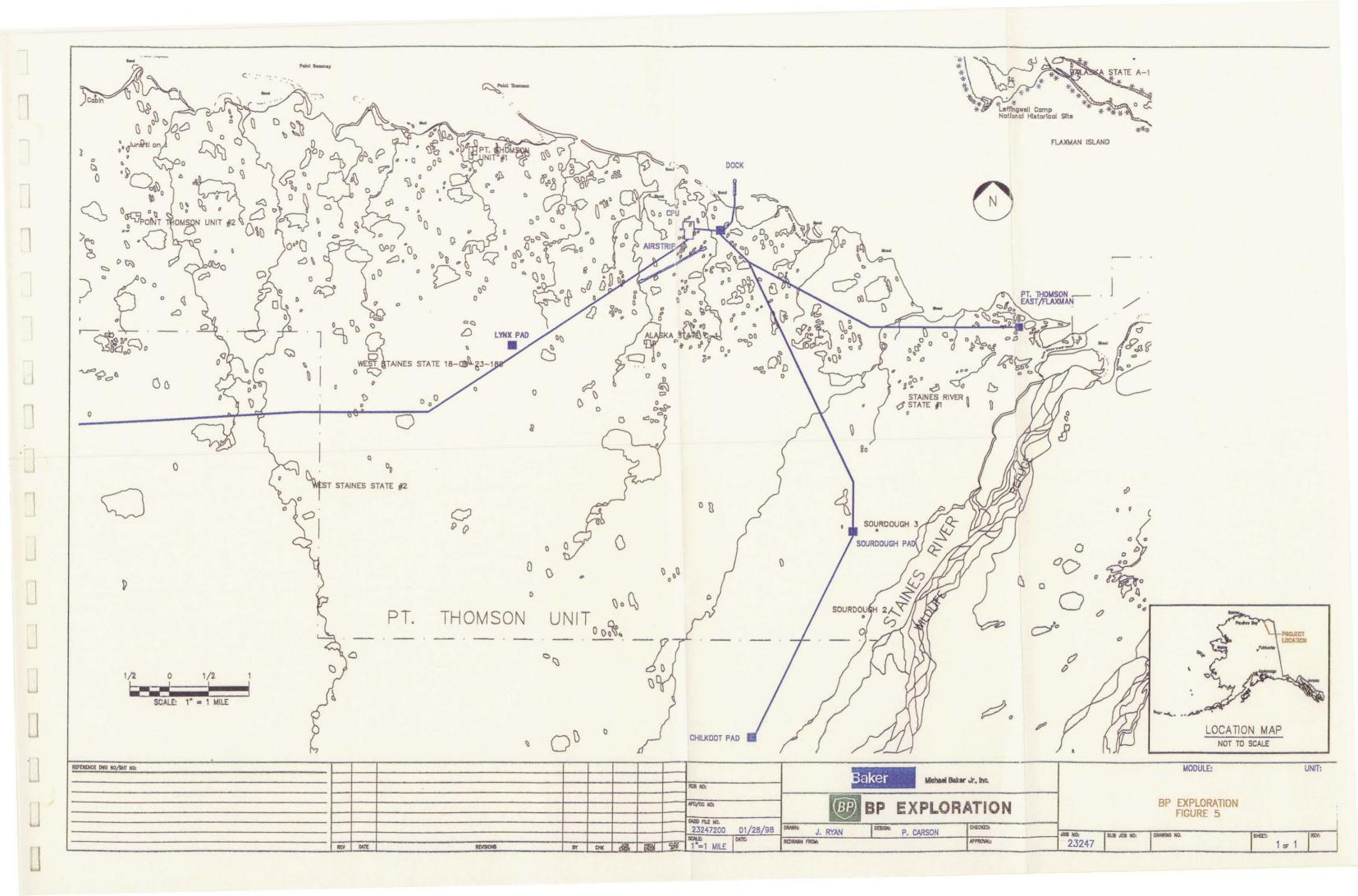
	CPF	Export	Well	Injection	Civil	Drill	Total
		Pipeline	Lines	Lines	Infrastructure	Sites	
Case 1	\$372,365	\$140,258	\$17,446	\$25,173	\$28,353	\$39,145	<u>\$622,740</u>
Case 2	\$372,365	\$141,436	\$17,542	\$21,231	\$26,333	\$39,145	\$618.052
Case 3	\$376,242	\$140,258	\$19,437	\$26,404	\$30,299	\$45,856	\$638,496
Case 4	\$376,242	\$141,436	\$19,793	\$22,101	\$28,533	\$45,856	\$633,961
Case 7	\$368,259	\$149,687	\$3,793	\$2,859	\$20,621	\$21,733	\$566,952
Case 8	\$370,457	\$149,687	\$7,926	\$15,703	\$23,980	\$27,532	\$595.285
Case 9	\$372,655	\$149,687	\$22,746	\$26,883	\$24,330	\$33,038	<u>\$629.339</u>
	<u> </u>			• • • • • • • • • • • • • • • • • • • •			<u> </u>

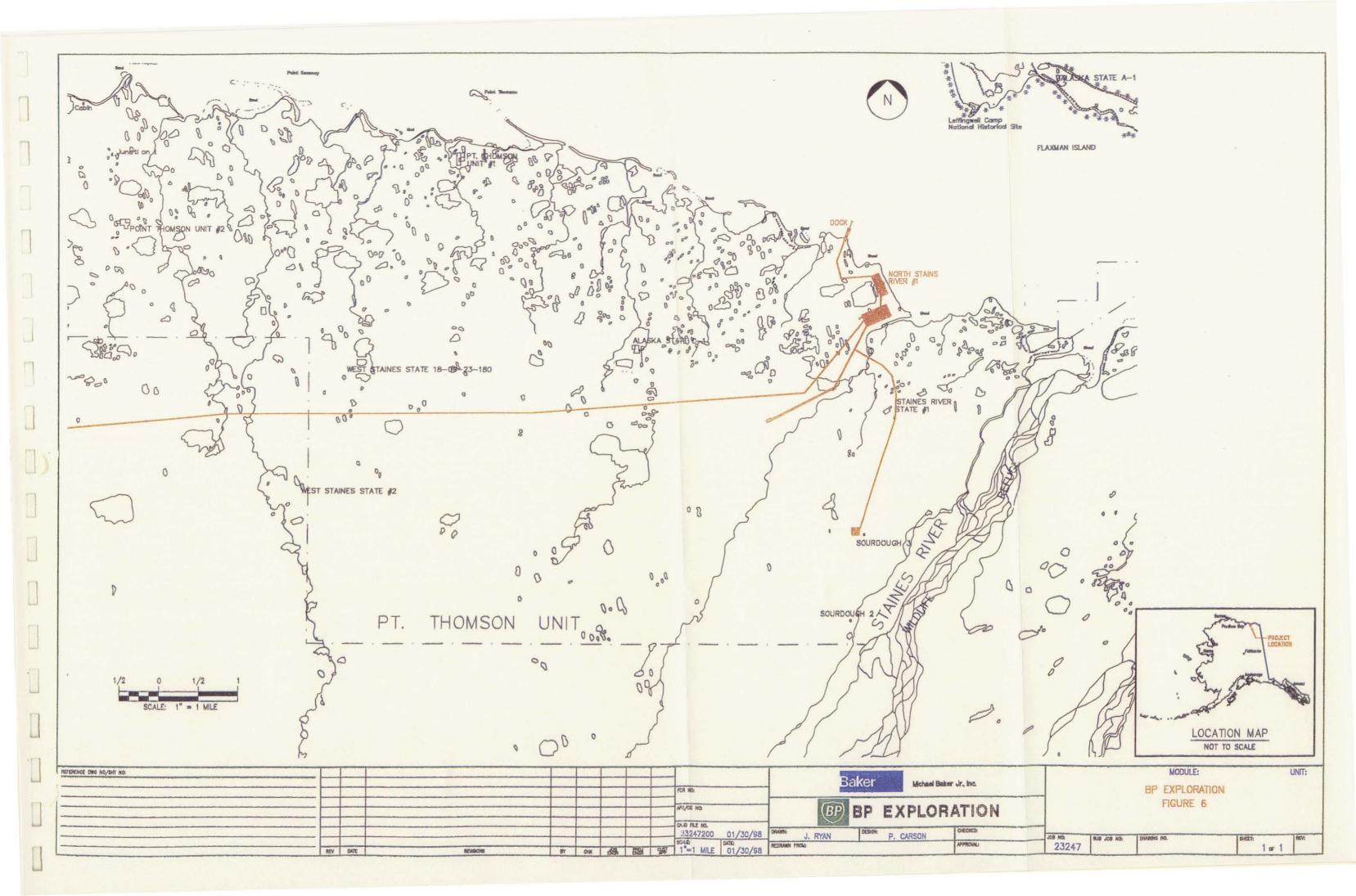
5.0 CONCLUSIONS

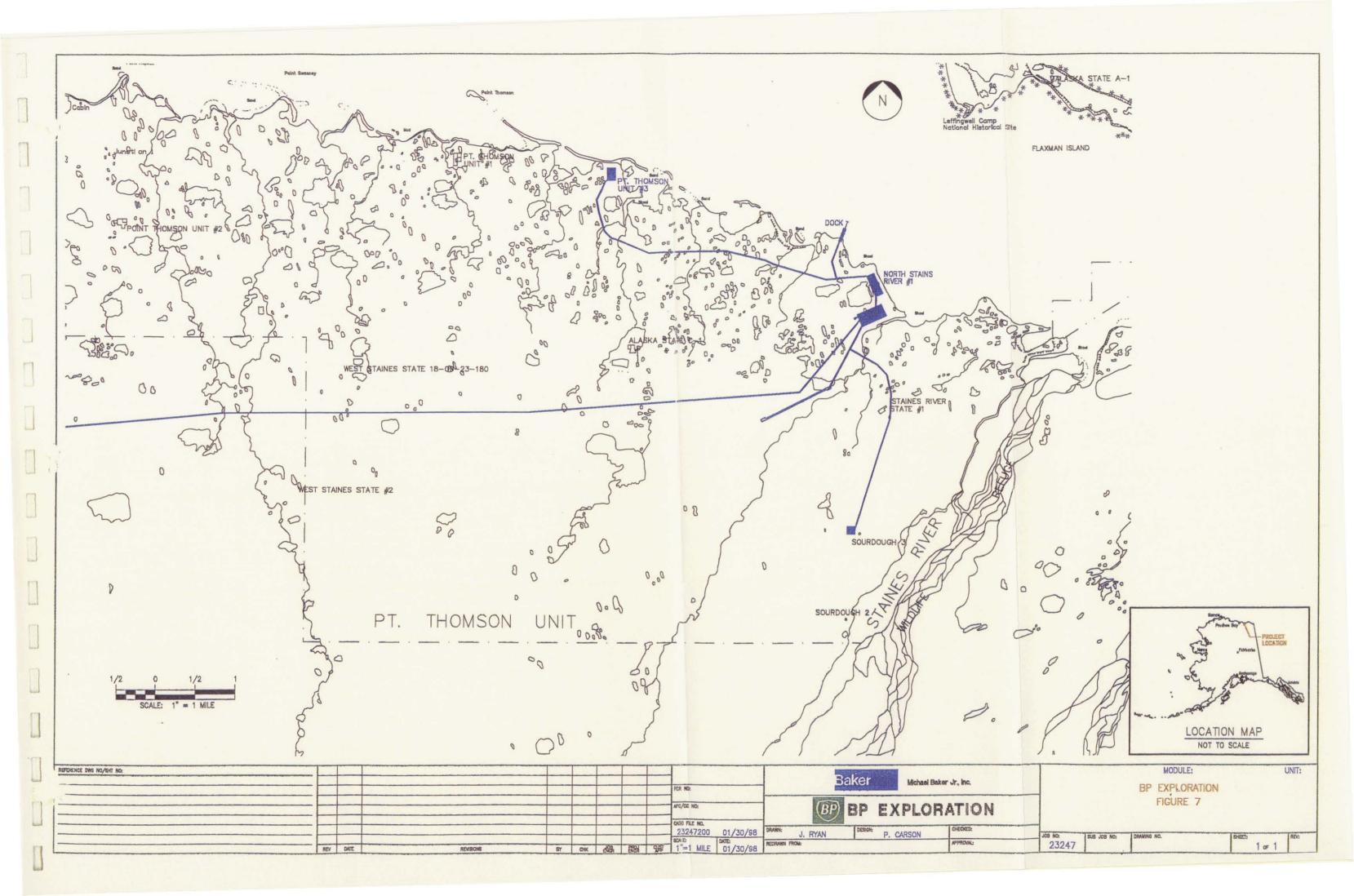

The outcome of the economic screening study shows favorable economics for the development of a single well pad that would develop the reserves and condensates from Flaxman and Point Thomson. In addition, a pad would be located at the Sourdough prospect with a direct connecting road to the central processing facilities located near the main drill pad. This is Case #7 in the screening options described. The economics coincide with the project preference to focus on only those areas containing known hydrocarbon deposits, i.e. Point Thomson, Flaxman and Sourdough. A dock location near this facility appears feasible, based on the available bathymetry data. In addition, this option utilizes an existing abandoned pad at the main facility location which serves to minimize the new footprint required for the project.

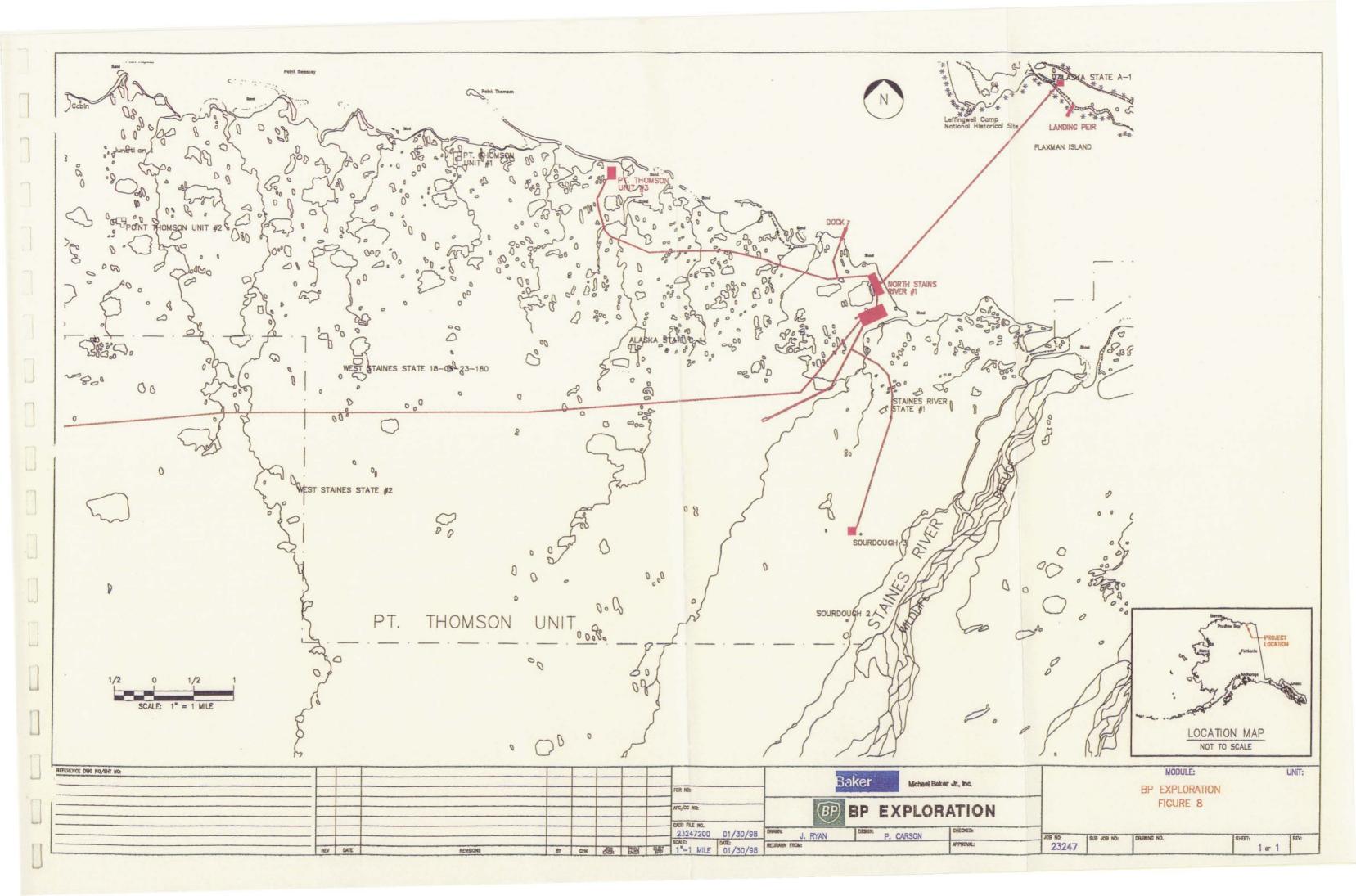

The Cases #8 and #9 build on this case to develop additional Point Thomson reserves to the west of the main facilities, and additional Flaxman reserves further offshore. The economics of these options are also favorable when considered on a cost per barrel basis. Moreover, the three alternatives are not mutually exclusive, i.e. either Case #8 and/or Case #9 can be treated as expansions of the base case (Case #7). This leads to additional favorable economics by treating the three options as phased development scenarios, wherein Case #7 is developed first and then expanded to include additional Point Thomson and Flaxman reserves. A suboption of Case #7 would be to develop only the main drill pad first, and then phase in the Sourdough field thereafter, but still within the same construction plan. (The development of only the Point Thomson/Flaxman main site without Sourdough leads to a reduced, and probably unfavorable, return when measured in Capex cost/barrel/day.)


As reservoirs are proved, additional prospects from currently unproved reservoirs, e.g. Lynx, Callaway, can be further included in the total project development scenario.


Further project definition and detailed cost estimating is planned to explore further the Case #7 Development Scenario, with and without phasing, for inclusion of the Point Thomson Unit #3 drill pad, and the Flaxman Island pad.


FIGURES





Appendix A Estimate Accuracy Definition

Budget Estimate (Level 0)

The budget estimate evaluates the approximate cost of a project early in the proposal stage. If the cost is greater than the expected benefits or if the job will not bring an adequate return on investment required, the project is dropped as impractical. Normally the budget estimate is made from known costs of similar projects already completed. Contingency and escalation factors are usually projected and included. Budget estimates are identified as "Level 0 in the "Detailed Cost Estimate Procedures."

Conceptual Estimates (Level 1)

Conceptual estimates can be made at several stages during the conceptual design stage. The accuracy of the estimates can range from 20 to 30 percent of the actual costs depending upon the plan information available. The conceptual estimate will be utilized in comparing and evaluating various designs and construction techniques. Constructability will be defined and evaluated at this level. Conceptual estimates are identified as "Level 1" in the "Detailed Cost Estimate Procedures".

Preliminary Design Estimates (Level 2)

The preliminary design estimate, or order of magnitude estimates, is made by the construction estimator and the design engineers. The estimate is based on the conceptual drawings, the equipment requirements and the flow sheets when the final design is between 30 and 60 percent complete. This estimate serves as a check against the final conceptual estimate and should be within 15 to 25 percent of the final construction costs. The preliminary design estimate is identified as "Level 2" in the "Detailed Estimate Procedures" There may be several estimates in the "Level 2" category.

Final Design Estimate (Level 3)

The final design estimate is the construction estimator and design engineers' last estimate and will be compared with the contractor's bid estimate. This estimate shall be a detailed estimate made from completed drawings and specification. It does not include any allowances for later change orders. This estimate will also become a model of information in preparation for the "Bid Proposal Documents" of (RFP). The estimator will assist in the

preparation and critique the final "Bid Proposal Documents." The final design estimate is identified as "Level 3" in the "Detailed Estimate Procedures." This estimated should be within 5 to 10 percent of the average cost of bids received from the bidders.

Contractor's Bid Estimate

This should be the most complete, detailed estimate of all costs of labor, equipment and material to construct the project shown on the drawings and described in the specifications. The drawings, specifications, site conditions, weather data, instruction to bidders, etc. should be as detailed and complete as possible. All work should be identified and quantified. If not quantifiable, unit prices should be identified and made as complete as possible. The more complete the RFP, the more accurate the Contractor's cost estimate will be and the less likely that change-orders will be required.

Change Order Estimates (Level 4)

The change order estimate is a bid estimate made on a change required after the contract is awarded. It is made in a manner similar to the contractors bid estimate. Note, contractors bid documents are usually specific about what is a change order or a changed condition. Usually labor rates, equipment rates, payroll burdens, small tools, material markup, subcontractor markup, etc., overhead and profit is fixed by the contract documents. In some cases, items such as small tools may be excluded from a change order. The final change order estimate is identified as "Level 4" in the "Detailed Estimate Procedures."

Appendix B
Base Cost Indices

Description	FAST-EST Variable	Unit		Cost
COSTS:				
Infield roads, 32' x 5', 2:1 sidesiope	Gravel road	mile	\$	761,500
Module road, 50' x 5', 2;1 sideslope	Paved Road	mile	\$1	,087,500
Well pads, 500' x 800' x 5', 2:1 sideslope	Well site preparation	each	\$1	412,000
Airstrip, 5000' x 150' x 5', 2:1 sideslope	Airstrip	each	\$3	609,000
Dock, 1500' x 50' plus 400' x 400'	Added to site prep.	each	\$7	,600,000
Fabrication labor rate	Fabrication labor rate	hour	\$	78
Erection labor rate	Erection labor rate	hour	\$	90
Erection management labor rate	Erection management labor rate	hour	\$	95
CPF pad, 1300' x 650' x 5', 2:1 sideslope	CPF site preparation	each	\$4	,000,000
Infield pipeline material	Well line & support line material	kip	\$	405
Infield pipeline installation	Well line & support line installation	diain. mile	\$	34,000
Infield pipeline coating and insulation	Well line & support line coating/insulation	diain. mile	\$	12,000
Mainline pipeline material	Export pipeline material	kip	\$	390
Mainline pipeline installation	Base export pipeline installation	diain. mile	\$	32,900
Mainline pipeline coating and insulation	Export pipeline material insulation	diain. mile	\$	11,000
Marine freight	Marine freight	kip	\$	225
Engineering labor rate	Engineering labor rate	hour	\$	75
Construction camp	Construction camp	person	\$	26,700
Communications	Communications	each	\$3	,000,000
Aerial powerline	Powerline	mile	\$	84,700
OTHER FACTORS:				
Aboveground pipeline factor	Pipeline installation factors, stilts	1.5		
Design maximum ambient air temp.	Design maximum ambient air temp.	40	de	grees F

Appendix C
Estimate Model Output
Screening Study

Run Time: 15:43:06

FASI-ESI VERS. . . 2.15 - (SEP 97)

Case 1 - CPU Option .

SYSTEM COST SUMMARY

PAGE 1 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	PABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	Engineering Cost USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELLSITE: Chilkoot MANIFOLD POWER DISTRIBUTION	192.2	131.0 451.0	402.3 1672.6	1642.5 273.6	10.1 40.7	236.8 241.9	355.2 362.9	0.0	2970.1 3065.0	0.0	2970.1 3065.0
TOTAL	214.4	Ś82.0	2074.9	1916.1	50.8	478.7	718.1	0.0	6035.1	0.0	6035.1
WELLSITE: Sourdoug MANIFOLD POWER DISTRIBUTION	559.9 22.2	267.5 451.0	844.7 1672.6	1732.1 273.6	22.6 40.7	340.4 241.9	510.6 362.9	0.0	4278.0 3065.0	0.0	4278.0 3065.0
TOTAL	582.1	718.4	2517.4	2005.7	63.3	582.4	873.6	0.0	7342.9	0.0	7342.9
WELLSITE: PTWest MANIFOLD POWER DISTRIBUTION	310.8 44.4	340.5 600.5	964.8 2189.7	9378.1 373.3	25.5 49.4	1099.4 320.8	1649.1 481.2	0.0	13768.3 4059.3	0.0	13768.3 4059.3
TOTAL	355.3	941.0	3154.4	9751.4	74.9	1420.2	2130.3	0.0	17827.6	0.0	17827.6
WELLSITE: PTEAST MANIFOLD POWER DISTRIBUTION	229.8 44.4	243.9 600.5	691.4 2189.7	920.5 373.3	17.1 49.4	208.6 320.8	312.9 481.2	0.0	2624.2 4059.3	0.0	2624.2 4059.3
TOTAL	274.3	844.4	2881.1	1293.8	66.4	529.4	794.0	0.0	6683.5	0.0	6683.5
WELLSITE: Flaxman MANIPOLD POWER DISTRIBUTION TOTAL	367.7 0.0 367.7	205.5 267.9 473.4	640.0 954.6 1594.6	910.1 170.6 1080.7	16.4 18.0 34.3	212.3 139.3 351.6	318.5 209.0 527.5	0.0	2670.5 1759.3 4429.8	0.0	2670.5 1759.3 4429.8

Run Time: 15:43:06

FAST-EST VERSIC ...15 - (SEP 97)

PAGE 2 System Cost Summary

Case 1 - CPU Option 1

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	PABRICATION COST USD (000)	ERECTION COST USD (000)	PREIGHT COST USD (000)	Engineering Cost USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	Contingency USD (000)	TOTAL COST USD (000)
											
WELLSITE: Callaway											
MANIFOLD	367.7	205.5	640.0	910.1	16.4	212.3	318.5	0.0	2670.5	0.0	2670.5
POWER DISTRIBUTION	0.0	267.9	954.6	170.6	18.0	139.3	209.0	0.0	1759.3	0.0	1759.3
TOTAL	367.7	473.4	1594.6	1080.7	34.3	351.6	527.5	0.0	4429.8	0.0	4429.8
CENTRAL PROCESSING F.	ACILITY: PTAG	C CPF									
MANIFOLD	404.1	298.3	936.9	142.8	38.9	267.3	356.4	0.0	2444.8	0.0	2444.8
SEPARATION	2245.4	2653.3	8493.5	1445.6	452.7	2225.7	2967.6	0.0	20483.8	0.0	20483.8
CRUDE METERING	462.4	166.3	505.1	74.8	25.4	181.3	241.7	0.0	1656.9	0.0	1656.9
LOW PRES. GAS COMPR.	2685.4	1514.9	5065.1	842.1	238.9	1516.1	2021.5	0.0	13884.0	0.0	13884.0
REINJ. GAS COMPR.	57336.5	21821.1	67414.7	12007.0	3120.4	23786.9	31715.9	0.0	217202.4	0.0	217202.4
REINJ. GAS DEHYD.	2751.4	2028.9	6401.0	1162.7	338.1	1851.6	2468.8	0.0	17002.5	0.0	17002.5
PIG/SPHERE LAUNCHER	47.1	291.3	836.7	164.1	18.6	200.9	267.8	0.0	1026.5	0.0	1826.5
PRODUCED WATER	299.9	122.4	405.2	57.4	20.9	132.7	177.0	0.0	1215.4	0.0	1215.4
RELIEF	20.1	127.6	396.6	76.0	10.1	93.1	124.1	0.0	847.7	0.0	847.7
POWER GENERATION	8854.7	983.7	1801.9	225.1	183.7	1779.8	2373.1	0.0	16202.0	0.0	16202.0
POWER DISTRIBUTION	4127.0	4090.2	14568.7	2488.5	397.2	3791.2	5054.9	0.0	34517.6	0.0	34517.6
FIRED HEATERS	3147.9	1569.4	6815.6	443.6	488.3	1796.5	2395.3	0.0	16656.6	0.0	16656.6
HEATING MEDIUM	31.4	88.9	313.9	44.8	10.5	71.9	95.8	0.0	657.2	0.0	657.2
EFPLUENT WATER	51.2	569.B	1824.8	317.1	48.6	414.4	552.6	0.0	3778.6	0.0	3778.6
INSTRUMENT AIR	123.9	130.3	597.8	38.6	38.1	133.6	178.1	0.0	1240.4	0.0	1240.4
UTILITY AIR	0.0	45.2	136.3	27.6	2.5	31.4	41.8	0.0	284.7	0.0	284.7
FUEL GAS	53.0	68.2	207.1	41.3	5.8	55.4	73.9	0.0	504.7	0.0	504.7
DIESEL PUEL	806.2	181.5	832.5	140.5	100.0	294.1	392.1	0.0	2746.9	0.0	2746.9
INERT GAS	118.3	39.6	111.7	21.8	4.5	43.7	58.3	0.0	398.0	0.0	398.0
CHEMICAL INJECTION	20.1	30.5	41.5	8.3	1.2	15.0	20.1	0.0	136.6	0.0	136.6
FIRE PROTECTION	284.8	187.4	596.4	93.6	21.5	174.3	232.4	0.0	1590.4	0.0	1590.4
CONTROL CENTER	468.0	50.3	103.4	20.0	4.2	96.2	128.3	0.0	870.5	0.0	870.5
BUILDINGS	1256.8	0.0	716.4	145.1	127.6	317.7	423.5	0.0	2987.2	0.0	2987.2
TANKAGE	158.2	620.6	1994.5	403.9	118.6	476.6	635.4	0.0	4407.8	0.0	4407.8
FLARE	1191.4	225.6	951.3	104.B	84.1	371.0	494.6	0.0	3422.7	0.0	3422.7
SITE PREPARATION	0.0	0.0	0.0	4000.0	0.0	600.0	800.0	0.0	5400.0	0.0	5400.0
TOTAL	86945.4	37905.1	122068.4	24537.1	5900.2	40718.4	54291.2	0.0	372365.8	0.0	372365.8

Run Pate: 01 98

Run Time: 15:43:06

FAST-EST VERSI. 2.15 - (SEP 97)

Case 1 - CPU Option .

SYSTEM COST SUMMARY

PAGE 3 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	FABRICATION COST USD (000)	ERECTION COST USD (000)	PREIGHT COST USD (000)	ENGINEERING COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELL LINES	0.0	1877.2	0.0	8489.0	1042.9	1336.2	1704.7	2996.1	17446.0	0.0	17446.1
GATHERING LINES	0.0	7700.2	0.0	7224.4	461 8 46336:1	1747.4	1673.2	2549.8	25173	0.0	25173 30231.0
EXPORT LINES	. 0.0	5891.0	0.0	93962.4	3398.7	11032.5	15501.6	10472.0	140258.3	0.0	140258.3
INFRASTRUCTURE	0.0	0.0	0.0	0.0	0.0	0.0	, 0.0	20753.5	20753.5	0.0	20753.5
DRILLING	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GRAND TOTAL	89107.0	57406.2	135885.4	151341.2	4 610210 14943	58548.6	78741.6	36771.4	45300373 672745	0.0	463803_3. ls77.745

GINEERING Run Late: 01 98

Run Time: 15:46:33

FAST-EST VERS. 2.15 - (SEP 97)

Case 2 ~ CPF Option .

SYSTEM COST SUMMARY

PAGE 1 System Cost Summary

USD (000)	MATERIAL USD (000)	COST USD (000)	COST USD (000)	FREIGHT COST USD (000)	COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	COST USD (000)	USD (000)	TOTAL COST USD (000)
192.2 22.2	131.0 451.0	402.3 1672.6	1642.5 273.6	10.1 40.7	236.8 241.9	355.2 362.9	0.0	2970.1 3065.0	0.0	2970.1 3065.0
214.4	582.0	2074.9	1916.1	50.8	478.7	718.1	0.0	6035.1	0.0	6035.1
559.9 22.2	267.5 451.0	844.7 1672.6	1732.1 273.6	22.6 40.7	340.4 241.9	,510.6 362.9	0.0	4278.0 3065.0	0.0	4278.0 3065.0
582.1	718.4	2517.4	2005.7	63.3	582.4	873.6	0.0	7342.9	0.0	7342.9
310.8 44.4	340.5 600.5	964.8 2189.7	9378.1 373.3	25.5 49.4	1099.4 320.8	1649.1 481.2	0.0	13768.3 4059.3	0.0	13768.3 4059.3 17827.6
355.3	941.0	3154.4	3/31.4	74.9	1420.2	2130.3	0.0	1/82/-6	0.0	1/84/.6
229.8 44.4	243.9 600.5	691.4 2189.7	920.5 373.3	17.1 49.4	208.6 320.8	312.9 481.2	0.0	2624.2 4059.3	0.0	2624.2 4059,3
274.3	844.4	2881.1	1293.8	66.4	529.4	794.0	0.0	6683.5	0.0	6683.5
367.7 0.0	205.5 267.9	640.0 954.6	910.1 170.6	.16.4 18.0	212.3 139.3	318.5 209.0 527.5	0.0	2670.5 1759.3	0.0 0.0 0.0	2670.5 1759.3 4429.8
	22.2 214.4 559.9 22.2 582.1 310.8 44.4 355.3 229.8 44.4 274.3	22.2 451.0 214.4 582.0 559.9 267.5 22.2 451.0 582.1 718.4 310.8 340.5 44.4 600.5 355.3 941.0 229.8 243.9 44.4 600.5 274.3 844.4 367.7 205.5 0.0 267.9	22.2 451.0 1672.6 214.4 582.0 2074.9 559.9 267.5 844.7 22.2 451.0 1672.6 582.1 718.4 2517.4 310.8 340.5 964.8 44.4 600.5 2189.7 355.3 941.0 3154.4 229.8 243.9 691.4 4.4 600.5 2189.7 274.3 844.4 2881.1 367.7 205.5 640.0 0.0 267.9 954.6	22.2 451.0 1672.6 273.6 214.4 582.0 2074.9 1916.1 559.9 267.5 844.7 1732.1 22.2 451.0 1672.6 273.6 582.1 718.4 2517.4 2005.7 310.8 340.5 964.8 9378.1 44.4 600.5 2189.7 373.3 355.3 941.0 3154.4 9751.4 229.8 243.9 691.4 920.5 44.4 600.5 2189.7 373.3 274.3 844.4 2881.1 1293.8 367.7 205.5 640.0 910.1 0.0 267.9 954.6 170.6	22.2 451.0 1672.6 273.6 40.7 214.4 582.0 2074.9 1916.1 50.8 559.9 267.5 844.7 1732.1 22.6 22.2 451.0 1672.6 273.6 40.7 582.1 718.4 2517.4 2005.7 63.3 310.8 340.5 964.8 9378.1 25.5 44.4 600.5 2189.7 373.3 49.4 355.3 941.0 3154.4 9751.4 74.9 229.8 243.9 691.4 920.5 17.1 44.4 600.5 2189.7 373.3 49.4 274.3 844.4 2881.1 1293.8 66.4 367.7 205.5 640.0 910.1 16.4 0.0 267.9 954.6 170.6 18.0	22.2 451.0 1672.6 273.6 40.7 241.9 214.4 582.0 2074.9 1916.1 50.8 478.7 559.9 267.5 844.7 1732.1 22.6 340.4 22.2 451.0 1672.6 273.6 40.7 241.9 582.1 718.4 2517.4 2005.7 63.3 582.4 310.8 340.5 964.8 9378.1 25.5 1099.4 44.4 600.5 2189.7 373.3 49.4 320.8 355.3 941.0 3154.4 9751.4 74.9 1420.2 229.8 243.9 691.4 920.5 17.1 208.6 44.4 600.5 2189.7 373.3 49.4 320.8 274.3 844.4 2881.1 1293.8 66.4 529.4 367.7 205.5 640.0 910.1 16.4 212.3 0.0 267.9 954.6 170.6 18.0 139.3	22.2 451.0 1672.6 273.6 40.7 241.9 362.9 214.4 582.0 2074.9 1916.1 50.8 478.7 718.1 559.9 267.5 844.7 1732.1 22.6 340.4 510.6 22.2 451.0 1672.6 273.6 40.7 241.9 362.9 582.1 718.4 2517.4 2005.7 63.3 582.4 873.6 310.8 340.5 964.8 9378.1 25.5 1099.4 1649.1 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 355.3 941.0 3154.4 9751.4 74.9 1420.2 2130.3 229.8 243.9 691.4 920.5 17.1 208.6 312.9 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 274.3 844.4 2881.1 1293.8 66.4 529.4 794.0 367.7 205.5 640.0 910.1 16.4 212.3 318.5 0.0 267.9 954.6 170.6 18.0 139.3 209.0	22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 214.4 582.0 2074.9 1916.1 50.8 478.7 718.1 0.0 559.9 267.5 844.7 1732.1 22.6 340.4 510.6 0.0 22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 582.1 718.4 2517.4 2005.7 63.3 582.4 873.6 0.0 310.8 340.5 964.8 9378.1 25.5 1099.4 1649.1 0.0 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 355.3 941.0 3154.4 9751.4 74.9 1420.2 2130.3 0.0 229.8 243.9 691.4 920.5 17.1 208.6 312.9 0.0 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 274.3 844.4 2881.1 1293.8 66.4 529.4 794.0 0.0 </td <td>22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 214.4 582.0 2074.9 1916.1 50.8 478.7 718.1 0.0 6035.1 559.9 267.5 844.7 1732.1 22.6 340.4 510.6 0.0 4278.0 22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 582.1 718.4 2517.4 2005.7 63.3 582.4 873.6 0.0 7342.9 310.8 340.5 964.8 9378.1 25.5 1099.4 1649.1 0.0 13768.3 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 4059.3 355.3 941.0 3154.4 9751.4 74.9 1420.2 2130.3 0.0 17827.6 229.8 243.9 691.4 920.5 17.1 208.6 312.9 0.0 2624.2 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0</td> <td>22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 0.0 214.4 582.0 2074.9 1916.1 50.8 478.7 718.1 0.0 6035.1 0.0 559.9 267.5 844.7 1732.1 22.6 340.4 510.6 0.0 4278.0 0.0 22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 0.0 582.1 718.4 2517.4 2005.7 63.3 582.4 873.6 0.0 7342.9 0.0 310.8 340.5 964.8 9378.1 25.5 1099.4 1649.1 0.0 13768.3 0.0 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 4059.3 0.0 229.8 243.9 691.4 920.5 17.1 208.6 312.9 0.0 2624.2 0.0 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 4059.3 0.0</td>	22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 214.4 582.0 2074.9 1916.1 50.8 478.7 718.1 0.0 6035.1 559.9 267.5 844.7 1732.1 22.6 340.4 510.6 0.0 4278.0 22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 582.1 718.4 2517.4 2005.7 63.3 582.4 873.6 0.0 7342.9 310.8 340.5 964.8 9378.1 25.5 1099.4 1649.1 0.0 13768.3 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 4059.3 355.3 941.0 3154.4 9751.4 74.9 1420.2 2130.3 0.0 17827.6 229.8 243.9 691.4 920.5 17.1 208.6 312.9 0.0 2624.2 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0	22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 0.0 214.4 582.0 2074.9 1916.1 50.8 478.7 718.1 0.0 6035.1 0.0 559.9 267.5 844.7 1732.1 22.6 340.4 510.6 0.0 4278.0 0.0 22.2 451.0 1672.6 273.6 40.7 241.9 362.9 0.0 3065.0 0.0 582.1 718.4 2517.4 2005.7 63.3 582.4 873.6 0.0 7342.9 0.0 310.8 340.5 964.8 9378.1 25.5 1099.4 1649.1 0.0 13768.3 0.0 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 4059.3 0.0 229.8 243.9 691.4 920.5 17.1 208.6 312.9 0.0 2624.2 0.0 44.4 600.5 2189.7 373.3 49.4 320.8 481.2 0.0 4059.3 0.0

Run Time: 15:46:33

FAST-EST VERSI ... - (SEP 97)

Case 2 - CPF Option :

SYSTEM COST SUMMARY

PAGE 2 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	PABRICATION COST USD (000)	ERECTION COST USD (000)	PREIGHT COST USD (000)	ENGINEERING COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELLSITE: Callaway											
MANIFOLD	367.7	205.5	640.0	910.1	16.4	212.3	318.5	0.0	2670.5	0.0	2670.5
POWER DISTRIBUTION	0.0	267.9	954.6	170,6	18.0	139.3	209.0	0.0	1759.3	0.0	1759.3
								• • •		•••	2,0,,,
TOTAL	367.7	473.4	1594.6	1080.7	34.3	351.6	527.5	0.0	4429.8	0.0	4429.8
CENTRAL PROCESSING FA	CILITY: PTAC	CPF									
MANIFOLD	404.1	298.3	936.9	142.8	38.9	267.3	.356.4	0.0	2444.8	0.0	2444.8
SEPARATION	2245.4	2653.3	8493.5	1445.6	452.7	2225.7	2967.6	0.0	20483.8	0.0	20483.8
CRUDE METERING	462.4	166.3	505.1	74.8	25.4	181.3	241.7	0.0	1656.9	0.0	1656.9
LOW PRES. GAS COMPR.	2685.4	1514.9	5065.1	842.1	238.9	1516.1	2021.5	0.0	13884.1	0.0	13884.1
REINJ, GAS COMPR.	57336.5	21821.1	67414.6	12007.0	3120.4	23786.9	31715.9	0.0	217202.4	0.0	217202.4
REINJ, GAS DEHYD.	2751.4	2026.9	6401.0	1162.7	338.1	1851.6	2468.8	. 0.0	17002.5	0.0	17002.5
PIG/SPHERE LAUNCHER	47.1	291.3	836.7	164.1	18.6	200.9	267.B	. 0.0	1826.5	0.0	1826.5
PRODUCED WATER	299.9	122.4	405.2	57.4	20.9	132.7	177.0	0.0	1215.4	0.0	1215.4
RELIEF	20.1	127.6	396.6	76.0	10.1	93.1	124.1	0.0	847.7	0.0	847.7
POWER GENERATION	8854.7	983.7	1801.9	225.1	183.7	1779.B	2373.1	0.0	16202.0	0.0	16202.0
POWER DISTRIBUTION	4127.0	4090.2	14568.6	2488.5	397.2	3791.1	5054.9	0.0	34517.5	0.0	34517.5
PIRED HEATERS	3147.9	1569.4	6815.6	443.6	488.3	1796.5	2395.3	0.0	16656.6	0.0	16656.6
HEATING MEDIUM	31.4	80.9	313.9	44.8	10.5	71.9	95.8	0.0	657.2	0.0	657.2
EFPLUENT WATER	51.2	569.8	1824.8	317.1	48.6	414.4	552.6	0.0	3778.6	0.0	377B.6
INSTRUMENT AIR	123.9	130.3	597.8	38.6	38.1	133.6	178.1	0.0	1240.4	0.0	1240.4
UTILITY AIR	0.0	45.2	136.3	27.6	2.5	31.4	41.8	0.0	284.7	0.0	284.7
FUEL GAS	53 0	68.2	207.1	41.3	5.8	55.4	73.9	0.0	504.7	0.0	504.7
DIESEL FUEL	806.2	181.5	832.5	140.5	100.0	294.1	392.1	0.0	2746.9	0.0	2746.9
INERT GAS	118.3	39.6	111.7	21.0	4.5	43.7	58.3	0.0	398.0	0.0	398.0
CHEMICAL INJECTION	20.1	30.5	41.5	8.3	1.2	15.0	20.1	0.0	136.6	0.0	136.6
PIRE PROTECTION	284.0	187.4	596.4	93.6	21.5	174.3	232.4	0.0	1590.4	0.0	1590.4
CONTROL CENTER	468.0	50.3	103.4	20.0	4.2	96.2	120.3	0.0	870.5	0.0	870.5
BUILDINGS	1256.0	0.0	716.4	145.1	127.6	317.7	423.6	0.0	2987.2	0.0	2987.2
TANKAGE	158.2	620.6	1994.5	403.9	118.6	476.6	635.4	0.0	4407.8	0.0	4407.8
FLARE	1191.4	225.6	951.3	104.8	84.1	371.0	494.6	0.0	3422.7	0.0	3422.7
SITE PREPARATION	0.0	0.0	0.0	4000.0	0.0	600.0	800.0	0.0	5400.0	0.0	5400.0
TOTAL	86945.4	37905.1	122068.3	24537.1	5900.2	40718.4	54291.2	0.0	372365.7	0.0	372365.7

Run Time: 15:46:33

FAST-EST VERSI

SEP 97)

Case 2 - CPF Option 1

SYSTEM COST SUMMARY

PAGE 3 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	FABRICATION COST USD (000)	ERECTION COST USD (000)	PREIGHT COST USD (000)	ENGINEERING COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELL LINES	0.0	1753.0	0.0	8682.8	973.9	1350.0	1718.6	3064.5	17542.7	0.0	17542.7
GATHERING LINES	0.0	6183.0	0.0	6415.8	-3435	1486.3	1446.6	2264.4	Z1231 30150+8	0.0	21 23 30150 - A
EXPORT LINES	0.0	5940.5	0.0	94752.0	3427.2	11125.3	15631.9	10560.0	141436.9	0.0	141436.9
INPRASTRUCTURE	0.0	0.0	0.0	0.0	0.0	0.0	, 0.0	18733.3	18733.3	0.0	18733.3
DRILLING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GRAND TOTAL	89107.0	55814.3	135885.4	151516.0	42900-2 14061	58394.0	78659.2	34622.2	-61697813 G2 <i>05</i> 7	0.0	416978.3- UBOST

GINEERING Run ate: 01 78

Run Time: 15:40:05

FAST-EST VERS1 2.15 - (SEP 97)

PAGE 1 System Cost Summary

Case 3 - CPU Option 1 with x

System	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	PABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	Engineering Cost USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	Contingency USD (000)	TOTAL COST USD (000)
world a man and a land									· 		
WELLSITE: Chilkoot											
MANIFOLD	192.2	131.0	402.3	1642.5	10.1	236.8	355.2	0.0	2970.1	0.0	2970.1
POWER DISTRIBUTION	22.2	451.0	1672.6	273.6	40.7	241.9	362.9	0.0	3065.0	0.0	3065.0
TOTAL	214.4	582.0	2074.9	1916.1	50.8	478.7	718.1	0.0	6035.1	0.0	6035.1
WELLSITE: Sourdoug											
MANIFOLD	559.9	267.5	814.7	1732.1	22.6	340.4	510.6	0.0	4278.0	0.0	4278.0
POWER DISTRIBUTION	22.2	451.0	1672.6	273.6	40.7	241.9	362.9	0.0	3065.0	0.0	3065.0
							•	•-•	200410	***	200210
TOTAL	582.1	718.4	2517.4	2005.7	63.3	582.4	873.6	0.0	7342.9	0.0	7342.9
WELLSITE: PTWest											
MANIFOLD	310.8	340.5	964.8	9378.1	25.5	1099.4	1649.1	0.0	13768.3	0.0	13768.3
POWER DISTRIBUTION	44.4	600.5	2189.7	373.3		320.8	481.2	0.0	4059.3	0.0	4059.3
TOTAL	355.3	941.0	3154.4	9751.4	74.9	1420.2	2130.3	0.0	17827.6	0.0	17827.6
WELLSITE: PTEast MANIFOLD	229.8	243.9	691.4	920.5	17.1	208.6	312.9	. 0.0	2624.2	0.0	2624.2
	44.4	600.5	2189.7	373.3	49.4	320.8	481.2	0.0	4059.3	0.0	4059.3
POWER DISTRIBUTION	44.4	600.5	2189.1	2,2,2	37.3	324.6	401.2	0.0	4037.3	. 0.0	4039.3
TOTAL	274.3	844.4	2881.1	1293.8	66.4	529.4	794.0	0.0	6683.5	0.0	6603.5
WELLSITE: Plaxman		•									
MANIFOLD	367.7	205.5	640.0	910.1	16.4	212.3	318.5	0.0	2670.5	0.0	2670.5
POWER DISTRIBUTION	0.0	267.9	954.6	170.6	18.0	139.3	209.0	0.0	1759.3	0.0	1759.3
FOREK DISTRIBUTION	0.0	207.5	221.0								
TOTAL	367.7	473.4	1594.6	1080.7	34.3	351.6	527.5	0.0	4429.8	0.0	4429.8

Run Time: 15:40:05

FAST-EST VERSION 1.15. - (SEP 97)

Case 3 - CPU Option 1 witi x

SYSTEM COST SUMMARY

PAGE 2 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	FABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	Engineering Cost USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELLSITE: Callaway MANIFOLD	367.7	205.5	640.0	910.1	16.4	212.3	318.5	0.0	2670.5	0.0	2670.5
POWER DISTRIBUTION	0.0	267.9	954.6	170.6	18.0	139.3	209.0	0.0	1759.3	0.0	1759.3
FORER DIBIRIDOLION	0.4	201.5	334.4	270.0	20.0	237.3	20310	0,0	1,32.3	0.0	1739,3
TOTAL	367.7	473.4	1594.6	1080.7	34.3	351.6	527.5	0.0	4429.8	0.0	4429.8
WELLSITE: Lynx											
MANIFOLD	367.7	205.5	640.0	1690.6	16.4	290.4	435.6	0.0	3646.2	0.0	3646.2
POWER DISTRIBUTION	22.2	451.0	1672,.6	273.6	40.7	241.9	362.9	0.0	3065.0	0.0	3065.0
TOTAL	390.0	656.4	2312.6	1964.2	57.1	532.3	798.5	0.0	6711.1	0.0	6711.1
CENTRAL PROCESSING FA	CILITY: PTAC	CPP									
MANIFOLD	449.2	307.6	983.3	145.3	43.0	282.8	377.1	0.0	2588.3	0.0	2588.3
SEPARATION	2272.4	2687.1	8606.5	1463.0	458.8	2254.4	3005.8	0.0	20748.0	0.0	20748.0
CRUDE METERING	462.4	166.3	505.1	74.8	25.4	181.3	241.7	0.0	1656.9	0.0	1656.9
LOW PRES. GAS COMPR.	2727.4	1528.0	5104.6	849.0	240.7	1531.3	2041.8	0.0	14022.7	0.0	14022.7
REINJ. GAS COMPR.	57364.0	21842.2	67483.3	12020.3	3123.5	23806.5	31742.0	0.0	217381.8	0.0	217381.8
REINJ. GAS DEHYD.	2751.8	2029.3	6402.1	1162.9	338.2	1851.9	2469.2	0.0	17005.2	0.0	17005.2
PIG/SPHERE LAUNCHER	47.1	291.3	836.7	164.1	18.6	200.9	267.8	0.0	1826.5	0.0	1826.5
PRODUCED WATER	302.3	125.4	416.9	58.6	21.5	135.5	180.7	0.0	1240.9	0.0	1240.9
RELIEF	20.1	128.5	399.2	76.6	10.2	93.7	124.9	0.0	853.2	0.0	853.2
POWER GENERATION	9854.7	983.7	1801.9	225.1	183.7	1779.8	2373.1	0.0	16202.0	0.0	16202.0
POWER DISTRIBUTION	4573.9	4391.4	15632.2	2665.9	428.7	4089.5	5452.7	0.0	37234.3	0.0	37234.3
FIRED HEATERS	3164.1	1578.1	6855.0	445.7	491.0	1806.4	2408.6	0.0	16749.0	0.0	16749.0
HEATING MEDIUM	31.4	89.4	315.4	45.1	10.5	72.2	96.3	0.0	660.4	0.0	660.4
EFFLUENT WATER	51.2	577.4	1847.2	321.7	49.0	419.6	559.5	0.0	3825.6	0.0	3825.6
INSTRUMENT AIR	123.9	130.8	599.0	38.9	38.1	133.9	178.5	0.0	1243.0	0.0	1243.0
UTILITY AIR	0.0	45.5	137.3	27.8	2.5	31.6	42.1	0.0	286.B	0.0	286.8
FUEL GAS	53.0	68.6	208.5	41.5	5.9	55.7	74.3	0.0	507.6	0.0	507.6
DIESEL FUEL	806.2	181.8	833.5	140.8	100.0	294.3	392.4	0.0	2749.0	0.0	2749.0
INERT GAS	118.3	39.0	112.4	22.0	4.5	43.9	58.5	0.0	399.4	0.0	399.4
CHEMICAL INJECTION	20.1	30.7	41.8	6.3	1.2	15.1	20.2	0.0	137.3	0.0	137.3
PIRE PROTECTION	285.9	188.9	601.7	94.3	21.7	175.6	234.2	0.0	1602.3	0.0	1602.3
CONTROL CENTER	468.0	50.3	103.4	20.0	4.2	96.2	128.3	0.0	870.5	0.0	870.5
BUILDINGS	1351.9	0.0	770.6	156.0	137.2	341.8	455.7	0.0	3213.3	0.0	3213.3
TANKAGE	150.2	620.6	1994.5	403.9	118.6	476.6	635.4	0.0	4407.8	0.0	4407.8
FLARE	1193.6	226.3	953.6	105.2	84.2	371.8	495.8	0.0	3430.5	0.0	3430.5
SITE PREPARATION	0.0	0.0	0.0	4000.0	0.0	600.0	800.0	0.0	5400.0	0.0	5400.0
TOTAL	87651.3	38308.9	123545.6	24776.7	5960.9	41142.4	54856.5	0.0	376242.3	0.0	376242.3
IOIVI	41031.3	22204.7	,								

Run Time: 15:40:05

Case 3 - CPU Option 1 with x

SYSTEM COST SUMMARY

PAGE 3 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	FABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	ENGINEERING COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELL LINES	0.0	2065.6	0.0	9486.0	1147.6	1490.0	1900.1	3348.0	19437.3	0.0	19437.3
GATHERING LINES	0.0	7917.8	0.0	7742.4	4379 13133.5	1839.3	1773.1	2732.6	₹ <u>८</u> 4 04 - 65130-8	0.0	26404 46118-1
EXPORT LINES	0.0	5891.0	0.0	93962.4	3398.7	11032.5	15501.6	10472.0	140258.3	0.0	140258.3
INFRASTRUCTURE	0.0	0.0	0.0	0.0	0.0	0.0	, 0.0	22699.7	22699.7	0.0	22699.7
DRILLING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GRAND TOTAL	90202.8	58872.5	139675.3	155060.2	15287	59750.5	80400.8	39252.4	-<27236-1-	0.0	73520S 433314-T

55161 566

Run Time: 08:04:43

FAST-EST VERS. 2 35 - (SEP 97)

Case 4 - CPF Option 2 with Ex

SYSTEM COST SUMMARY

PAGE 1 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	PABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	Engineering Cost USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	Contingency USD (000)	TOTAL COST USD (000)
WELLSITE: Chilkoot			•	····		•				-	
MANIFOLD POWER DISTRIBUTION	192.2 22.2	131.0 451.0	402.3 1672.6	1642.5 273.6	10.1 40.7	236.8 241.9	355.2 362.9	0.0 0.0	2970.1 3065.0	0.0	2970.1 3065.0
TOTAL	214.4	502.0	2074.9	1916.1	50.8	478.7	718.1	0.0	6035.1	0.0	6035.1
WELLSITE: Sourdoug											
MANIFOLD POWER DISTRIBUTION	559.9 22.2	267.5 451.0	844.7 1672.6	1732.1 273.6	22.6 40.7	340.4 241.9	,510.6 362.9	0.0	4278.0 3065.0	0.0	4278.0 3065.0
TOTAL	582.1	718.4	2517.4	2005.7	63.3	582.4	873.6	0.0	7342.9	0.0	7342.9
WELLSITE: PTWest											
MANIFOLD	310.8	340.5	964.8	9378.1	25.5	1099.4	1649.1	0.0	13768.3	0.0	13768.3
POWER DISTRIBUTION	44.4	600.5	2189.7	373.3	49.4	320.8	481.2	0.0	4059.3	0.0	4059.3
TOTAL	355.3	941.0	3154.4	9751.4	74.9	1420.2	2130.3	0.0	17827.6	0.0	17827.6
WELLSITE: PTEast											
MANIFOLD	229.8	243.9	691 4	920.5	17.1	208.6	312.9	0.0	2624.2	0.0	2624.2
POWER DISTRIBUTION	44.4	600.5	2189.7	373.3	49.4	320.8	481.2	0.0	4059.3	0.0	4059.3
TOTAL	274.3	844 .4	2881.1	1293.8	66.4	529.4	794.0	0.0	6683.5	0.0	6683.5
WELLSITE: Flaxman											
MANIFOLD	367.7	205.5	640.0	910.1	16.4 18.0	212.3 139.3	318.5 209.0	0.0	2670.5 1759.3	0.0	2670.5 1759.3
POWER DISTRIBUTION	0.0	267.9	954 . 6	170.6	ta.o	133.3	207.0	0.0	7,22.3	0.0	4,12.3
TOTAL	367.7	473.4	1594.6	1080.7	34.3	351.6	527.5	0.0	4429.8	0.0	4429.8

Run Time: 08:04:43

Case 4 - CPF Option 2 with x

System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	FABRICATION COST USD (000)	ERECTION COST USD (000)	PREIGHT COST USD (000)	ENGINEERING COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELLSITE: Callaway											
MANIFOLD POWER DISTRIBUTION	367.7 0.0	205.5 267.9	640.0 954.6	910.1 170.6	16.4 18.0	212.3 139.3	318.5 209.0	0.0 0.0	2670.5 1759.3	0.0 0.0	2670.5 1759.3
TOTAL	367.7	473.4	1594.6	1080.7	34.3	351.6	527.5	0.0	4429.8	0.0	4429.8
WELLSITE: Lynx											
MANIFOLD	367.7	205.5	640.0	1690.6	16.4	290.4	435.6	0.0	3646.2	0.0	3646.2
POWER DISTRIBUTION	22.2	451.0	1672.6	273.6	40.7	241.9	362.9	0.0	3065.0	0.0	3065.0
TOTAL	390.0	656.4	2312.6	1964.2	57.1	532.3	798.5	0.0	6711.1	0.0	6711.1
CENTRAL PROCESSING FA	ACILITY: PTA	C CPF									
MANIFOLD	449.2	307.6	983.3	145.3	43.0	282.8	377.1	0.0	2588.3	0.0	2588.3
SEPARATION	2272.4	2687.1	8606.5	1463.0	458.8	2254.4	3005.8	0.0	20748.0	0.0	20748.0
CRUDE METERING	462.4	166.3	505.1	74.8	25.4	181.3	241.7	0.0	1656.9	0.0	1656.9
LOW PRES. GAS COMPR.	2727.4	1526.0	5104.6	849.0	240.7	1531.3	2041.8	0.0	14022.8	0.0	14022.8
REINJ. GAS COMPR.	57364.0	21842.2	67483.4	12020.3	3123.5	23806.5	31742.0	0.0	217381.8	0.0	217301.8
REINJ. GAS DEHYD.	2751.8	2029.3	6402.1	1162.9	338.2	1851.9	2469.2	0.0	17005.2	0.0	17005.2
PIG/SPHERE LAUNCHER	47.1	291.3	836.7	164.1	18.6	200.9	267.8	0.0	1826.5	0.0	1826.5
PRODUCED WATER	302.3	125.4	416.9	58.6	21.5	135.5	180.7	0.0	1240.9	0.0	1240.9
RELIEF	20.1	128.5	399.2	76.6	10.2	93.7	124.9	0.0	853.2	0.0	853.2
POWER GENERATION	8854.7	983.7	1801.9	225.1	103.7	1779.8	2373.1	0.0	16202.0	0.0	16202.0
POWER DISTRIBUTION	4573.9	4391.4	15632.2	2665.9	428.7	4089.5	5452.7	0.0	37234.3	0.0	37234.3
FIRED HEATERS	3164.1	1578.1	6855.0	445.7	491.0	1806.4	2408.6	0.0	16749.0	0.0	16749.0
HEATING MEDIUM	31.4	89.4	315.4	45.1	10.5	72.2	96.3	0.0	660.4	0.0	660.4
EFPLUENT WATER	51.2	577.4	1847.2	321.7	49.0	419.6	559.5	0.0	3825.6	0.0	3825.6
INSTRUMENT AIR	123.9	130.8	599.0	38.9	38.1	133.9	178.5	0.0	1243.0	0.0	1243.0
UTILITY AIR	0.0	45.5	137.3	27.8	2.5	31.6	42.1	0.0	286.8	0.0	286.8
FUEL GAS	53.0	68.6	208.5	41.5	5.9	55.7	74.3	0.0	507.6	0.0	507.6
DIESEL PUEL	806.2	181.8	833.5	140.8	100.0	294.3	392.4	0.0	2749.0	0.0	2749.0
INERT GAS	118.3	39.8	112.4	22.0	4.5	43.9	58.5	0.0	399.4	0.0	399.4
CHEMICAL INJECTION	20.1	30.7	41.8	8.3	1.2	15.1	20.2	0.0	137.3	0.0	137.3
FIRE PROTECTION	285.9	188.9	601.7	94.3	21.7	175.6	234.2	0.0	1602.3	0.0	1602.3
CONTROL CENTER	468.0	50.3	103.4	20.0	4.2	96.2	128.3	; 0.0	870.5	0.0	870.5
BUILDINGS	1351.9	0.0	770.6	156.0	137.2	341.8	455.7	0.0	3213.3	0.0	3213.3
TANKAGE	150.2	620.6	1994.5	403.9	118.6	476.6	635.4	0.0	4407.8	0.0	4407.8
FLARE	1193.6	226.3	953.6	105.2	84.2	371.8	495.8	0.0	3430.5	0.0	3430.5
SITE PREPARATION	0.0	0.0	0.0	4000.0	0.0	600.0	800.0	0.0	5400.0	0.0	5400.0
TOTAL	87651.3	38309.0	123545.6	24776.7	5960.9	41142.4	54856.5	0.0	376242.3	0.0	376242.3

C GINEERING Rum Date: 01 78

Run Time: 08:04:43

FAST-EST VERSIG 2.1" - (SEP 97)

Case 4 - CPF Option 2 with. .ux

SYSTEM COST SUMMARY

PAGE 3 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	PABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	ENGINEERING COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELL LINES	0.0	1966.0	0.0	9809.9	1092.2	1523.8	1939.5	3462.3	19793.7	0.0	19793.7
GATHERING LINES	0.0	6308.3	0.0	6813.6	3504 19386-7	1552.7	1520.8	2404.8	2401 -57886.0	0.0	Zzioi 57006+0
EXPORT LINES	. 0.0	5940.5	0.0	94752.0	3427.2	11125.3	15631.9	10560.0	141436.9	0.0	141436.9
INFRASTRUCTURE	0.0	0.0	0.0	0.0	0.0	0.0	, 0.0	20933.4	20933.4	0.0	20933.4
DRILLING	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GRAND TOTAL	90202.8	57212.9	139675.3	155244.8	14364	59590.4	80318.1	37360.5	6 69753.0 633 7 65	0.0	160751.5 633965

Run Time: 16:43:30

Alternate 1 - Minimal Faci. 15 (CASE 7)

PAGE 1 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	FABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	Engineering Cost USD (000)	Project Management USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELLSITE: Sourdoug											.=
MANIFOLD	559.9	267.5	844.7	1732 .1	22.6	340.4	510.6	0.0	4278.0	0.0	4278.0
POWER DISTRIBUTION	22.2	451.0	1672.6	273.6	40.7	241.9	362.9	0.0	3065.0	0.0	3065.0
TOTAL	582.1	718.4	2517.4	2005.7	63.3	582.4	873.6	0.0	7342.9	0.0	7342.9
WELLSITE: PtThom											
MANIFOLD	569.2	393.0	1156.9	1795.3	34.2	391.4	587.2	0.0	4927.1	0.0	4927.1
POWER DISTRIBUTION	44.4	600.5	2189.7	373,3	49.4	320.B	481.2	0.0	4059.3	0.0	4059.3
											1005.0
TOTAL,	613.6	993.5	3346.5	2160.6	83.5	712.2	1068.3	0.0	8986.4	0.0	8986.4
WELLSITE: Flaxman											
MANIFOLD	367.7	205.5	640.0	1690.6	16.4	290.4	435.6	0.0	3646.2	0.0	3646.2
POWER DISTRIBUTION	0.0	267.9	954.6	170.6	18.0	139.3	209.0	0.0	1759.3	0.0	1759.3
TOTAL	367.7	473.4	1594.6	1861.2	34.3	429.7	644.5	0.0	5405.5	0.0	5405.5
CENTRAL PROCESSING FA	CTT.TTV. DTM	CDP									
MANIFOLD	269.0	270.3	797.7	135.4	26.6	220.9	294.5	0.0	2014.3	0.0	2014.3
SEPARATION	2245.4	2653.3	8493.5	1445.6	452.7	2225.7	2967.6	0.0	20483.8	0.0	20483.8
CRUDE METERING	462.4	166.3	505.1	74.8	25.4	181.3	241.7	0.0	1656.9	0.0	1656.9
LOW PRES. GAS COMPR.	2685.5	1514.9	5065.2	842.1	238.9	1516.2	2021.5	0.0	13884.3	0.0	13884.3
REINJ. GAS COMPR.	57338.5	21822.6	67419.6	12008.0	3120.6	23788.3	31717.7	0.0	217215.2	0.0	217215.2
REINJ. GAS DEHYD.	2751.4	2028.9	6401.0	1162.7	338.1	1851.6	2468.8	0.0	17002.5	0.0	17002.5
PIG/SPHERE LAUNCHER	47.1	291.3	836.7	164.1	18.6	200.9	267.8	0.0	1826.5	0.0	1826.5
PRODUCED WATER	299.9	122.4	405.2	57.4	20.9	132.7	177.0	0.0	1215.4	0.0	1215.4
RELIEF	20.1	126.0	391.8	75.1	10.1	91.9	122.6	0.0	837.5	0.0	837.5
POWER GENERATION	8854.7	983.7	1801.9	225.1	183.7	1779.8	2373.1	0.0	16202.0	0.0	16202.0
POWER DISTRIBUTION	3091.4	3480.5	12408.3	2137.5	320.9	3167.7	4223.5	0.0	28837.8	0.0	28837.8
PIRED HEATERS	3147.9	1569.4	6815.6	443.6	488.3	1796.5	2395.3	0.0	16656.6	0.0	16656.6
HEATING MEDIUM	31.4	99.0	311.0	44.2	10.4	71.2	94.9	0.0	651.2	0.0	651.2
EFFLUENT WATER	\$1.2	556.0	1783.4	308.8	47.8	404.9	539.9	0.0	3691.9	0.0	3691.9
INSTRUMENT AIR	123.9	129.4	595.6	36.2	38.0	133.1	177.4	0.0	1235.5	0.0	1235.5
UTILITY AIR	0.0	44.6	134 - 4	27.2	2.4	30.9	41.2	0.0	280, 9	0.0	280.9
FUEL GAS	50.9	67.0	202.9	40.5	5.6	54.2	72.2	0.0	493.1 2742.9	0.0	493.1 2742.9
DIESEL FUEL	806.2	180.8	830.6	140.2	99.9	293.7	391.6 57.9	0.0	395.4	0.0	395.4
INERT GAS	118.3	39.2	110.5	21.6	4.4	43.4 14.9	19.9	0.0	135.2	0.0	135.2
CHEMICAL INJECTION	20.1	30.1	41.0	8.2	1.2	14.7	13.3	0.0	133.1	2.0	233.2

OPL __GINEERING Run Date: 01/

GRAND TOTAL

Run Time: 16:43:30

87120.6

127036.9

46760.8

140970.8

FAST-EST VERSION 4.15 . (SEP 97)

Alternate 1 - Minimal Paci: 18 (CASE 7)

SYSTEM COST SUMMARY

FREIGHT EQUI PMENT FABRICATION ERECTION OTHER BULK ENGINEERING PROJECT SUBTOTAL CONTINGENCY TOTAL MATERIAL MATERIAL COST COST COST COST MANAGEMENT COST COST COST SYSTEM USD (000) USD (000) USD (000) USD (000) USD (000) USD (000) USD (000) USD (000) USD (000) USD (000) USD (000) FIRE PROTECTION 283.6 185.1 588.4 92.4 21.2 172.4 229.9 0.0 1573.0 1573.0 0.0 CONTROL CENTER 468.0 50.3 103.4 20.0 4.2 96.2 128.3 0.0 870.5 0.0 870.5 BUILDINGS 1040.3 593.0 120.1 105.6 263.0 350.7 2472.7 0.0 0.0 0.0 2472.7 TANKAGE 158,2 620.6 1994.5 403.9 118.6 476.6 635.4 0.0 4407.8 0.0 4407.B 1191.4 FLARE 224.6 948.4 104.2 84.0 370.3 493.7 0.0 3416.7 3416.7 0.0 SITE PREPARATION 0.0 0.0 0.0 11600.0 0.0 1740.0 2320.0 0.0 15660.0 0.0 15660.0 TOTAL 85557.0 37245.0 119578.3 31740.6 5796.1 41118.1 54824.2 0.0 375859.4 0.0 375859.4 0.0 1868.3 215.2 WELL LINES 0.0 387.4 291.5 371.3 659.4 3793.1 0.0 3793.1 31.4 295° 2659 14361.0 GATHERING LINES 656.1 0.0 1047.2 207.3 214.9 369.6 0.0 14301.8 0.0 100279.2 3627.2 0.0 6287.1 11774.2 16543.7 11176.0 149687.4 EXPORT LINES 0.0 0.0 149687.4 0.0 13021.4 13021.4 INFRASTRUCTURE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13021.4 DRILLING 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

31686.5

10184

55115.5

74540.6

25226.4

-570458-0

らしいって

0.0

578458.Q

542756

PAGE 2 System Cost Summary Run Time: 16:18:50

FAST-EST VERSIC. _ _.15 (SEP 97)

PAGE 1 System Cost Summary

Alternate 2 - Minimal Pacilities w 2 PT Pads (CASE 6)

SYSTEM ·	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	FABRICATION COST USD (000)	ERECTION COST USD (000)	FREIGHT COST USD (000)	ENGINEERING COST USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
WELLSITE: Sourdoug											
MANIFOLD POWER DISTRIBUTION	559.9 22.2	267.5 451.0	844.7 1672.6	1732.1 273.6	22.6 40.7	340.4 241.9	510.6 362.9	0.0	4278.0 3065.0	0.0 0.0	4278.0 3065.0
TOTAL	582.1	718.4	2517.4	2005.7	63.3	582.4	873.6	0.0	7342.9	0.0	7342.9
WELLSITE: PtThom MANIFOLD	363.3	349.7	1004.9	1764.5	28.4	348.3	500 4				
POWER DISTRIBUTION	44.4	600.5	2189.7	373.3	49.4	348.2 320.8	522.4 481.2	0.0	4381.5 4059.3	0.0	4301.5 4059.3
TOTAL	407.B	950.2	3194.6	2137.8	77.8	669.0	1003.6	0.0	8440.8	0.0	8440.8
WELLSITE: Flaxman											
MANIFOLD	367.7	205.5	640.0	1690.6	16.4	290.4	435.6	0.0	3646.2	0.0	3646.2
POWER DISTRIBUTION	0.0	267.9	954.6	170.6	18.0	139.3	209.0	0.0	1759.3	0.0	1759.3
TOTAL	367.7	473.4	1594.6	1861.2	34.3	429.7	644.5	0.0	5405.5	0.0	5405.5
WELLSITE: PT#3											
MANIFOLD	183.9	201.6	555.3	1673.5	12.5	261.4	392.1	0.0	3280.4	0.0	3280.4
POWER DISTRIBUTION	22.2	451.0	1672.6	273.6	40.7	241.9	362.9	0.0	3065.0	0.0	3065.0
TOTAL	206.2	652.5	2227.9	1947.1	53.2	503.4	755.1	0.0	6345.4	0.0	6345.4
CENTRAL PROCESSING F	ACILITY: PTA	C CPF									
MANIFOLD	314.0	279.6	844.1	137.9	30. <u>7</u>	236.3	315.1	0.0	2157.8	0.0	2157.8
SEPARATION	2245.4	2653.3	8493.5	1445.6	452.7	2225.7	2967.6	0.0	20483.8	0.0 0.0	20483.8
CRUDE METERING	462.4	166.3	505.1	74.8 842.1	25.4 238.9	181.3 1516.1	241.7 2021.5	0.0	1656.9 13884.2	0.0	1656.9 13884.2
LOW PRES. GAS COMPR.	2685.4	1514.9	5065.2 67417.9	12007.7	3120.5	23787.8	31717.1	0.0	217210.9	0.0	217210.9
REINJ. GAS COMPR.	57337.8	21822.1 2028.9	6401.0	1162.7	338.1	1851.6	2468.8	0.0	17002.5	0.0	17002.5
REINJ. GAS DERYD.	2751.4 47.1	291.3	836.7	164.1	18.6	200.9	267.8	0.0	1826.5	0.0	1026.5
PIG/SPHERE LAUNCHER PRODUCED WATER	299.9	122.4	405.2	57.4	20.9	132.7	177.0	0.0	1215.4	0.0	1215.4
RELIEF	20.1	126.5	393.3	75.4	10.1	92.3	123.1	0.0	840.8	0.0	840.B
POWER GENERATION	8854.7	983.7	1801.9	225.1	183.7	1779.8	2373.1	0.0	16202.0	0.0	16202.0
POWER DISTRIBUTION	3417.5	3681.4	13119.4	2254.1	350.9	3370.9	4494.5	0.0	30688.7	0.0	30688.7
FIRED HEATERS	3147.9	1569.4	6815.6	443.6	408.3	1796.5	2395.3	0.0	16656.6	0.0	16656.6
HEATING MEDIUM	31.4	68,3	311.9	44.4	10.4	71.4	95.2	0.0	653.1	0.0	653.1
EFFLUENT WATER	51.2	560.4	1796.7	311.4	48.0	408.0	543.9	0.0	3719.7	0.0	3719.7

OF INEERING Run Date: 01/ '8

Run Time: 16:18:50

FAST-EST VERSION ... 15 - (SEP 97)

Alternate 2 - Minimal Facilities w 2 PT Pads (CASE 8)

SYSTEM COST SUMMARY

PAGE 2 System Cost Summary

SYSTEM	EQUIPMENT MATERIAL USD (000)	BULK MATERIAL USD (000)	PABRICATION COST USD (000)	ERECTION COST USD (000)	PREIGHT COST USD (000)	Engineering Cost USD (000)	PROJECT MANAGEMENT USD (000)	OTHER COST USD (000)	SUBTOTAL COST USD (000)	CONTINGENCY USD (000)	TOTAL COST USD (000)
INSTRUMENT AIR	123.9	12917	. 596.3	38.3	38.1	133.2	177.6	0.0	1237.1	0.0	1237.1
UTILITY AIR	0.0	44.8	135.0	27.3	2.4	31.1	41.4	0.0	282.1	0.0	282.1
FUEL GAS	50.9	67.2	203.7	40.6	5.6	54.4	72.5	0.0	494.8	0.0	494.8
DIESEL FUEL	806.2	181.0	831.2	140.3	99.9	293.8	391.7	0.0	2744.2	0.0	2744.2
INERT GAS	118.3	39.3	110.9	21.7	4.5	43.5	58.0	0.0	396.2	0.0	396.2
CHEMICAL INJECTION	20.1	30.2	41.1	8.2	1.2	14.9	19.9	0.0	135.7	0.0	135.7
PIRE PROTECTION	283.6	185.7	590.3	92.8	21.2	172.8	230.5	0.0	1576.8	0.0	1576.8
CONTROL CENTER	468.0	50.3	103.4	20.0	4.2	96.2	128.3	0.0	870.5	0.0	870.5
Buildings	1108.8	0.0	632.0	128.0	112.5	280.3	373.8	0.0	2635.4	0.0	2635.4
TANKAGE	. 158.2	620.6	1994.5	403.9	118.6	476.6	635.4	0.0	4407.8	0.0	4407.8
FLARE	1191.4	224.9	949.4	104.4	84.0	370.5	494.0	0.0	3418.6	0.0	3418.6
SITE PREPARATION	0.0	0.0	0.0	11600.0	0.0	1740.0	2320.0	0.0	15660.0	0.0	15660.0
TOTAL	85995.9	37462.1	120395.1	31871.7	5829.6	41358.7	55144.9	0.0	378058.0	0.0	378058.0
WELL LINES	0.0	848.0	0.0	3862.4	471.1	607.4	774.7	1363.2	7926.8	0.0	7926.8
GATHERING LINES	0.0	5122.9	0.0	4175.2	3.55	1077.2	1007.3	1473.6	15703	0.0	15703
EXPORT LINES	0.0	6287.1	0.0	100279.2	3627.2	11774.2	16543.7	11176.0	149687.4	0.0	149687.4
INFRASTRUCTURE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16380.9	16380.9	0.0	16380.9
DRILLING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GRAND TOTAL	87559.7	52514.6	129929.6	140140.3	- 20136.5 - 13-63	57001.9	76747.5	30393.7	-0107031 70	0.0	-62078377 5 95 290