

BP Exploration (Alaska) Inc.

Liberty Island Route

Water / Sediment Sampling March 18-19, 1998

Revised and Corrected Final Data Report - August 1998

TABLE OF CONTENTS

Revisions included in the August, 1998, Final Data Report	iii
1. INTRODUCTION	1
 1.1 BACKGROUND 1.1.1 Water Quality Monitoring Objectives	I
2. MONITORING PROCEDURES	2
 2.1 LOCATION AND PROBLEM STATEMENT	2
3. MONITORING RESULTS	4
 3.1 SAMPLING CHRONOLOGY	5
3.2.2 Sediment Chemistry	6 6
4. DOCUMENTATION AND REPORTING	
4.1.1 Field Logbook	8
4.1.3 Chain-of-Custody Forms	8
 4.1.4 Photographs 4.1.5 Sample Documentation 4.1.6 Laboratory Data Log	8
4.1.7 Data Reporting and Data Deliverables 4.1.8 Summary Statistics	9
5. QUALITY ASSURANCE AND QUALITY CONTROL	9
 5.1 QUALITY ASSURANCE OBJECTIVES 5.2 CALIBRATION PROCEDURES	. 10 . 10 . 10
5.3 DATA VALIDATION SUMMARY	.11

ł

Figures

Figure 1 1998 Borehole Sampling Locations	.12
Figure 2 Arsenic Concentrations by Sample Locations	
Figure 3 Barium Concentrations by Sample Location	.14
Figure 4 Chromium Concentrations by Sample Location	15
Figure 5 Lead Concentrations by Sample Location	16
Figure 6 Mercury Concentrations by Sample Location	.17
Figure 7 Grain Size Distribution	.18
Figure 8 Grain Size Distribution by Sample Location, Sorted by Depth	19
Figure 9 Total Suspended Solids by Ice Free Water Depth	20

Tables

Table 1	Sample Plan Checklist	21
	Water Quality Parameters	
Table 3	Grain Size Results	25
Table 4	Summary of Analytical Results and Benchmark Criteria	26
	-	

Appendices

Appendix A	Field Note Forms
------------	------------------

Appendix B Chain-of-Custody Records

Appendix C Photographs

Appendix D Laboratory Data Sheets

.

÷

- -

. _____ . _ _ _

Revisions included in the August, 1998, Final Data Report.

This document was originally published in May of 1998. The document was revised and corrected following comments received by BPXA in a letter from Jeffery Walker of Minerals Management Service to Peter Hanley dated August 3, 1998. Issues raised by MMS include the following, followed with a response from Montgomery Watson.

1. Discrepancy between field and laboratory turbidity.

A comparison of field and laboratory turbidity data to laboratory total suspended solids (TSS) data demonstrates some consistent patterns. Field turbidity data are uniformly higher that laboratory data for each individual water sample. Field turbidity data were reported to 3 significant figures, while BPXA laboratory data were reported to one significant figure, including 3 reported values of "0". We interpret "0" values from the BPXA laboratory to indicate less than a detection limit of 1.0 NTU. It is unreasonable to conclude that there would be "0" NTU's in the samples.

The holding time limitation for turbidity is 48 hours. Sample results are subject to particle aggregation and settling between the time of sample collection and the time of analysis. The laboratory did not report date and time of analysis; thus, compliance with holding times cannot be verified. The laboratory turbidity values may be biased low due to the interaction between particles over time. Alternatively, field values may reflect the presence of tiny ice crystals that would exist in the field at sub-freezing temperatures, but not be apparent in the laboratory at standard temperatures above freezing. 1997 field notes from the Liberty Island Route water quality analyses note complications with field turbidity measurements due to ice formation.

TSS analyses were performed on the seventh day of a seven-day holding time. Particles in seawater which make up TSS are subject to degradation by dissolution and/or biochemical reaction over time. TSS results may be biased low due to solute/solvent interaction in the manner suggested above for laboratory turbidity. Most of the TSS results were very close (within 150%) of the reported detection limit. Of the four values in excess of 200% of the stated detection limit, a consistent and reasonable relationship with turbidity can be discerned from both field and laboratory measurements. QC data reported by the laboratory showed good recovery of a spike sample at 60 mg/L TSS, but data is not provided which documents accuracy of reporting within 200% of the detection limit of 10 mg/L.

2. pH below expected range.

pH data from the 1997 Liberty Island water quality sampling effort was in the range of 7.5 to 8.4, using methods and instrumentation identical to the 1998 effort. Other recent North Slope investigations have yielded seawater pH values ranging from as low as 5.8 (Endicott NPDES Environmental Monitoring, April, 1995) to 8.06 (Northstar Development Project 1997 Data Report). The Beckman meter used in each of these efforts is a model programmed for internal temperature compensation. The particular unit used in March of 1998 was factory calibrated and checked in January, and a field calibration was performed at each site. The gel-filled probe on this model is more reliable for cold weather sampling then other probe types. The electronic meter box is often suspect when exposed in cold weather sampling. We ensured that the meter box was kept warm in an insulated container to prevent effects of frost on the meter workings. Calibration or machine error is unlikely.

3. Apparent density instability.

Densities were calculated and presented in Table 2 of the May, 1998, data report from temperature and salinity data that were transcribed incorrectly from the field data sheets. This edition features an update to Table 2, with corrected values of field and laboratory data for all samples. The corrected table indicates a density instability in the water column at station 98BPXL114, with water slightly warmer and fresher (- 0.5° C, 27 ppt salinity, 1021.7 kg/m³) underlying cooler saltier water (- 1.0° C, 28 ppt salinity, 1022.5 kg/m³). The calculated densities yield a false impression of precision in the salinity and temperature measurements. Temperature and salinity field instruments have a resolution of 0.5 degrees and 1 ppt, respectively. A small error in either the salinity or temperature measured in the field could lead to a resultant change in the relative density of the samples. Conductivity measurements for both sample depths are the same, suggesting that there is no significant difference in salinity or density within the water column.

Table 2 has also been expanded to include results of metals analyses of the water samples. Text has been corrected to reflect the appropriate ranges of values of various water quality measurements.

4. Sample preservation.

The previous edition stated incorrectly that samples were "cooled to 4° Celsius", which would be a common requirement for sampling in temperate weather. Samples from the March, 1998 sampling of the Beaufort Sea were maintained at temperatures less than $+4^{\circ}$ C prior to laboratory analysis.

Other changes made in the document include:

- 1. Section 1.1. Deleted reference to pipeline "shown in Figure 1". The pipeline alignment is not shown in that figure, although the proposed alignment is shown in Appendix A in documentation of the sample sites provided by BPXA contract surveyors.
- 2. Section 2.3. Added references to metals sampling of the water column and clarified procedures for field measurements of water quality.
- 3. Section 3.1. Corrected sample locations.
- 4. Section 3.2.1. Revised and added commentary on water quality results.
- 5. Section 4.1.8. Referenced summary statistics on Table 4.
- 6. Figures 2-6. Added information to titles and legends to indicate data are for sediment samples, taken from various depths below the sea floor.
- 7. Figure 9. Revised to more clearly represent findings with respect to water depth.
- 8. Table 1. Revised and condensed to single page.
- 9. Table 2. Expanded to 2 pages to present metals results.

1. INTRODUCTION

1.1 BACKGROUND

The Liberty Island Development Project involves offshore exploration and production of oil and gas resources within Foggy Island Bay between Endicott and Liberty #1 Ice Island in the ice-ridden Beaufort Sea. Oil and gas produced by the project are intended to be brought to existing onshore delivery facilities by way of offshore pipeline.

1.1.1 Water Quality Monitoring Objectives

In 1997, geochemical characterization of sediments and water quality took place along several potential offshore pipeline alignments. In 1998, a final proposed alignment was selected, requiring further characterization for project engineering and National Environmental Policy Act (NEPA) documentation. A series of sampling stations was identified by BP Exploration (Alaska) Inc. (BPXA) (Figure 1). A water quality and geochemical sampling plan was prepared by Woodward-Clyde and was amended through discussions with BP Exploration and Montgomery Watson on March 7 and in accordance with input from John Malik of U.S. Environmental Protection Agency (USEPA) and Barbara Reilly of the U.S. Army Corps of Engineers (USACE).

The objective of this field study was to provide baseline water and sediment characterization along the final proposed offshore pipeline alignment. These results augment the 1997 work performed by Montgomery Watson on three alternative alignments for the Liberty Island pipeline route, thus confirming and supplementing existing data and information to the BPXA Liberty project team on the nature and dispersal of sediments which may be disturbed in the trenching operations.

1.1.2 Monitoring Program Organization and Responsibilities

Montgomery Watson performed this work under the direction of Mary Cocklan-Vendl of the Health Safety, and Environment Department of BPXA. The BPXA Prudhoe Bay laboratory performed water analysis for BOD₃ and turbidity. Quanterra's laboratory in West Sacramento, California, performed the soil and water analysis for metal parameters. Multichem Analytical Service, (MAS) in Anchorage, Alaska, completed the remainder of the analyses for the soil parameters. Montgomery Watson's project team was directed by Project Manager, J. Brett Jokela, P.E. in conjunction with field operations supervisor Bonnie McLean. Field work was undertaken by Bonnie McLean, Senior Environmental Scientist and Associate Geologist Sharon Sadlon. Bonnie McLean is experienced in offshore winter field operations on the North Slope, having participated in water quality and sediment monitoring at the Endicott NPDES Monitoring Program, the 1996 Northstar Pilot Offshore Trenching Program, and the Liberty Island Route water/sediment sampling. Lynn DeGeorge, Senior Environmental Scientist, reviewed the chemical data.

BPXA provided transportation to and from Deadhorse, accommodations, and workspace for mobilization and sample shipment preparation at the Endicott Spill Response Warehouse, Building 608.

Duane Miller and Associates provided logistical support for the fieldwork, under a separate project task authorization with BPXA. Duane Miller and Associates provided on-ice transportation through subcontracts to equipment operators. A tundra Rolligon was supplied by CATCO. The Rolligon was used to transport a skid mounted warming safety shack and Discovery Drilling's CME-75 drill rig, stationed in a rig enclosure (see Photo cover and Appendix C). This equipment was mobilized to four pre-located stations and was used to drill through the ice, allowing water quality sampling measurements and soil sample collection.

1.2 DATA REPORT

This report describes sampling sites, analytes, and methodologies; presents analytical findings; and describes quality control established for this field effort.

2. MONITORING PROCEDURES

2.1 LOCATION AND PROBLEM STATEMENT

The final proposed pipeline alignment for the Liberty Island project was identified by BPXA Inc. on a transect extending north-northeast from shore at SE 1/4, Section 24, T.10N, R.17E., Umiat Meridian through Foggy Island Bay and terminating at the proposed island. Sampling locations were established approximately 1/3 and 2/3 the distance from shore to the proposed island (sample I.D. DMA98-14 & DMA98-9, respectively) and at the proposed island pipeline riser location (sample I.D. DMA98-2). A fourth location (sample I.D. DMA98-30) was approximately 600m NW of the proposed island DMA98-1). Sampling was conducted at these four (4) sites in water (ice) depths ranging from approximately 20.7 to 6.8feet. Ice thickness varied from approximately 5.2 to 4.6 feet.

A shallow trench, 8 to 12 feet below the sea floor, has been proposed for Liberty pipeline construction, using a large hydraulic excavator working from a thickened ice pad on top of the sea ice. A major consideration is the potential occurrence of contaminants, including trace metals and hydrocarbons in the sediments. A baseline of sediment chemical quality is necessary to evaluate potential effects of construction activity on the marine environment. Work by Montgomery Watson at the Northstar Development Project (Montgomery Watson, April 1, 1996) demonstrated that sediment dispersal from trenching activities is most likely short in duration and limited to a small area near the trench. However, associated with the disruption of the sediment by trenching is the potential for release of toxic contaminants from the sediments that may affect the viability of epibenthos and/or plankton which live in the shallow waters of the nearshore Beaufort Sea. Background levels of trace metals and volatile and semi-volatile organic compounds were documented by measuring their concentrations at three discrete depths beneath the sediment surface.

2.2 SAMPLE LOCATIONS AND MOBILIZATION

Sample sites were positioned along the final proposed pipeline route at the locations identified on the map attached as Figure 1 at the end of this section. The locations were staked and identified with respect to Alaska State Plane coordinates and latitude/longitude in advance by BPXA contract surveyor support. Each of the sampling locations was located by the field sampling crew by navigating a Rolligon vehicle using the GPS coordinates provided by the BPXA contract surveyor.

One Rolligon was used during the sampling regimen, and two skids were towed separately to each location. One skid held an enclosed CME-75 drill rig, which augered through the sea ice and drove and retrieved the split spoons for soil samples. The second skid held a warming shack in which extra equipment and supplies were stored.

2.3 SAMPLE COLLECTION PROCEDURES

Data collection at each station was performed in the following order:

- 1. Locate station using GPS positioning
- 2. Bore through ice, measure and record distances from drill rig floor to ice
- 3. Measure and record thickness of ice
- 4. Measure and record distances from top of water in hole to top of ice
- 5. Measure and record bottom depth (depth to seafloor)
- 6. Conduct salinity, conductivity/temperature profiles
- 7. Collect sample for dissolved oxygen (DO), turbidity, metals, and pH at each distinct stratum
- 8. Collect total suspended solids (TSS), turbidity (laboratory), BOD,, and TOC samples at each discrete sample point
- 9. Drive and retrieve 4"x 2' split spoon from surface to 2 feet below surface
- 10. Collect soil samples from 0.5' to 1' for organic, metal, and grain size analyses
- 11. Drive and retrieve 4" x 2' split spoon from 2' to 4' below surface
- 12. Collect soil samples from 2' to 3' for organic, metal, and grain size analyses
- 13. Drive and retrieve 4"x 5' split spoon from surface to 8 to 10 feet below surface
- 14. Collect soil samples from 8' to 9' for organic, metal, and grain size analyses
- 15. Confirm GPS location and close out site

Station positioning (Activities 1 and 15) have been outlined in Section 2.2. Field measurements and conditions are contained in the field note forms supplied in Appendix A and are summarized in Table 2. Techniques for each of the other activities are discussed below:

Activity 2, Activity 3, and Activity 4: Sea Ice Thickness

The CME-75 enclosed drill rig-mounted auger was used to bore through the ice for water column and sediment sampling. Depth of the boring was monitored closely; the auger was withdrawn for depth checking and clearing of ice chips several times as the drilling progressed.

Ice thickness and depth to water surface were measured using a graduated sounding rod equipped with a small hook to catch the ice edge. The top of the "black" sea ice was used as a datum.

Activity 5: Bottom Depth

The bottom depth was measured using a sounding lead and calibrated brass chain. Ice-free water depth was calculated as the difference of depth to bottom and ice-depth. The maximum ice-free water depth was 16.7 feet deep at the sampling location DMA98-2.

Activity 6: Conduct Salinity(Conductivity)/Temperature profiles

Temperature, conductivity and salinity measurements were made at 0.5-foot increments through the water profile.

Activity 7: Measure Dissolved Oxygen Turbidity and pH at each sampling station

Dissolved oxygen (DO), turbidity, and pH were measured in the field, *ex-situ*, from samples taken at each of the sampling points within the water column. DO measurements were completed with a Hach

2100 colorimeter and a high range (HR) standard. Field measurements for pH were made with a Beckman pH meter. Turbidity was measured by a Hach 2100P nephelometric turbidimeter.

Activity 8: Collect Samples for Turbidity, Total Organic Carbon, Biological Oxygen Demand, Metal, and Total Suspended Solids

Samples of under-ice free water were collected with a stainless steel point source sampler to document the occurrence of turbidity, total organic carbon (TOC), five-day biological oxygen demand (BOD₃), trace metals, and total suspended solids (TSS). Samples were contained in 1-liter, nalgene plastic bottles. Color and appearance were documented in the field note form for the site. Samples for turbidity and BOD₃ were submitted to the BPXA BOC laboratory for analysis. TSS and TOC samples were shipped off-site to be measured by MAS Laboratories in Anchorage. Metals samples were sent unfiltered to Quanterra Laboratories in Sacramento California for analysis of total arsenic, total barium, total chromium, total lead, and total mercury.

Activities 9 through 14: Sediment sampling

Soil samples were collected at three intervals in the following depth ranges below the soil/water interface: (1) one-half to one foot, (2) two to three feet, and (3) eight to nine feet.

In each instance, a split spoon was driven by a 340 lb. mechanical hammer with a 30-inch drop into the sediment. Each core was removed, drained, and troweled into sample jars, beginning with samples for volatile organics, and progressing to semivolatiles, total organic carbon, metals, and finally, grain size analysis.

Duplicate core samples were collected for all analyses at two stations (DMA98-2 and DMA98-30) selected at random in the field.

Activity 15: Site close-out

At the completion of each site sampling effort, the field team leader initialed the form to confirm that all field note form information had been entered. The final GPS location was recorded on the field note form prior to leaving the site.

3. MONITORING RESULTS

3.1 SAMPLING CHRONOLOGY

Sampling was performed over two days (two 12 hours shifts), from Wednesday, March 18, 1998 through Thursday, March 19, 1998. The following table relates the sampling order for this project:

Date	Site	Geodetic Location	Sampled by
03/18/98	DMA98-14	Lat: 70° 13° 43" N Long: 147° 38' 45" W	BGM
03/18/98	DMA98-9	Lat: 70° 15' 11" N Long: 147° 36' 7 " W	BGM
03/18/98	DMA98-2	Lat: 70° 16' 38" N Long: 147° 33' 31" W	SS
03/19/98	DMA98-30	Lat: 70° 16' 54" N Long: 147° 34' 10" W	SS

BGM = Bonnie McLean, MW SS = Sharon Sadlon, MW

3.1.1 Laboratory Analyses

BPXA BOC laboratory conducted analyses for turbidity and BOD₅. Other samples were analyzed by MAS Laboratory in Anchorage, Alaska and Quanterra Laboratory in West Sacramento, California. Appropriate methodologies are available in the following references:

- Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846, November 1990)
- Methods for Chemical Analysis of Water and Wastes (EPA 600/4-79-020, March 1982)

Measurement	Matrix	Method	Sample Container	Preservation Method	Holding Time	
Salinity (Conductivity)	water	field measurement	field aliquot	n/a	n∕a	
Dissolved Oxygen	water	field measurement	field aliquot	n/a	n/a	
Turbidity	water	field measurement EPA 180.1	field aliquot/ 500 ml. HDPE	n/a n/a	immediate 48 hours	
Temperature	water	field measurement	in situ	π ⁄a	immediate	
pH	water	field measurement	field aliquot	∎/a	immediate	
BOD,	water	EPA 405.1	I liter HDPE	n/a	12 hours	
Total Suspended Solids	water	SWA 160.2	500 ml HDPE	Held at 2'- 4'C	28 days	
Total Organic Carbon	soil	SWA 415.1	4oz Clear Wide Mouth	Held at 2"- 4°C	28 days	
Arsenic (As)	soil, water	SWA 6020	4oz Clear Wide Mouth	Held at 2°- 4°C	6 months	
Barium (Ba), Total ionic	soil, water	SWA 6020	H	Held at 2°- 4°C	6 months	
Chromium (Cr), Total	soil, water	SWA 6020		Held at 2°-4°C	6 months	
Lead (Pb)	soil, water	SWA 6020	64	Held at 2°- 4°C	6 months	
Mercury (Hg)	soil, water	SWA 7471 - CV	44	Held at 2"- 4"C	28 days	
Volatile Organic Compounds	soil	8260a	2oz Ciear Wide Mouth	Held at 2"- 4"C	14 days	
Semi-volatile Organic Compounds	soil	8270	4oz Clear Wide Mouth	Held at 2"- 4"C	14 days	
Grain Size	soil	ASTM D-422	IL polyethylene bag	n∕a	indefinite	
Particle Size	soil	ASTM D2487	1 gal. bag	n∕a	indefinite	

The following table summarizes project sampling requirements:

3.2 ANALYTICAL RESULTS

Tables and figures documenting results are provided at the end of this section. Table 1 is a sample plan checklist identifying what analyses were run on each sample. Table 2 is a summary of water quality parameters, including field measurements. Table 3 lists results of grain size analysis. Table 4 is a summary of the analytical results for soils and water. All laboratory and field data are included in Appendices.

3.2.1 Sea Water

Field measurements showed temperatures of -1 to -2 degrees Celsius, with salinities in the range from 27 to 33 parts per thousand. pH ranged from 6.3 to 7.6, while dissolved oxygen ranged from 7.4 to 11.0 ppm.

Turbidity field measurements ranged from a low of 6.12 NTU to a high of 17.6 NTU. Turbidity laboratory measurements ranged from a low of 0 NTU to a high of 11 NTU. Field turbidity may have

been affected by ice crystals.

All BOD, results were less than 1 mg/l (the laboratory reporting limit). Total suspended solids ranged from a low of less than 10 mg/l to a high of 74 mg/l, as illustrated in Figure 9. Trace metals results show some detected levels of arsenic in the water column near the reporting limit. Barium was found in each water sample, ranging from 0.0175 mg/L to 0.0551 mg/L. No chromium, lead, or mercury was reported in any of the water samples.

3.2.2 Sediment Chemistry

Results of metals analyses are shown in Figures 2 through 6 at the end of this section. Less than detection limit results are assigned a value of "0" for statistical purposes in Table 4. Arsenic averaged 5.5 mg/kg throughout the pipeline alignment. The coefficient of variation (the standard deviation of the samples divided by the mean) for all of the sites was 39%.

Barium averaged 44.8 mg/kg across the pipeline alignment with a coefficient of variation of 33%.

Chromium averaged 12.2 mg/kg across the pipeline alignment with a coefficient of variation of 41%.

Mercury averaged 0.035 mg/kg across the pipeline alignment with a coefficient of variation of 78%.

Lead averaged 5.36 mg/kg across the pipeline alignment with a coefficient of variation of 52 %.

Sediment grain size data are illustrated in Figures 7 and 8. All samples were shown to be predominantly silt with a trace to some sand, with the exception of the deep sample at Station 14, which was predominantly sand.

There were no detections of volatile organic compounds (VOC).

Six components of the Semi-volatile Organic Compounds (SVOC) exceeded the minimum report detection limit (see Table 4). These compounds are: bis-(2-ethylhexyl)phthalate, Benzo(a)pyrene, and 2-Methylnapthalene, 4-Methyphenol (p-Cresol), Phenanthrene, and Phenol.

3.3 SEDIMENT QUALITY STANDARDS

Sediment quality standards are driven by the impacts of pollutants on benthic biota. State sediment quality standards have not been established by the state of Alaska, thus other benchmark criteria were sought for comparative analysis. As the work performed at Liberty Island is a baseline study of the water and sediment quality, all criteria are used for comparison only. Exceedances do not necessarily indicate concern.

Liberty Island Route sediment data were compared to the following benchmarks: EPA Ecotox Thresholds; Puget Sound Dredged Disposal Analysis; and EPA Region III's Risk-Based Concentrations.

EPA Ecotox Thresholds (ET): The EPA has developed a group of ecotoxicologically-based threshold criteria (ET) for use in ecological risk assessments at Superfund sites. The ETs are intended to provide technical information to EPA and other government employees but do not constitute rulemaking by the EPA. Benchmarks have been developed for surface water and sediments, with sediment benchmarks presented as sediment quality criteria (SQC) for fresh water and marine environments, sediment quality benchmarks (SQB), and effects range low (ERL). If neither SQC nor SQB has been calculated, the ERL will be used as the sediment ET. For the analytes detected at Liberty Island only ERLs have been

calculated. The ERL represents the lower 10th-percentile concentration associated with observation of biological effects. Accordingly, concentrations below the ERL would rarely be associated with adverse effects. Table 4 provides a summary of the analytical results and benchmark screening levels.

Puget Sound Dredged Disposal Analysis (PSDDA): PSDDA analytic methods and criteria have been established for the Puget Sound area in Washington state. PSDDA chemical analyses were developed by the collaborative efforts of EPA Region X (Seattle), the USACE and the Washington State Departments of Natural Resources and Ecology. The Washington Department of Ecology is responsible for issuing state certification for USACE Section 404 permits. Data and criteria are reviewed annually; however, no changes in numeric standards have been made since 1988.

Three levels of contaminant concentrations have been established by PSDDA: a screening level, a bioaccumulation level, and a maximum level. Standards for each level are derived from a statistical model, in which apparent effects thresholds are defined. The model is applied to a rigorously quality-controlled database of sediment chemistry and bio-effect data. The maximum level is the level of highest apparent effects. The screening level is established at either the lowest biological effects level or at 10% of the maximum effect level. Arsenic, lead, mercury, and 42 volatile and semi-volatile organic compounds are included in the list of PSDDA parameters. There are no PSSDA criteria for the barium or chromium species.

Liberty Island sediment results are uniformly below the PSDDA screening level criteria for all components shown in Table 4 except 4-Methylphenol (p-Cresol).

Risk-Based Concentrations (RBCs): EPA Region III has calculated separate carcinogenic and noncarcinogenic RBCs for various pathways of ingestion or inhalation. The lower of the two is presented in the RBC tables published by EPA Region III which are updated and distributed semi-annually. The various pathways include residential water, ambient air, edible fish, industrial soil ingestion, and residential soil ingestion (which are generally lower (more stringent) than industrial soil ingestion). There are no RBCs for diesel range organics.

Liberty Island sediment results are uniformly below the RBCs for all the metals sampled as shown in Table 4. Results of analyses for discrete volatile and semi-volatile compounds were all below detection levels, with the exception of Benzo(a)pyrene.

4. DOCUMENTATION AND REPORTING

4.1 FIELD DOCUMENTATION

The field team leader was responsible for maintaining records of field activities, including field analytical measurements, sample locations, and sample identification. Data was entered into a bound notebook while field activities were in progress. All field documents were supplied to the project manager at the end of the field investigation. Field results were incorporated into progress reports or final reports, as appropriate. A sample plan checklist was used to identify sample numbers, sample locations, sample matrices, analytical parameters, sample containers, and quality control samples. This checklist was prepared by the project manager prior to mobilization and provided the field team with a concise list of samples by location. The field team leader reviewed the checklist for completion following sample collection and prior to the shipment of samples or departing from the site.

4.1.1 Field Logbook

Logbooks and data forms are necessary to provide sufficient data and observations to enable participants to reconstruct events that occurred during the project and to refresh the memory of field personnel if called upon to give testimony during legal proceedings. All daily logs were kept in bound, waterproof notebooks containing numbered pages. All entries were dated and signed. No pages were removed for any reason. Unused pages were crossed through, signed, and dated by the field team leader or project manager. Corrections were made by drawing a single line through the original entry (so the original entry can still be read) and writing the corrected entry beside the original. Corrections were initialed and dated.

4.1.2 Field Note Forms

Field note forms were used to record all data pertaining to a particular sampling event at a single sampling station. Field note forms are designed to assist the field crews in completing the work at each station. Field note forms were reviewed for completeness and accuracy and initialed in the field by the field sampling task leader. Copies of the original field note forms are provided in Appendix A.

4.1.3 Chain-of-Custody Forms

The purpose of chain-of-custody procedures is to ensure that the integrity of samples is maintained during their collection, transportation, storage, and analysis. All chain-of-custody requirements comply with standard operating procedures indicated in EPA sample handling protocol. Chain-of-custody records are provided in Appendix B.

4.1.4 Photographs

Photographs were taken at the sampling locations as directed by the team leader. Selected photographs are provided in Appendix C. Documentation of a photograph is crucial to its validity as a representation of an existing situation.

4.1.5 Sample Documentation

The field crew recorded the location of all samples on scaled site maps.

Each sample was labeled and sealed immediately after collection. The sample label was filled out using waterproof ink and firmly affixed to the sample containers with clear waterproof tape. An alphanumeric code was assigned to each sample as an identification number to track samples at the site. The sample code is broken down as follows:

<u>Year</u>	Project	Sample Location	<u>Sample matrix</u>	<u>Sample</u>
98	BPXLI	2, 9, 14, 30	SD=Sediment	01=primary
			WA=Water	61=duplicate

The sample label contains the following identification:

Date and time of collection; Sample identification number; Analysis required (including analytical method number); Preservation method used; and Initials of field team member compiling samples.

Sample volume levels were marked on each liquid sample container. After the sample was collected,

pertinent information, such as sample identification number, date and time of sample collection, sample collection method, description of sample, and any field measurements (temperature, salinity, turbidity, etc.), were recorded on the field note form, and the recorder initialed the entry.

4.1.6 Laboratory Data Log

All data generated was reviewed by comparing and interpreting results from chromatograms (responses, stability, retention times), accuracy (mean percent recovery of spiked samples), and precision (reproducibility of results). Laboratory Data Sheets are presented in Appendix D.

4.1.7 Data Reporting and Data Deliverables

All laboratory-generated data was supplied in both hard copy and electronic formats in compliance with EPA Tier 1 guidelines.

4.1.8 Summary Statistics

Station values for water quality parameters have been summarized in tabular and graphic form. Statistics are calculated and presented in Table 4.

5. QUALITY ASSURANCE AND QUALITY CONTROL

5.1 QUALITY ASSURANCE OBJECTIVES

Characteristics used to assess generated data were precision, accuracy, representativeness, completeness, and comparability, often referred to as PARCC parameters. PARCC parameters were integrated throughout the work plan and applied throughout the data collection process.

Project goals expressed specific PARCC parameters necessary to meet regulatory requirements, such as maximum level. Performance goals were specifically related to indicator quality control (QC) samples as quantitative measures of PARCC parameters. For example, analysis of one duplicate in ten samples is a performance goal and the results of duplicate analyses are an indicator of precision. The completeness goal for all analytes is 87.5%, or 7 of 8 results.

	Laboratory Precisio (Duplicate Relative Percent Di		Laboratory Accuracy (Laboratory Control Sample % Recovery)				
	·						
Total Suspended Solids			80-120				
Total Organic Carbon	20		80-120				
Grain Size	n/a		n/an/a				
Arsenic (As)	20		80-120				
Barium (Ba), Total ionic	20		80-120				
Chromium (Cr), Total	20		80-120				
Lead (Pb)	20		80-120				
Mercury (Hg)	20		80-120				
Volatile Organic	1,I-Dichloroethene	22	1,1-Dichloroethene	54-138			
Compounds	Benzene	21	Benzene	70-130			
	Trichloroethene (TCE)	24	Trichioroethene (TCE)	57-132			
	Toluene	21	Toluene	71-129			
	Chlorobenzene	21	Chlorobenzene 72-				
Semi-volatile Organic	Phenol	35	Phenol	28-110			
Compounds	2-Chlorophenol	50	2-Chlorophenol	22-110			
	1,4-Dichlorobenzene	27	1,4-Dichlorobenzene	21-110			
	N-Nitroso-di-n-propylamine	38	N-Nitroso-di-n-propylamine	24-110			
	1,2,4-Trichlorobenzene	23	1,2,4-Trichlorobenzene	32-110			
	4-Chloro-3-methylphenol	33	4-Chloro-3-methylphenol	35-112			
	Acenaphthene	19	4-Nitrophenol 29-1				
	4-Nitrophenol	50	2,4-Dinitrotoluene 51-11				
	2,4-Dinitrotoluene	47	Pentachlorophenol 41-13				
	Pentachlorophenol	. 47	Pyrene	45-135			
	Pyrene	36					

Accuracy and Precision Criteria

Note:

Only system monitoring compounds are listed for Volatile and Semi-volatile Organic Compounds.

n/a - Criteria do not apply due to the nature of the analysis

* - Because this parameter has no standard analysis method, Limits are advisory only.

5.2 CALIBRATION PROCEDURES

All instruments and equipment used during the sampling and analysis were operated, calibrated, and maintained according to the manufacturer's guidelines and recommendations as well as criteria set for the instrument in the applicable methodology references. Operation, calibration, and maintenance were performed by personnel properly trained in these procedures.

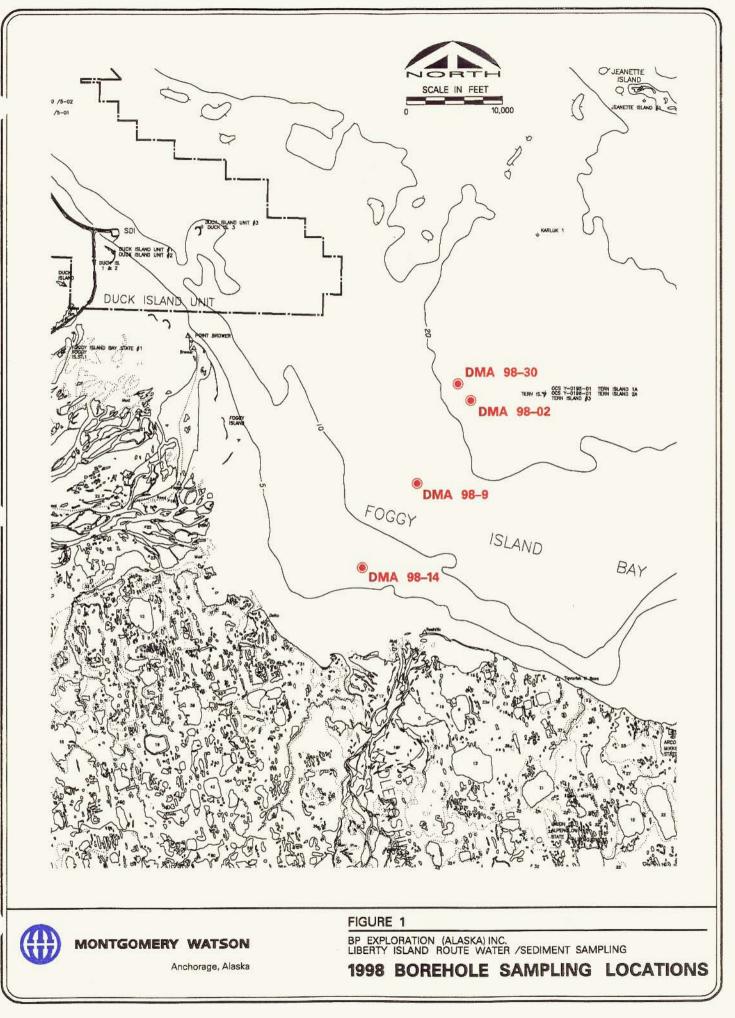
5.2.1 Field Equipment

Each field instrument was calibrated prior to use at each sample location and, in some instances where appropriate, before each use. These instruments include a portable digital temperature/salinity/ conductivity meter, pH meter, dissolved oxygen meter, and a turbidity meter. Calibration assured accurate readings for each day of use and was noted in the Field Notebook of the calibrator.

5.2.2 Laboratory Instrumentation

Laboratory capabilities were initially demonstrated for instrument and reagent/standards performed as well as accuracy and precision of analytical methodology. Brief descriptions of calibration procedures for major instrument types are presented in the previously referenced methodologies.

5.3 DATA VALIDATION SUMMARY


DATA VALIDATION SUMMARY

Thirteen water and fourteen sediment samples were collected March 18 and 19, 1998 and submitted to three laboratories for the suite of analyses summarized in the following table.

Laboratory	<u>Analysis</u>	<u>Method</u>
Prudhoe Bay Laboratory	BOD-5	
	Turbidity	
Quanterra Environmental Services	Mercury	EPA Method 7471
	Arsenic	EPA Method 6020
	Barium	EPA Method 6020
	Chromium	EPA Method 6020
	Lead	EPA Method 6020
MultiChem Analytical Services	Volatile Organic Compounds	EPA Method 8260A
	Semi-Volatile Organic Compounds	EPA Method 8270
	Total Organic Carbon	EPA Method 415.1
	Grain Size	
	Particle Size	
	Total Suspended Solids	EPA Method 160.2
	Hexachlorobenzene*	EPA Method 8081
	Hexachlorobutadiene*	EPA Method 8081

* - Hexachlorobenzene and Hexachlorobutadiene were analyzed using EPA Method 8081 to achieve lowest possible reporting levels. However, some samples with high moisture content yielded reporting levels above PSSDA action criteria.

Data were validated in accordance with accuracy and precision objectives established by the subcontracted laboratories: MultiChem Analytical Services (MAS) of Anchorage, Alaska, and Quanterra Environmental Services (Quanterra) of West Sacramento, California. In addition, data were evaluated for conformance with the Quality Assurance Objectives specified in Section 4 of the 1997 Technical Plan (MW, 1997). Acceptance criteria for accuracy, precision, and method reporting limits (MRLs) are provided in the laboratory reports. Where applicable, data validation guidance contained in the National Functional Guidelines for Organic and Inorganic Data Review (EPA, 1994) were followed. All data were considered valid as qualified using data quality objectives defined for the project.

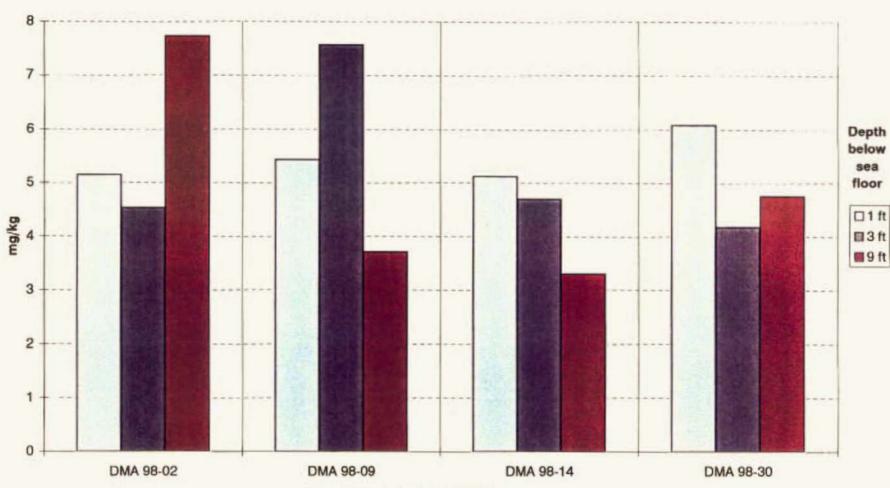
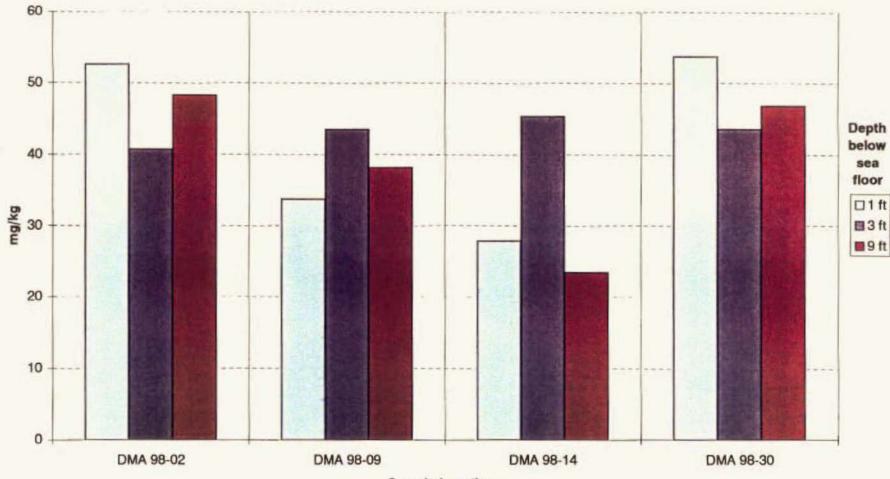
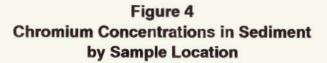
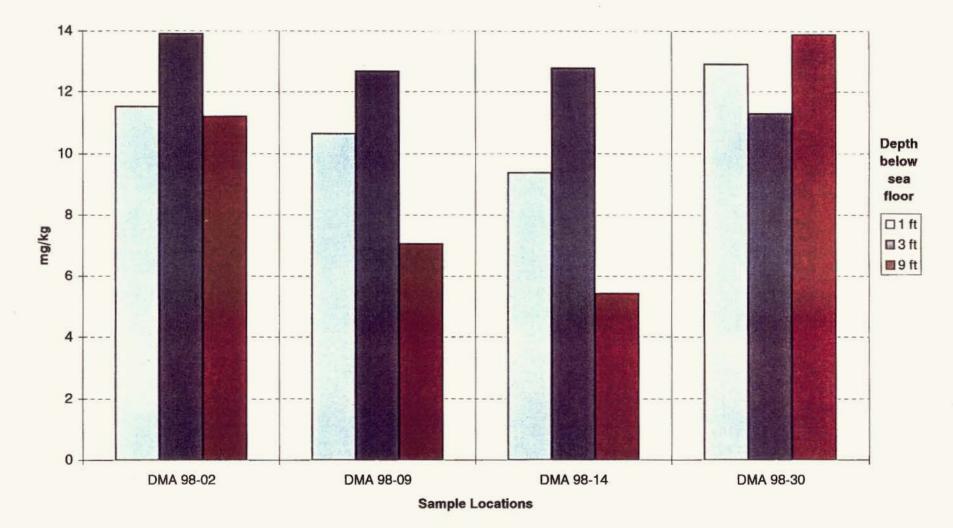
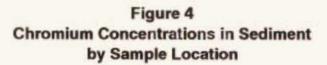
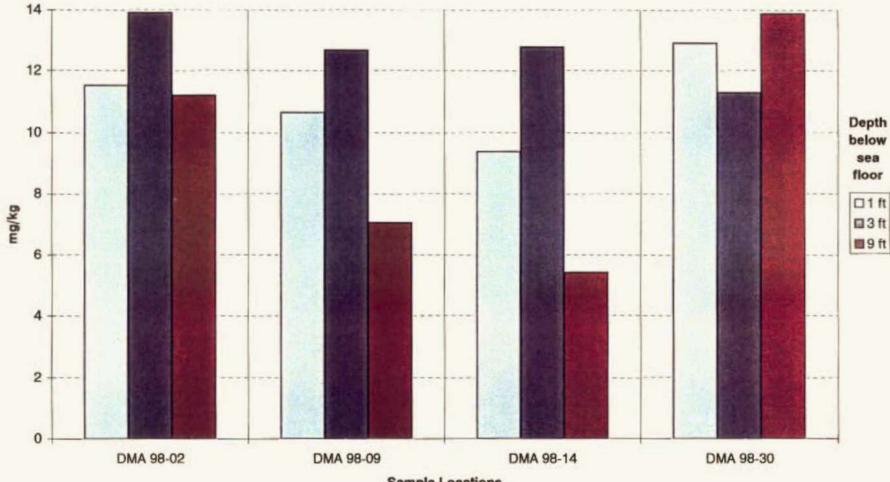
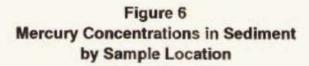


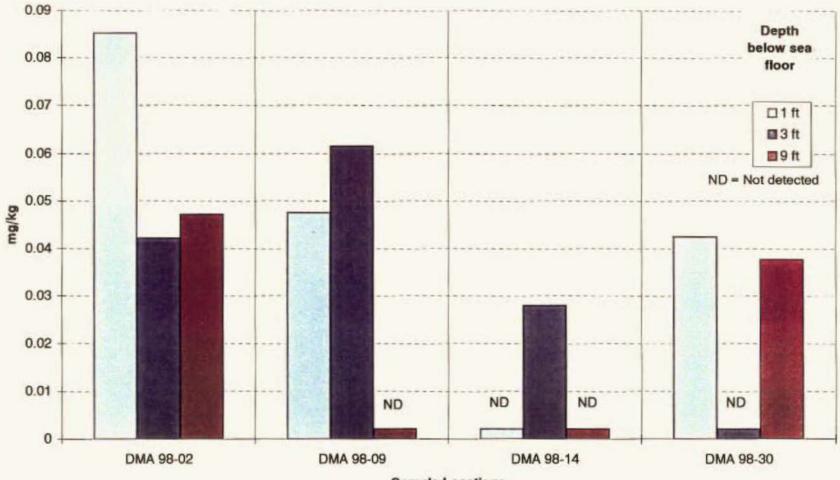
Figure 2 Arsenic Concentrations in Sediment by Sample Location

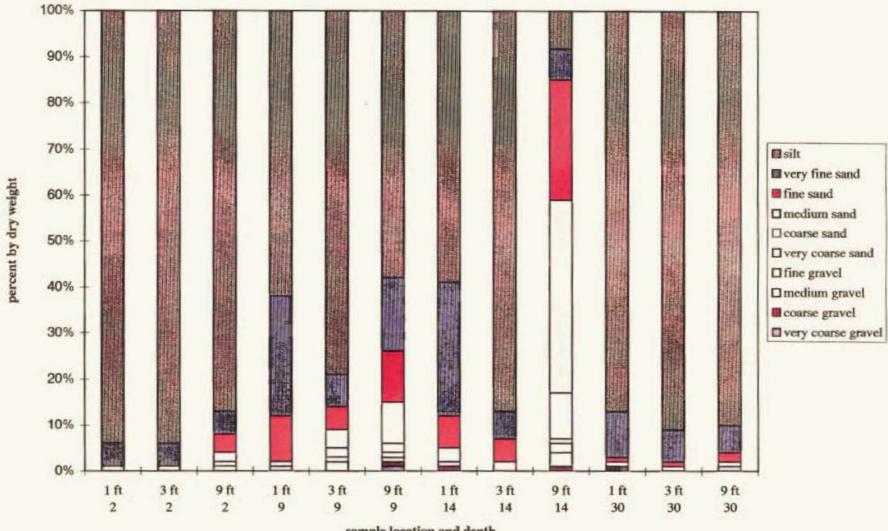
Sample Locations


Figure 3 **Barium Concentrations in Sediment** by Sample Location


Sample Locations





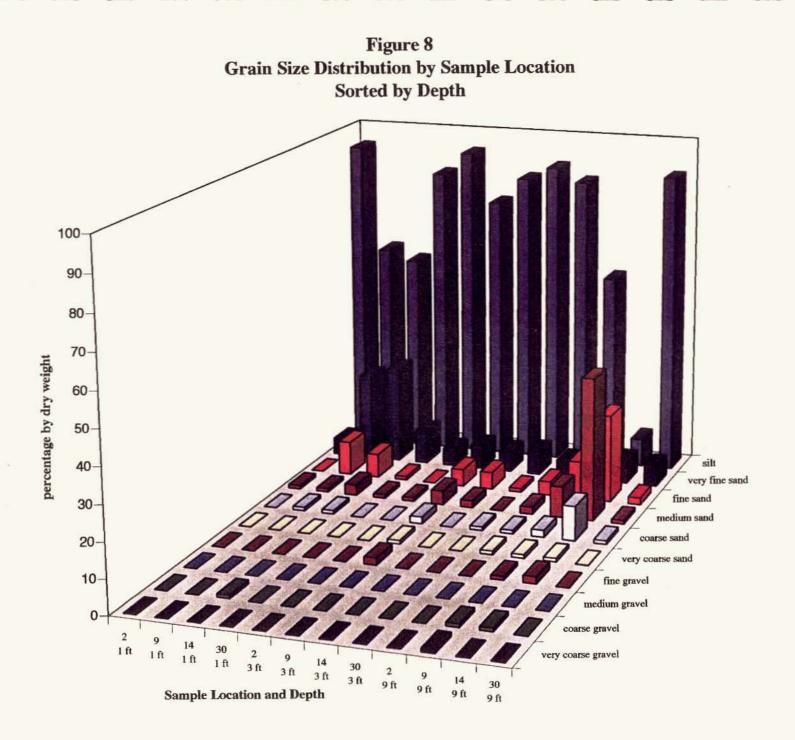

Sample Locations

Figure 7 **Grain Size Distribution**

- -

sample location and depth

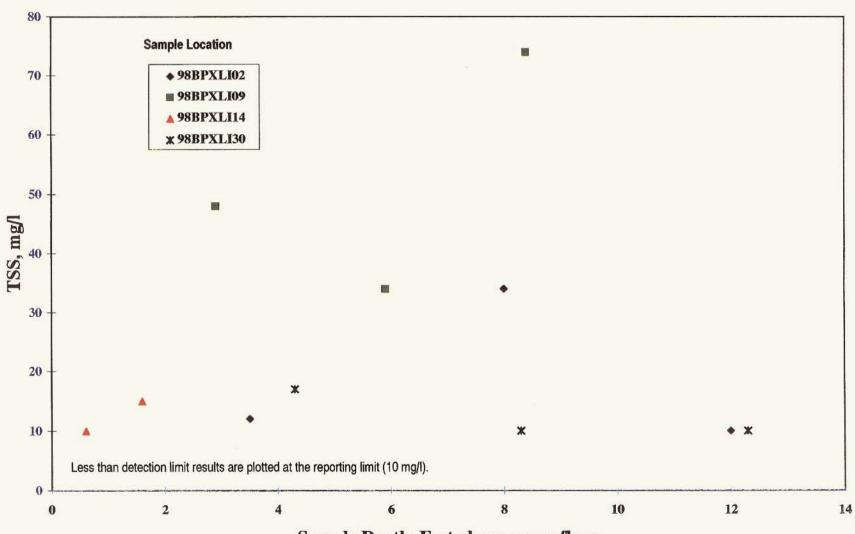


Figure 9 Total Suspended Solids by Water Depth

Sample Depth, Feet above ocean floor

T _____ LE 1

.

Sample Fian Checklist Liberty Island Pipeline Routes Water and Sediment Sampling

							RIX	FIELD	PAR/	MET	ER		ΔΝΑ	LYTIC	AL PA	RAM	ETER	S	
Sample Identification	Borehole Number	Latitude	Longitude	Date	Time	Soli/Sediment	Sea Water	Temperature Conductivity	Salinity	rur Turbidity	Dissolved Oxygen	Total Suspended Solids (EPA 160.2)	BOD5/Turbidity VOC (EPA 8260) SVOC (EPA 8270)	TOC(415.1)	Mercury (EPA 7471)	Metals (EPA 6020)	Particle Size (ASTM D2487)	Grain Size (ASTM D442)	Field Duplicate
Starting (Internet)	po nativa na dia	¹⁷ 14 (* 141)		e - testiler (n i taya j			i New S											
galani (bigi an Cit	ាលស្តីស្តែន _{េសស្តែន} ្តរបាន សមត្ថ			1999 B	74			200 M	en en Fille de la									2007 - 100 100 - 100 100 - 100	
		. P		1993(1)	, M.,									States of				7 ° ° 4	
Construction and a second	LINE CHOY	s de ser e	an sha kara sa	A	· · ·	* · ·		1			<u>, 1</u>	:		15° (5)		S_{c}		2	
98BPXLI02SD1 (01)	DMA 98-2	70 16 38	147 33 31	3/18/98	2210	X							X	X	X	X	<u> </u>	X	
98BPXLI02SD2 (03)	DMA 98-2	70 16 38	147 33 31	3/18/98	2230	X							X	<u>X</u>	X	X	<u>X</u>	X	
98BPXL102SD62 (03)	DMA 98-2	70 16 38	147 33 31	3/18/98	2220	x				_			X	<u>x</u>	X	x	X	X	X
98BPXL102SD3 (09)	DMA 98-2	70 16 38	147 33 31	3/18/98	2330	X							X	X	X	X	Х	Х	
The second second second	n an	2 m 1 m		States and the	Sugar.					1.74	•			£					t.
german games a	24.25	· · · · ·			100.41									<u>_</u> *.					
Constant and the second se		i di Basari Manaziri		1 (D. 244) [· .	<u>, </u>		<u></u> ;		<u>.</u>	·		<u> </u>			С. т.			
98BPXL109SD1 (01)	DMA 98-9	70 15 11	147 36 07	3/18/98	1610	X							X	<u>x</u>	X	X	Х	X	
98BPXL/09SD2 (03)	DMA 98-9	70 15 11	147 36 07	3/18/98	1620	X							X	<u>X</u>	X	X	X	Х	
98BPXL109SD3 (09)	DMA 98-9	70 15 11	147 36 07	3/18/98	1630	X							X	X	X	X	Х	X	
AND A CONTRACT OF A CONTRACT O			a kata ka sa i	18 A. 4. 1.	 														
	STATES IN	<u>, a set</u>	i in and i	$/\left(y_{1}\right) _{k=1,k=1}^{m}$		<u></u>			1.5		12								
98BPXL114SD01 (01)	DMA 98-14	70 13 43	147 38 45	3/18/98	1330	X							X	X	X	X	X	Х	
98BPXL114SD02 (03)	DMA 98-14	70 13 43	147 38 45	3/18/98	1345	X			İ							X			
98BPXL114SD03 (09)	DMA 98-14	70 13 43	147 38 45	3/18/98	1400	X							X	X	X	X	X	X	
estation vice class in the	1935 # 1975 Pr																		
Bayer Caracters	All and the			126															
Research to a series	11 - A. A.	e status		е С	2 - 1 ¹⁶			1 g 1 .		· .		· .			h		•	í ;	
98BPXLI30SD01 (01)	DMA 98-30	70 16 54	147 34 10	3/18/98	0250	x							X	X	X	X	Х	X	
98BPXL130SD02 (03)	DMA 98-30	70 16 54	147 34 10	3/18/98	0300	X							X	X	X	X	Х	Х	
98BPXL130SD62 (03)	DMA 98-30	70 16 54	147 34 10	3/18/98	0310	X				\square	. [X	X	X	X	х	X	X
98BPXLI30SD03 (09)	DMA 98-30	70 16 54	147 34 10	3/18/98	0330	X							X	X	X	Х	Х	X	

Table 2Water Quality ParametersLiberty Island Pipeline RouteWater and Sediment Sampling

Mar 194								۰.					·	a si sa			
Station	Sample	Borehole Number	Date	Time	Depth to Water Surface (BTI) (ft)	Depth to Bottom (BTI) (ft)	Total Water Depth (ft)	Ice Thickness (ft)	Ice Free Water Depth (ft)	Sample Depth (BTI) (ft)	Temp (°C)	Salinity ² (ppt)	Calculated ² Seawater Density (kg/m ³)	Conductivity (umho's)	Hď	Dissolved Oxygen (mg/l)	Field Turbidity (NTU)
ann Bart - Auro		an Na san san san san san san san san san sa								· · · · · · · · · · · · · · · · · · ·				_v.* 1		· · · · · ·	
sanan ing s																	
														as parte			
98BPXI.109	WA01	DMA 98-09	3/18/98	1610	1.0	17	16	5.2	11.8	8.6	-2	32	1025.7	25050	7,4	7.7	13.3
98BPXLI09	WA02	DMA 98-09	3/18/98	1540	1.0	17	16	5.2	11.8	11.1	-2	32	1025.7	25050	7.2	8.5	8,4
98BPXL109	WA03	DMA 98-09	3/18/98	1550	1.0	17	16	5.2	11.8	14.1	-2	32	1025.7	25050	6.9	7.4	12.5
	. •													15.9 Z			• • • • • • •
n i Seighten S	1. ·							. •						n 1e∙aak 1			
98BPXLI30	WA01	DMA 98-30	3/19/98	120	1.2	21.1	19.9	4.9	16.2	8.8	-2	33	1026.6	26500	7.3	9.6	8.4
98BPXLI30	WA02	DMA 98-30	3/19/98	140	1.2	21.1	19.9	4.9	16.2	12.8	-2	33	1026.6	26000	7.6	9.7	11.7
98BPXLI30	WA03	DMA 98-30	3/19/98	200	1.2	21.1	1 9.9	4.9	16.2	16.8	-2	33	1026.6	26000	7.6	9.6	12.8

BTI = Below Top of Ice

Note:

1. Millero, F.J. and A. Poisson. 1981. International one-atmosphere equation of state of sea water. Deep- Sea Research, Vol. 28A, No. 6. p. 625-626

2. Salinity in Parts Per Thousand (ppt) converted from percent (%)

Table 2Water Quality ParametersLiberty Island Pipeline RouteWater and Sediment Sampling

							\			· · · · · ·		
Station	Sample	Sample Depth (BTI) (ft)	Sample Depth above Ocean Floor (ft)	BODS	Lab Turbidity (NTU)	Total Organic Carbon (mg/L)	Total Suspended Solids (TSS) (mg/l)	Arsenic (mg/L)	Barium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Mercury (mg/L)
Hel <u>ag</u> e na sa	1 Conten								.s.r	· · ·	i	1. a <u>1</u> 2,
ettar i					* .						•	• ₂ •;•
e fitter i seve											п.;	
98BPXLI09	WA01	8.6	8.4	<1	11	1.2	74	<.02	0.0200	<.01	<.01	<.0002
98BPXLI09	WA02	11	5.9	<1	7	1.2	34	<.02	0.0218	<.01	<.01	<.0002
98BPXLI09	WA03	14	2.9	<1	11	1.2	48	0.0202	0.0254	<.01	<,01	<.0002
1 2 (1) 2												
r est.												
98BPXLI30	WA01	8.8	12	<1	0	1.7	< 10	0.0206	0.0179	<.01	<.01	<.0002
98BPXLI30	WA02	13	8.3	<1	0	1.2	10	0.0226	0.0175	<.01	<.01	<.0002
98BPXL130	WA03	17	4.3	<1	6	1.2	17	0.0213	0.0195	<.01	<.01	<.0002

BTI = Below Top of Ice

TABLE 3

Grain Size Results Liberty Island Pipeline Routes Water and Sediment Sampling (all data are % by dry weight)

¥.

Sample Identification	Borehole Location	Depth (ft.)	Medium gravel (4.75 mm) No. 4	Fine Gravel (2.00 mm) No. 10	Very Coarse Sand (0.850 mm) No. 20	Coarse Sand (0.425 mm) No. 40	Medium Sand (0.250 mm) No. 60	Fine Sand (0.106 mm) No. 100	Very Fine Sand (0.075 mm) No. 200	Engineering Class	Frost Class
98BPXLI02SD01 (1.0)	DMA 98-2	0.5-1 ft.	100	100	100	100	99	99	94	Silt, ML	F4
98BPXLI02SD02 (3.0)	DMA 98-2	2-3 ft.	100	100	100	100	99	99	94	Silt, ML	F4
98BPXLI02SD03 (9.0)	DMA 98-2	8-9 ft.	100	100	99	98	96	92	87	Silt, ML	F4
98BPXLI09SD02 (1.0)	DMA 98-9	0.5-1 ft.	100	100	100	99	98	88	62	Silt, ML	F4
98BPXL109SD02 (3.0)	DMA 98-9	2-3 ft.	100	98	97	95	91	86	79	Silt w/Sand	F4
98BPXL109SD03 (9.0)	DMA 98-9	8-9 ft.	98	9 7	96	94	85	74	58	Sandy Silt, ML	F4
98BPXLI14SD01 (1.0)	DMA 98-14	0.5-1 ft.	99	99	99	98	95	88	59	Sandy Silt	F4
98BPXLI14SD02 (3.0)	DMA 98-14	2-3 ft.	100	100	100	100	98	93	87	Silt, ML	F4
98BPXLI14SD03 (9.0)	DMA 98-14	8-9 ft.	96	94	93	83	41	15	83	SP-SM	N/A_
98BPXLI30SD01 (1.0)	DMA 98-30	0.5-1 ft.	99	99	99	99	98	97	87	Silt, ML	F 4
98BPXLI30SD02 (3.0)	DMA 98-30	2-3 ft.	100	100	100	99	99	98	91	Silt, ML	F4
98BPXL130SD03 (9.0)	DMA 98-30	8-9 ft.	100	100	100	99	98	96	90	Fat Clay, CH	F4

.

.

....

All Samples = PI (Non Plastic)

ThureE 4 Summary of Analytical Results and Benchmark Criteria Liberty Island Pipeline Routes Water and Sediment Sampling (all data are % by dry weight)

			-2001.	- <u>av. lius</u>	utersitiet	11(4.)				sisjaj.	Gut a			anni an th
Analyte	units	Minimum lab detection limit	Minimum report detection limit	Minimum result	Maximum result	Average result (includes 0 for ND)	STDEV	Coefficient of Variation	MDS for PSDDA	Screening Level	Bioaccumutation Level	Maximum Level	Risk Based Concentrations (RBC)	Ecotox Effects Range Low (ERL)
Soli advant Maisture	PERCENT	0.0000	0.000	18	41	28.728	5.947	20.703	0.1					
						•==••••		······································					······	
Total Metals (SW6020 & SW7471)	MG/KG	0.1186	0.250	3.3052	11.2429	6 606	0 100	38.560			507.1	700		
Arsenic Barium	MG/KG	0.0275	0.1250	23.4768	86.1714	<u>5.506</u> 44.824	2,123	38.560	2.5	57	507.1	700	23	8.2
Chromium	MG/KG	0.1073	0.125	5.4262	27.4382	12,229	5.000	40.890					5,500	
	MG/KG	0.0062	0.125	2.2282	13.8598	5.358	2.777	51.824	0.5	66		660	660	47
Mercury	MG/KG	0.0037	0.025	ND	0.0852	0.035	0.028	77.617	0.02	0.21	1.5	2.1	2.1	0.15
										····				
Volatile Organic Compounds (SW8260a)	<u>.</u>					·								
1,2-Dichlorobenzene	UG/KG	2.000	2.000	ND ND	ND	0	0	<u>0</u> !	3.2	19	37	350	7,000,000	340 (2)
1,3-Dichlorobenzene	UG/KG	2.0000	2.000	ND ND	ND ND	0	<u> </u>	0	3.2	170	1241		7.000,000	1,700 (2)
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	UG/KG	2.000	6.000	ND		0	0	0 0	3.2	26		260 64	27,000	350 (2)
	UG/KG	2.0000	2.000		ND ND	· · · · · · · · · · · · · · · · ·	0	0	6 3.2	<u>13</u> 10			780,000	
Ethylbenzene Hexachlorobenzene (SW8081) (1)	UG/KG	2.0000	2.000		ND ND	0	0	···	3.2 12		168	230	7,800,000	3,600 (2)
Tetrachloroethene	UG/KG	2.0000	2.000		ND	 T	0	0	3.2	23 14	102	210	12,000	530 (2)
Trichloroethene	UG/KG	2.0000	2.000	ND	ND					160	1168	1600	58,000	
Xylenes	UG/KG	2.0000	2.000	ND	ND		0	0	3.2 3.2	12		160	320,000	(2)
		2.0000	2.000				V	······································	U.2	<u>!</u>	·	100	520,000	
Semi-volatile Organic Compounds (SW827							,					·		
Acenaphthene	UG/KG	21.000	21.000	ND	ND	0	00	0	20	<u>63</u>		630	4,700,000	1,100 (2)
Acenaphthylene	UG/KG	19.000	19.000	ND	ND		<u>0</u>	0	20			640		
Anthracene	UG/KG	22.000	22.000	ND			0	0	20		•••	1300	23,000,000	
bis-(2-ethylhexyl)phthalate	UG/KG	31.000	31.000	46		189,4286	164.4998	86.84	20				46,000	
Benzo(a)anthracene	UG/KG	27.000	27.000	ND	ND	0	0	0	20	450	1 1 19 19 100 - 11	4500	880	
Benzo(a)pyrene	UG/KG	23.000	23.000	ND		6.5714	24,5880	374.17	20			6800	. 88	430 (2)
Benzo(b)fluoranthene	UG/KG	29.000	29.000	ND		<u>0</u>	0	0	20	800	• •	8000	880	
Benzo(k)fluoranthene	UG/KG	36.000	36.000		ND		0	0	20	800		8000	8,800]]
Benzo(g,h,i)perylene	UG/KG	37.000	37.000	ND	ND	0	0	0,	20	<u>540</u>	_ 	5400		

Page 1

Tr ____ ≟ 4 Summary of Analytical Results and Benchmark Criterla Liberty Island Pipeline Routes Water and Sediment Sampling (all data are % by dry weight)

					ine sous					-ia]\$}	N•ta{`ii			i National
Analyte	units	Minimum lab detection limit	Minimum report detection limit		Maximum result	Average result (includes 0 for ND)	STDEV	Coefficient of Variation	MDS for PSDDA	Screening Level	Bioaccumutation Level	Maximum Level	Risk Based Concentrations (RBC)	Ecolox Effects Ranna I ow (ERL)
All (continued) All (continued)		<u>ආ</u> විදේශය වේ. ආ							- XH				adama (Laussi a sa a	Sue à Priorie
emi-volatile Organic Compounds (SW8270 Benzoic acid	UG/KG	150.000	150.000	ND	ND		<u> </u>	0	100	400		690	310,000,000	
Benzyl alcohol	UG/KG	32.000	32.000	ND	ND	2	0	········	100	25		73	23,000,000	
Benzyf butyl phthalate	UG/KG	37.000	37.000	ND		0	0	· · · · · · · · · · · · · · · · · · ·		470			16,000,000	11 000 //
Chrysene	UG/KG	27.000	27.000	ND	ND	0	0	·	20 20	670		6700	88,000	
Dibenzo(a,h)anthracene	UG/KG	38.000	38.000	ND	ND	0	0	ŏ	20	120		1200	88	·
Dibenzofuran	UG/KG	21.000	21.000		ND	0	<u>`</u>	Ŏ	20	54		540	310,000	2,000 (2
Diethyl Phthalate	UG/KG	49.000	49.000	ND	ND	ŭ	ŏ	0	20	97			63,000,000	630 (2
2,4-Dimethylphenol	UG/KG	19,000	19.000	ND	ND	Ő		0	6	29	•	50		**
Dimethyl phthalate	UG/KG	42,000	42.000	ND	ND	0	0	ō	20	160	1168		780,000,000	•••
Di-n-butyl phthalate	UG/KG	29.000	29.000	ND	ND	o	0	0	20	1400	10220		7,800,000	11,000 (2
Di-n-octyl phthalate	UG/KG	35.000	35.000	ND	ND	0	0	0	20	6200			1,600,000	••
Fluoranthene	UG/KG	23.000	23.000	ND	ND	0	0	0	20	630	4600	6300	3,100,000	1,400 (2
Fluorene	UG/KG	24.000	24.000	ND	ND	0	Ô,	0	20	64		640	3,100,000	
Hexachiorobutadiene (SW8081) (1)	UG/KG	2.000	2.000	ND	ND	0	0	0	20	29	212	290	8,200	
Hexachloroethane	UG/KG	23.000	23.000	ND	ND	0	0	0	20	1400	10220	14000	46,000	1,000 (2
Indeno(1,2,3-cd)pyrene	UG/KG	36.000	36.000	ND	ND	0	0	0	20	69		5200	880	
2-Methylnaphthalene	UG/KG	20.000	20.000			5.7857	11.5770	200.1	20	67		670	•••	
2-Methyiphenol (o-Cresol)	UG/KG	20.000	20.000			0	0	0	6	20		72	3,900,000	•
4-Methylphenol (p-Cresol)	UG/KG	22.000	22.000		280	31.6429	75,2898	237.94	20			1200		
Naphthalene	UG/KG	21.000	21.000			0	0	0	20			2100	3,100,000	
n-Nitrosodiphenylamine	UG/KG	25.000	25.000		1	0	0	0	12		161	220	130,000	
Pentachlorophenol	UG/KG	35.000	35.000		i · · · · · · · · · · · · · · · · ·	0	0	0	61	100	504		5,300	4
Phenanthrene	UG/KG	24.000	24.000	· · · · · · · · · · · · · · · · · · ·		8.8571	14.5964	164.8	20			3200	••	1,100 (
Phenol	UG/KG	<u>19.000</u>	19.000	ND		2.7143	10.1559		20			•		
Pyrene	UG/KG	29,000	29.000	ND	ND:		0	0	20	430		7300	2,300,000	660 (
tal Organic Carbon (TOC) (E415.1)	MG/KG	0.100	0.1	0.42	6.5	2.3057	1.6941	73.476	0.1					

Page 2

Υ.

1. ≟4 Summary of Analytical Results and Benchmark Criteria Liberty Island Pipeline Routes Water and Sediment Sampling (all data are % by dry weight)

				(4	i uata are	/0 0y 0/y	noighty								
			llener Trier to so in States of the second	ECU	i vieto	hielsheig						in i		E Bandana	haut fait i
	Analyte	units	Minimum tab detection limit	Minimum report detection limit	Minimum result	Maximum result	Ô	STDEV	Coefficient of Variation	PSDDA	Screening Level	Bioaccumulation Level	Maximum Level	Risk Based Concentrations (RBC)	Ecotox Effects Range Low (ERL)
Walara	while we want of 2014 and 2014		artanie -						NE DE COLO						
	etals (SW6020 & SW7470) Arsenic	MG/L	0.0114	0.020	ND	0.0226	0.0097	0.0109	112.575					0.011	0.036
	Barium	MG/L	0.0013	0.010	0.0175	0.0551	0.0252	0.0098	38.932	•••				2.6	
[Chromium	MG/L	0.0084	0.010	ND	ND	0	0	0	•••)	••			
	Lead	MG/L	0.0007	0.010	ND	ND	0	0	0		••		••	**	0.0081
	Mercury	MG/L	0.0001	0.000	ND	ND	0	0	0					0.023	0.0011
Suspen	ded Solids (E160.2)	MG/L	10.0000	10.000	ND	74	21.0769	21,4727	101.88	•••					•••
<u>Total O</u>	rganic Carbon (TOC) (E415.1)	MG/L	0.5000	0.500	1.1	1.7	1.3231	0.1833	13.852					·····	
Symbo															······································
	Not Applicable or Not Available		MG/KG MG/L		s / kilograr	n			· ·						
p <u>a/ka</u>	micrograms / kilogram		ND	milligram: not detec	ted above	the report	tina limit	• · · · · · • • • • • • • • • • • •		1		{		· · · · • • • • • •	
Footno	btes		· · · · · · · · · · · · · · · · · · ·					1			1			• • • • • • • • • • • • • • • • • • •	
(1)	Analyzed with an alternate method	to achieve lo	wer detecti	on limits fo	or compari	son to PS	DDA criteria					l	1		
(2)	Ecotox value assumes the fraction										1				

·

.

-

' م

BP Exploration (Alaska), . I IRERTY ISLAND water/sediment samplin.

	98 -					UDERII	ISCAND WE	FIELD_N		
Station No	02	Air Temp	1ºF	Date	3/18	198		1 16260		
		Wind		Crew	the second s	on Jom C.	Kin Gen	Corner	Ken He	Ister.
			chear	Start Time	19:30	-			.	_
iCE2Datu	n Below Pk	tiom Decio		Location						
a	•	to Top of Ice		Description	n Liberty	Island				-
b	-	Sottom of Ice	the second s	<u> </u>						
ç	•	n to Seafloor							J	_
d		e Thickness Free Water		Latitude Longitude		<u>)-16-3</u>				-
e		pth to Water		Northing		<u>, - 2 3 - 1</u> 53376		ASP		_ ·
1		ater Column		Easting		7357		ASP		-
ADD .7 fee	t to sounde]3						— • • • •
WaterColu	moRcolle	(even/0.51c	et) Datum	Below Plat	ormiDeckir	0000000				÷
Depth	Temp	EC	DO	рH	Turbidity		Salinity	Temp (oC	51	٦
(feet)	°⊂	uhmos	malta.	ĺ	HNU		ppm	for salinit	v	
26	-2	7.600					33	-2	T]
7515	- Z	ZLOW					33	1	T	
25,0	<u>- Z</u>	71,00					23			1
74.2	<u>· 7</u>	76m		_		<u> </u>	35	 	- 	1
4.0	<u>· '</u>	ZLOND				<u> </u>	32	┇──┤┈╾	_ 	4
	<u>. ż</u>	7600		 		<u> </u>	<u></u>			4
	-2	26.000	10.9	6.4	7.3	╂━────	<u>52</u> 32	<u> </u>	+	KUA-03
17.0	- <u> </u>	<u>7600</u> 7600	10.1	<u> </u>	7.5	<u> </u>	32			
71.5	- 2	7600					22	<u> ·</u>		-
212	-72	7400					22	╏╴╴╴╴╡╴╶╶╼		1
70.5	-2	ZLAN					52		1	1
21.0	- 2	21000					32			
19.5	7	260.8					32			
K.2	-2	26-223						\		4
15.5	-2	26m7				<u> </u>	? 2		<u></u>	_الالكام
1a.r	-2	75,800	6.7.	63	7.16	<u> </u>	32	 	<u> </u>	102
17.0	-2	25000			·	<u> </u>	<u></u>		<u> </u>	-
TY.A	-Z-	26175	ANT COME TO LO SA COMMENT		a de la compania de l	states and of the	52			
VTHIC DAIL	DID(S)				Date	Methods		uepui mea	suremen	d.
98BPXLI	2. WA01	<u>Pre</u>	Depth 14.0		3/18/97					-
96BPXLI_C		4 6	18.0	21:30		Berno	µ	<u>ip 21</u>	30	-
98BPXLI_0			22.5	22:00		Pornt			<u> </u>	
								Sector Sector		ē.
•	<u> </u>		Depth	Time	Date	Methods				-J
98BPXLI_0			0-1	2210	3//8/47	55.				-
98BPXLI_0			2-3	22:30		1				
98BPXLI_0	<u> と</u> SD03(0)6)	<u>8-9</u>	23:30						
Duplicate	20002		0-1	22:20	ピー					
9857XLI <u>0</u>			- •	•	anna an chuide a tha an tao an tao		·			7
Meters use				D. 1413					fileri an e− f	1
Mieleis use	u .	YSI 30097-1 HACH 2100) ATT 7					
		HACH, Coid	rimeter. DC), LR		- I CP+855	5.20 NTU	/		
		YSI 33, S-T	-L-pH		B					
		Burnan &	11 pHmeter	ST	·D.4	87				
				, –		•				
				Page	e 1					
			બ				•			
		-	•				#			

Montgomery Watson

~ --

Montgomery Watson

BP Exploration (Alaska), Inc. LIBERTY ISLAND water/sediment sampling

								FIELD NO	TE FORM	ج مح اوم
Station No	98-02	_ Air Temp		Date	3-18	3-98				12
		Wind		Crew						
		Sky	/	Start Time			_			
ICE=Datu	m Below Pla	ttom Decki	ng#Ssats	Location						
. <u> </u>	Depth	to Top of Ice	417	Description	n					
ь	Depth to E	Bottom of Ice	9,3							
c	Depti	n to Seafloor		7					<u> </u>	
ď	la	e Thickness		Latitude						
e	lce	Free Water		Longitude						
f		pth to Water		Northing						
g		ater Column		Easting						
	et to sounde									•
Water Col	mnikolika	(even/D54e	et)#Datum	Below Plat					A second second	
Depth	Тетр	EC	DO	pН	Turbidity	1	Salinity	Temp (oC)		
(feet)	°C _	uhmos	mall the	1	HNU		ppm	for salinity		
165	-2	ZLAND					32	- 2		
11.0	-2	ZLOOD				1	32	1		
15.5	- Z.	26000				ł	52			
10.0	-2	26000					32			
14.5	-Z	74000					52			
14.0	- Z	71.000	9.1	6.6	6.12		32			101
13.5	- 7	ZENA					32			
30	-2	76.110					32			
145	-Z	ZLON					52			
(2.0	- <u>z</u> .	ZLON					32			
115	-2	2600					32			
free C	-2	ZLOW					32			
10.2	-2	76000					32			
	-Z	76000		1		1	32			
9.5	_2	76.000		+	· · · · · · · · · · · · · · · · · · ·	1	52	¥		
			<u> </u>	ļ				[
		·				<u> </u>				
			<u> </u>		<u> </u>		· · · ·			
	-1- (-1)									
THEFTOR	µ10(S) 🔅 🔅					1	OUTO DOMD	depth meas	urement	
0000	late of		Depth	Time	Date	Methods				
96BPXLI	WA01	<u></u>			·	 				
98BPXLI 98BPXLI		-	· · · · · · · · · · · · · · · · · · ·				. <u></u>	<u> </u>		
		2 X., bolizaretheret.			and a company of the		and a star of the state of the state of the		P	
COULTER	юн а ле5 700							alan zanzin (n 1 Adam ang sang sang sang sang sang sang sang	
98BPXLI	6004/0		Depth	Time	Date	Methods			<u> </u>	
98BPXLI	SD01(0			<u> </u>	· · · ·	· · ·				
968PXLI	SD02(0	the second s		<u>}</u>	···					
Duplicate		<u>v</u> j			·····				.	
988PXLI		(01)								
				- Carles and					and the second	
Meters use		YSI 300, T-(and a second		
		HACH 2100		neter						
			-							

HACH, Colorimeter, DO YSI 33, S-T-L-pH

Monigomery Walson PS Description (Alasks), Inc. Isen Time Description Station No. Air Temp 257 Date 3-18-79 FILE NOTE FORM Station No. Air Temp 257 Date 3-18-79 FILE NOTE FORM IDE-DatameBelow/Platform/Deckorplaces/ Wind Location factor, and the factor Station factor, and the factor FILE Note Form IDE-DatameBelow/Platform/Deckorplaces/ Participe Deck to Top of leg 4.1 Deck to the factor FILE Note Form IDE-DatameBelow/Platform/Deckorplaces/ Participe Deck to Water 5.2. Latitude 70-16-58 IDD opt to Water Column Location factor 707-76 Satistive 707-76 Water Column Education File Deck to Water 5.2. 5.2. Water Column Education File Satistive 707-76 Satistive 707-76 Water Column Education Boom of the factor File Satistive File 7.2. 5.2. View of the factor File Parter Boom of the factor File													
Station No. \bigcirc Air Temp -299 Date Nind $1 \le m$. Crew \bigcirc \bigcirc $7.6 - 99$ Sky Coac. Start Time \bigcirc $5.7 (2 - 1.100)$ ICE-DetumDetwelthatmit Detkinghamse 15: for the second crew details and th		eka) inc .	n (Ala	nloratio	op Fy			10	00			141-1-00	**
Station No. A if Temp 229 Date Wind 16 bb. Crew 3-10 P P P P P P P P P P P P P P P P P P P		sampling	liment	iter/sed			LIBERT	5	69				-
Windis to, is to, 		E FORM	D NOT	FIEL					_			94	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					P	7 113					-	. 07	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				S		_							· - · •
b Depth is Bottom of Les $\frac{9.6}{21.4}$ d Les Thickness 5.2 Latitude $7216-58$ e Les Free Water 3.2 Latitude $7216-58$ Water Column 12.2 Easting $3.27.537.537$ Water Column 12.2 Easting $3.27.537.537$ 10.7.57.537.537.537 Water Column 12.2 Easting $3.27.537.537$ 10.7.57.57.57.757.57.577 10.7.77.77.47.77.77.77.77.77.77.77.77.77.7									Location a			n Below Pla	ICE: Datu
c Depth to Seafloor $2,1,4$ d toe Thickness $5,2$ Latitude $70-16-38$ e toe Free Water $[3,2]$ Longitude $747-33-5/$ f Depth to Water $5,4$ Northing $5,72,733,76,34$ 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,72,733,76,34 5,73,76,34 5,73,76,34 5,73,76,34 5,73,76,34 5,73,76,34 14,12,120,120,120,120,120,120,120,120,120,								<u>ו</u>	Description				а
d the Trickness $5,2$ Lafthude $76 - 16 - 38$ be the Free Water $3,2$ Longitude $76 - 16 - 38$ be the Water Column $12,2$ Longitude $76 - 16 - 38$ Water Column $12,2$ Longitude $76 - 16 - 38$ -5753376_59 Water Column $12,2$ Easting $307367 - 18$ 307367 - 18 307367 - 18 $10 - 2^{-1}$ $10 - 2^{-1}$ 10 -									-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				·		8	-16-3	70	Latitude				-
O Water Column $1/4 \cdot 2$ Easting $3 \subseteq 7 3 \subseteq 7 \cdot 18$ Mater Column Paolia (avery D.3.544); Datam Below Platform Decking and the second reacting		······		_									ē
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				<u>f</u>	22	<u>376</u>	753						f
Match Dotume Profile (overy 10 Steel) # Datum Below Platform Decking to Experime Associated associat	.`	<u> </u>			18	<u> </u>	0730		Easting	14.2			
f(feet) *C uhmos #0% HNU ppm for satinity 21.0 -2' 25050 Fiele 32 -2.0 20.5 · · · · · · 20.5 · · · · · · · 20.0 · <					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			orm Declés	Below Plat	et) Determ			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_							•DO			
$\frac{20.5}{90.0} \frac{1}{10} \frac{1}$								_	ļ	N0%			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		{	<u>.</u> •	<u></u> 2.	<u>sz</u>	<u> 3</u>		Fiel #		·-·			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					••	+	·		<u> </u>				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						+ ;					<i>•</i> , •		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 . 2					<u> </u>							19.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~>	U	┢┉┈┉┨╴	$ \rightarrow $		+ '		2.5	6.9	7.4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				\vdash		-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					4 1			1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-					P.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	67.		┝━━━┥	\vdash				8.1	12.2	Ar			16.0
(4.5) $(1, 2)$ <td< td=""><td></td><td> `</td><td>╎──┤</td><td><u>├</u></td><td></td><td>-</td><td></td><td>0,4</td><td>1.0</td><td>90</td><td></td><td>·</td><td></td></td<>		`	╎──┤	<u>├</u>		-		0,4	1.0	90		·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	• •						••		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$1/1 \cdot C$ $1'$ $2 \cdot Y$ $10 \cup 1'$ $2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) $1' + 2 \cdot Y$ $1' + 2 \cdot Y$ Water Sample(s) <td< td=""><td>0(</td><td><u> </u></td><td></td><td>• • • • • • •</td><td></td><td></td><td></td><td>12.2</td><td>7,4</td><td>_7.7</td><td></td><td>- ^ - ^</td><td></td></td<>	0(<u> </u>		• • • • • • •				12.2	7,4	_7.7		- ^ - ^	
IO II II II II II II III III IIII IIIII IIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								· · ·					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	- 2-			<u></u>						, =
BBPXLI_09_WA01 IZ.0 ISD 3-10 "Bowb" of gource Sample. BBPXLI_09_WA02 15.5 15.9 3-18 "Bowb" of gource Sample. BBPXLI_09_WA03 19.5 1550 3-18 "Bowb" of gource Sample. BBPXLI_09_SD01(01) 15.5 1550 3-18 "Bowb" of gource Sample. BBPXLI_09_SD01(01) 5-1 1610 3-18 "Bowb" of gource Sample. BBPXLI_09_SD02(03) 2-3 1620 3-18 "Bowb" of gource Sample. BBPXLI_09_SD03(009) 8-7 1630 3-79. "Bowb" of gource Sample. BBPXLISD6_1(01) 10.4 10.3 10.3 10.3 10.3 BBPXLI_09_SD03(009) 8-7 1630 3-18 "Bowb" of gource Sample. 10.3 BBPXLI_09_SD03(009) 8-7 1630 3-18 "Bowb" of gource Sample. 10.3 <td< td=""><td></td><td>ement</td><td>measu</td><td>deptha</td><td>dimod</td><td>ootaoit</td><td></td><td></td><td></td><td></td><td></td><td>ple(8)</td><td>Vater San</td></td<>		ement	measu	deptha	dimod	ootaoit						ple(8)	Vater San
BBPXLI_09_WA02 15.5 1540 348 1 BBPXLI_09_WA03 /g.55 1550 3-12/ 1 BedimentSamples Image: Superstandard Samples Image: Superstandard Samples Image: Superstandard Samples BBPXLI_09_SD01(01) 5-1 1610 3-19 55 18* $\pm 4''$ BBPXLI_09_SD02(03) 2-3 1620 3-18 1 BBPXLI_09_SD03(09)*1 8-7 1633 3-19 1 BBPXLI9SD6_1(01) 101/1 8-7 1633 3-19 1 Somments 1000 101/1 8-7 1633 3-19 1 Meters used: YSI 300(T-C-L_/14'I3 ST0 3/4445 1 1 1 1 Meters used: YSI 300(T-C-L_/14'I3 ST0 3/445 1 3/53.4 1 3/53.4		<u>86 -</u>		9 ert 1		. 1. 16		and the second s			· · · ·	10 WAD1	
ABBPXLIQYWA03/ \pounds .5(550) $3-1\pounds$ \bullet DepthTimeDateMethodsDBBPXLIQYSD01(01) $5-1$ 1610 $3-1\%$ 55 $18\% \pm 4\%$ DBBPXLIQYSD02(03)2-3 1620 $3-1\%$ 55 $18\% \pm 4\%$ DBBPXLIQYSD03(0\$%)2-3 1620 $3-1\%$ $1000000000000000000000000000000000000$	-	<u>- 3000</u> 07			ρı	<u> </u>	. <u>Do r</u>				÷		
Depth Time Date Methods $PBBPXLIO_{9}$ SD01(01) $S-1$ 610 $3-19$ SS $18 \ x \ y''$ $PBBPXLIO_{9}$ SD02(03) $2-3$ 1620 $3-18$ 1 $PBBPXLIO_{9}$ SD03(0#)91 $8-9$ 1630 $3-19$ $1000000000000000000000000000000000000$							١						
$38BPXLI @ 9 & SD01(01) & 5-1 & 1610 & 3-18 & 55 & 18 & +11 \\ \hline 38BPXLI @ 9 & SD02(03) & 2-3 & 1620 & 3-18 & +1200 \\ \hline 38BPXLI @ 9 & SD03(0#) & 8-9 & 1630 & 3-19 & +1200 \\ \hline 00000000000000000000000000000000$												amples	sediment.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				477	<u>.</u>	15			1 ···			G SD01(0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>		1		, .0	<u> </u>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							V		▙▃▙▙▃▙	8-9			I8BPXLI <u>.C</u>
Anters used: YSI 300gT-C-L/ 1413 5T0 タイチチケ HACH 2100P, Turbidimeter 」 S3. (コ) 53.4 HACH, Colorimeter, DO, LR					<u> </u>	\sim					MIA	CDC 4	•
Aeters used: YSI 3000T-C-L / 1473 570 与 / 445 HACH 2100P, Turbidimeter 」 53. (コ) 53. 4 HACH, Colorimeter, DO, L尼			h	<u></u>	in the second	a					<u>(vi)/~///</u>		
YSI33, S-T-L-PH 1413 570 = 1441 Becomen 11, pH , STD 4 \$7 Decon complete Page 1 Row					,		4	1445 1 => 53 = 144	5 5TO 5 heters 53. D, LR H3 5TO -	C-L , 1 ¥r3 P, Turbidim rimeter, DC Ł-pH ≤	YSI 3006T-C HACH 2100 HACH, Colo YSI 33, S-T-	d:	
Page 1	, M	B						1	Page	سە جى ر	<u></u> v	:	

	Montgon	nery Watson			<u> </u>	1051			ploration (Ala ater/sediment		
		-98			50		UBERIT	ISLAND WE	FIELD NO		
	Station N	No. 14	Air Temp	-35	Date	3-	18-99	5			
			Wind			Ba	m				
			Sky		Start Time		.15				
	IOE Dat										
	a		to Top of Ice		Description	'n					
	Ь	•	Bottom of Ice		 						
	C J		th to Seafloor ce Thickness		Latitude	- 70 -	13-43			<u> </u>	
	U 0		e Free Water		Longitude		38-45				
	ť		epth to Water		Northing		35509	· 00			•
	10	. W	ater Column		Easting	296	088.	<i>စ</i> ာ			•
`	4DD .7	pet to sound	er reading								
	WateriCo	sharpe Profile			a sub-					and the second second	
·	Depth	Temp	EC	DO	рН	Turbidity	1	Salinity	Temp (oC)	.	
	(feet)	<u>°C</u>	uhmos	N812	[HNU	ļ	ppm	for salinity		
	10.		24600			1		28	-1.8		420
	ک رن ۱۱۰۶		24000)	1.0		17.6	 	28	-1.0	—권	
	12.5		2.400	10.4	6.8	17.6		27	- 0,5		62
						-					
			ļ – – – –				<u> </u>		├ ─────┤		
									<u> </u>	<u> </u>	
						·					
	├ ────								{		
			1								
			ļ								
	·								}{		
ļ	Mator Co				Barry Street Law Barry			ot to bomb	depth measu	mmont	
i	TOUCLASS			Depth		Date	Methods		uaper maasu	ierner it	
n /	98BPXLI	WA01		10.2	1300	3-18	* Ben	b. D+	Source	10	- alu
		WA02		1.3	1315	3-12	Ban				4
-	988PXL		\sim	PIA		\sim					
	Sediment	Samples			2014 13 CO.					1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
				Depth	Time	Date	Methods				
•		<u>14</u> SD01((S-I		3-18	3.5	<u> 18 "</u>	X 4 "		
		<u> </u>		7-3	1345		1-1-			<u> </u>	
	Duplicate		<u>2809</u>	8-9	1400	3-18	<u> </u>		·	. <u></u>	
	98BPXLI		1(01)			··· · ·	· ·		- ·	- 57	
	Commen										
	Meters us		YSI 30007-0	C-L 1413	STO.	Ba		1 1	ЦЛА	. U . C'	Th
			HACH 2100	P, Turbidim	eter, SS.	1 253.7	- m as	~ // 1	PH 7 8	573	. ت
					, <u> </u>						
	:		YSI 33, S-T-	-L-pH ⋅				~			
			Beckno	mi	p# .	676 ·	447 0	سعمل			
			Beckins		2.						
				Com	Page	e 1	. শু-			O_{-}	~~~~
										C	0

BP Exploration (Alaska), Inc. Montgomery Watson LIBERTY ISLAND water/sediment sampling FIELD NOTE FORM 98-37 <u>3/19/98</u> Air Temp -3% Date Station No. - Band Wind Crew Stars 76 Start Time 00:30 Sky dear ICE-Datum Below Platform Declarg- MDIZ: - Craticological - Anno 100 - Anno 100 4.7 Description LIBERTY Island Depth to Top of Ice a b Depth to Bottom of Ice 9.6 147 34 10.662W 701, 38,670N С Depth to Seafloor 75. 6 Ice Thickness 4.9 Latitude 70 - 16 - 54 ď -10 Ice Free Water Longitude <u>47-34</u> e 16.3 295 450 Depth to Water Northing -955 f 2.2 Easting 306049 Water Column 20.3 g ADD .7 feet to sounder reading Water Column Roble (every 0.5 feet) Datum Below Platform Declory 2000 100 EC DH Turbidity Salinity Temp (oC) DO Depth Тетр ngl'ge uhmos HNU °C ppm for salinity (feet) -2 33 73:5 -2 7700 77000 33 75.0 - 2 2660 24.5 -2 33 24.0 26000 33 -5 33 12.5 -Z 2600 35 I. - 2 26000 <u>0, ż ś</u> 33 -2 74000 - X - 1 22.0 33 - Z 26000 - Z 26000 8.4196 7.59 7.59 94128 Ł 71 .: C 33 -2 26000 33 ł 21.0 -2 Т 20.5 26000 33 - Z 20.0 26000 33 : i 19.5 - Z 26000 33 19.0 -2 27000 35 16.5 - 2 27000 33 16.0 - 2 24000 33 7.51/7.56 7.064 17 5 - 2 26000 12519.7 33 ٢. -2 77000 33 17.0 26500 16.5 - Z 33 Water Sample(s) Depth Fr Time Date Methods 988PXLI 3 0 WA01 13.5 01:20 3/19/98 988PXLI30 WA02 \$ 62 7.5 101:50 DUP 01:40 988PXLI10 WA03 Ĺ 21.5 02:00 Sediment Samples Depth Time Date Methods 98BPXLI 3 0 SD01(01) 0-1 02:50 3/19/78 98BPXLI 3 0 SD02(03) 2.3 02:00 98BPXLI \$ 0 SD03(06) 89 03:30 Duplicate 03:10 2-3 98BPXLI 2 0 SD6 21(07) Comments and a state of the sta Meters used: YSI 3000T-C-L HACH 2100P, Turbidimeter HACH, Colorimeter, DO ., LR YSI 33, S-T-L-pH

Montgomery Watson

BP Exploration (Alaska), Inc. LIBERTY ISLAND water/sediment sampling

FIELD NOTE FORM Pg 2 . 5 2 Station No. 96-30 Air Temp Date Wind Crew Sky Start Time ICE Datum Below Platform Decking Market Depth to Top of Ice Description a b Depth to Bottom of Ice Depth to Seafloor С Latitude Ice Thickness đ Ice Free Water Longitude e Depth to Water Northing f Water Column Easting g ADD .7 feet to sounder reading Water Column Profile (every 0.5 ject): Deturn Below Flatforn Deckin State 100 DO pН Turbidity Temp (oC) Depth Temp EC Salinity °C for salinity HNU uhmos % (feet) ppm Ki -2 - Z 33 Z4 000 15.5 2450 33 - Z 33 26500 12.0 -Z 27000 17.5 - 2 33 14.0 -2 26000 33 9.6 7.26 0 30 آ سول - 2 26500 33 15.0 -2 26000 33 125 - 2 26000 33 24500 12.5 - 2 33-- Z 26000 33 - 2 35 11.0 24000 <u>7600</u>0 - 2 10,5 33 - 2 33 10.0 26500 5.5 - 2 26000 33 Water Sample(s) Time Depth Date Methods 98BPXLI WA01 98BPXLI WA02 98BPXLI WA03 Depth Time Date Methods 988PXLI SD01(01) 988PXLI SD02(03) 98BPXLI SD03(06) . Duplicate 98BPXLI_ SD6_ _1(01) Comments // www.macharacomments. Meters used: YSI 300, T-C-L ____ HACH 2100P, Turbidimeter HACH, Colorimeter, DO YSI 33, S-T-L-pH

						ociate U Engà	s nearing	•	Project:	inerel of
		FIEL	DL	OG					Job No. 4119.33 Total Depth 1 Contractor: 1 1 1 Contractor: 1 1 1	 ک
	cation	of Ho		ÐE:		58-	~:	(pe	Rig Type	
. 2	4.7~) ラ.3~ 火.の Onditio	DEL DEL	C 72 C 70	5 H	tie m VD	e <i>11.E</i> Ertù		-	Hammer Type MANUAL <u>AUTOMATIC</u> Started TIME <u>2:42 744</u> DATE <u>3//9/</u> Completed TIME <u>1/:73724</u> DATE <u>3//8/</u> Hole Depth (Ft) Casing Depth (Ft) Water Depth (Ft)	(<u>96</u>
Surfa	ace El	evatio	n			·	Datu	m		
Sample No.	Sample Depth	Sampler Type	Blows / 6-in.	Inches Driven	Inches Recovered	Depth in Feet	Sample Graphic Log	Frozen?	Backfilled TIME DATE BY	
	00	μw	Ø.	IB.	18	_	W,		0.0' · dark gray to this SHI (ML), scarrer	d
						1 -	W		tivelve shells - color change @1.2' to one. Hright of liamoun caused imple: to excellent	
· .							H/		Might of Lammer Caused complex to excellent	12, NO_
	7.0	MU)	3/ .		i	2	1/	1	Elmon Sample retarized in Mill.	<u></u>
			110			3-	IXE /	1		·
					 	- J -	Ц.	•	3.0'- your stall, (SP) w/ stale SILT, Since got and	, 1005
						4		•	Sample retained to due.	
				,-			-			
	-			·		5-	ľ			
							/			
							/			
						7	ľ/	1		
						_	1Y/	1		
 		μw	~	1B	18	8		1	Qui- an entrail day and and	
	D10	~~~~	3	10	10_		W7	1	B.O - grow SILT (ML) w/ draw (LAY, SETT, B.O') brown allstully w/ chane grown SILT. Simple retain	<u>= 8.7</u>
			5			"	\mathbb{V}	4	ty MW. Orgenics anorphines, diference.	
						10			BOH 10 915 10 2323 3/10/98, No TVI.	
[_				
						11-				
					-		<u> </u>		Project UBERTY Hole No. 98-02 (uu) Sheet 1	<u></u>

-

-

-26	1998	Б:	221-1	vi 🕹	F	ROM	DU/	NE MILLER ASSOC 907 346 1636 P. 3
								jD8 1 5:38 1 0076596594→ _ 907 346 16361# 4
								DWA 98-97
					ociati			Project Hole No. Matt
				thnic	al Eng	Ineeri	ing	Job No. Artis T. Total Depth 9.5
.a.	FIE	LDL	OG					Contractor: Destant Copyrator Character Lopgod By
antia	un al bi		_	@ {	· • .		7.6.4	Ber asstalue Hig Type Comments
	Sti	- 1 -	×++		/ 4	••		Harmmer WL and Drop
							-	Harnmer Type MANUAL AUTOMATIC
								Stand TIME 3:15 PM DATE 1A MARTER
			•			•		Completed TIME 5:45PA DATE 19 NH 95
	_			.	A A	. 1	[Awn	5.2 Habe 11.9 Hole Depth (Pt)
is naith	ene '	1	. 70	10	4.4			Ceasing Depth (Ft)
	1)•0	le -	۰ H	348	r	21	
			_				_	
iace C	Jevetic	m	<u>.</u>	17.	<u>D</u>	, De	tum_	Star T.u
T		1	1-		1	TT	T.	Instrumentation <u>AUCINC</u> Date
Semple Dept	1 2		ş	_	1			
Semple De	15	Ī	18		The Fee		诺니	
Ē	Sampler Type	Elows / B-h	1 I	Pactor in the second	ŧ		Graphic Log	BACKER TIME
8	18	불]₿.	15 ê	8		통 [4	BackRed TIME DATE BY
101	· 53 ⁵	11	J L	6	1		i e	0.0-0.2 Brown Sam W/ stoner chell Group
┤┈	P		12	17] _	Ш		
· ·	1.1.			-	1 -	╢		Die Story Charles
4	<u>.</u> [<u>¥</u> .	2	6] •	-	₩⁄	-	ut orlance prestan wood & shells
		L	<u> </u>	L	2-	1	· 4	0.5-2.3 Dark Taxan Silt
12.4	633	1	16	[{	<u> </u>	JII.		2.3.3.0 Two loved at brown
			6			Ж,	1	Elivour part w/ dictid at odors
·]	1 -	,	1	1	8-		7	of doron use than - with A" in
1	[14	├ ──	- <u>*</u>	- 1	+1		interusion aron CIH 14,00
÷		╂╼╼			4			
.	1				-		I.	3.0-6.0 DK Good SVHL
	1	L	 	L	5-			
			ļ ·		ູ້			
T	T		Ī	[۔ ا			duller! "Sand" @ 644.
1	1	t			6-	18	<u></u>	
•	1	—		f ·	-	┫₽	<u></u> 、 十 、 、	L D - C C - C - C
┨		{	• •• •	<u>-</u>	{ 7-	11		U.V - YIS LATELUCCUS
		Į	.	├		Į.K		Lovpe hand and Dorkleva
!	<u> </u>		[<u> </u>	1 a -		别	
B	0535	5	6		- <u>-</u> -	Ľ	R	
1	Γ	5	6	[٦	165	5	
†	·	7	6	4	"	邗	<i>"</i> /	
+	†	<u>ا</u>		T	-	忙		
	+			┝╌┈	10-	1 [
. .	· 	ļ		 	-	16		
	᠆᠆᠆	[ب	11			
	1		L i	l	1	11	- [
		T	v.	¥.			- 1	

-

±–ح	5-15	330	0:4	: 1 MP	1	FF		ANE MILLER ASSO	C 907 346 1636	ò		P, 2
NI I		Duer	r Mi ; È G	iler ä estec		scieta		D-03 : 5:17 : Project <u>L (BEC)</u> Job No. <u>A+ / Ci -</u> Contractor: De <u>Contractor</u>	Y Hole N 2 3 Totel I	A 98- 10. 10-1 Depth 0		
Loc	5	h. 2	207	/ + €	37,		•	Connector: V <u>3(1-7)</u>	Flig Type <u>CE</u> Gempling Methods Herminer WL and Di Herminer Type M Started TIME <u>12</u>	3.5"50 3.5"50 00 <u>36.0</u> ** IANLIAL 30 PM	In syace = S	<u>5</u>
			icck.	61	441	<u>u</u> t		ren S.a' Hal the	Hole Depth (Ft) Casing Depth (Ft)	9.5 21.6 +7.7 1:00P		
Semple No.	Semple Depth	Sampler Type		<u> </u>	Г	×	Graphic Log	BeckRied TIME	<u>Vol/c</u> Dete	18 MAR		
	V	58 5b	233124	60000	6 5	t t 2		0.0 - 0.5 Medicin 0.5 - 4.5	Bythom mining, well co Dk Gara	اكم لم		
		· · · · · · · · · · · · · · · · · · ·				3- 4 5			· · · · · · · · · · · · · · · · · · ·			
	80	SB	2			6 7 8		<u>4.(-9.5</u>	Gran Sa 11 petilles	nd w/	croffered	
		,	200	6	6	9	1144 8-3					
ì		¥.	·,	<u>R</u>	F	÷		Proper Libert	Hole No_M	1	Sheet 1	


	Ā	iane M ctic & (ELD L	ecte				ńng		Project: <u>Lizer71</u> Hole No. <u>58-30</u> Snew Job No. <u>-1115</u> Total Depth <u>55</u> <u>116</u> Contractor: <u>Uslovini (116)</u> Operator <u>16</u> Logged By <u>46</u>
	4,7 9,6' 75,0	Hole 2 720 720 727 -397	98 27 227	- 30 - 30 - 32 - 32 - 32	ったいで	-	-		Hig Type $CMCE = 5$ Sampling Methods $y'' \pm 5$ Hammer Wt. and Drop $\frac{140'' 30''}{30''}$ Hammer Type MANUAL ADTOMATIC Started TIME $\frac{12:10 \ FM}{2:10 \ FM}$ DATE $\frac{2/19 \ Cm}{2:10 \ FM}$ Completed TIME $\frac{3:77 \ FM}{2:77 \ FM}$ DATE $\frac{3/15/58}{2/15 \ FM}$ Hole Depth (Ft) $1000000000000000000000000000000000000$
Surface	Eleva	tion				. 0	atum	<u>ب</u>	
Sample No.	Sample Depth	Blows / 6-in.	Inches Driven	Inches Recovered	Depth in Feet	Sample	Graphic Log	Frozen?	Instrumentation IOUE Date Backfilled TIME DATE BY
0-	-0 m	0 Ø Z 3	18	12	1 2				0.0'- your SILT (Lel, ut trace Start amonshine Citotalitis & trace for EAND, startenon Dividir Garment, soft. Econ for retained bullew. Weight of Lammer mark sampler O'to 0.5'
		2 2 5	18	15	3- 3-		1997	-	2.0"- Cray SAND (SAL) w/sans SILT & Z pitcas Subangula GRAVEZ (C.C" + 1.5" A Z.7' to 29'- trans amorphous OZEANITS ut miter/agen of cyray SILT = 0, 2" Huick. Z.9'- comm. SILT (ML) w/ same CLAY Soft.
					5				Sample retained by UN.
	o ui	J 2	18	14	7 — 8 —				B.o'- your CIAY, Sim, Somple retained by MW.
		3			9 — — 10 —				BOH ~ 9.3' @ 0327 3/19/98, A6 TKC
			r ski				-		Project (12077 Hole No. 78-30 Street / ///

. .

3-26-1998 10:23AM FROM DUANE MILLER ASSOC 907 346 1636 MAR.25.1998 6:10PM 30 X HSE AK MAR 25'98

01.656No . 2.4/67.01

F. Robert Bell and Associates Surveyors / Engineers Prudhoe Bay Phone 659-5000/5005 FAX 659-5065

Transmittal Cover Sheet

Date: March 24, 1998 To: Jeffrey Cotton Fax: 564-5020 From: Steve Stoll Subject: LIBERTY Pages Following Cover: 1

Post-It" brand fax transmitta	il memo 7671 + of pages + Z
To Bonnie Me	autrom DUALSE
ca mn	Phone #
Dept. Fax1 248-888	4 Pect #
C48-202	

Comments:

Attached are two sheets with Liberty sketches. The following are coords points you are interested in.

DMA 98-30

Grid Easting: 306049

Current Zone: AK-3

>>Point number: 10201 Grid Northing: 5955095 Convergence: -1-28-39 Latitude: 70-16-54

 Latitude: 70-16-54
 Longitude: 147-34-10

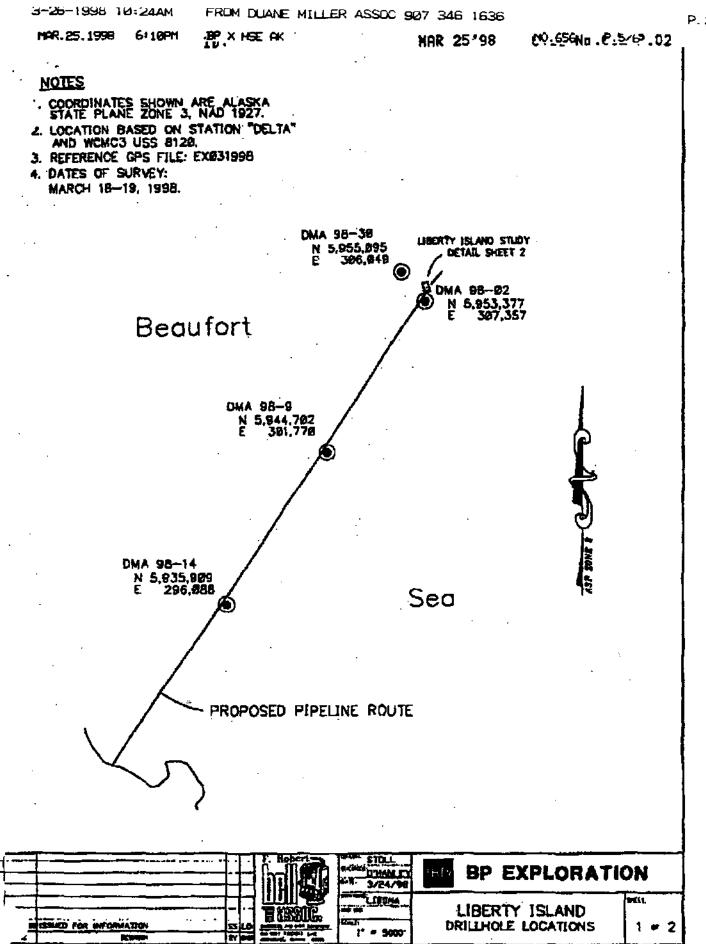
 >>Point number: 10105
 DMA 98-02

 Northing: 5953376.54
 Easting: 307357.18

 Convergence: -1-28-02
 Scale factor: 0.999942157796

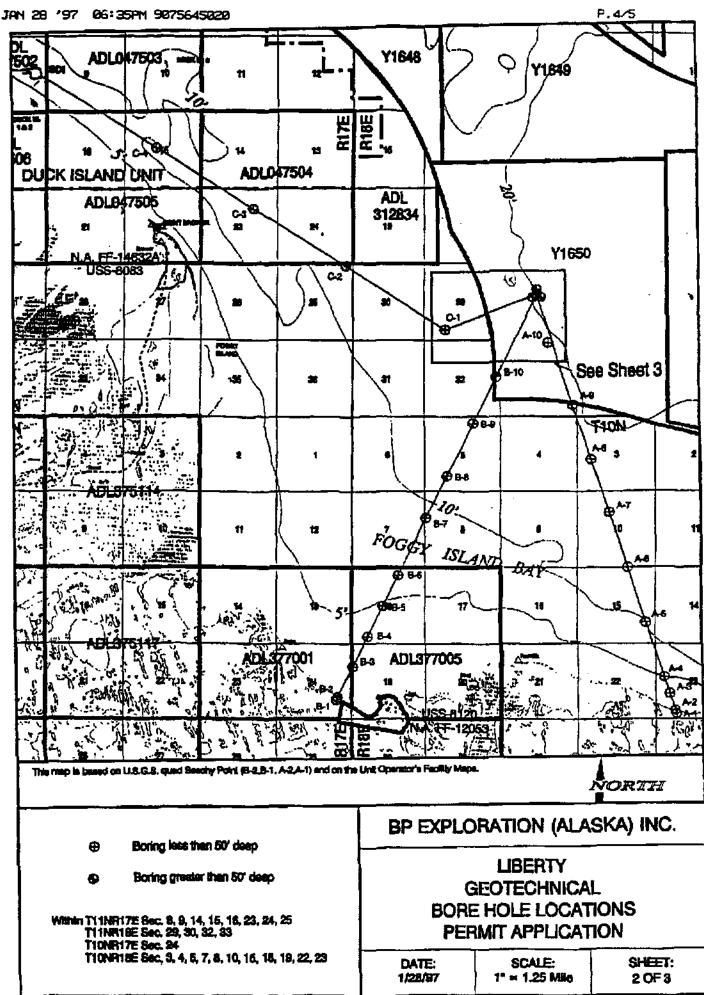
Convergence: -1-28-02 Latitude: 70-16-38

>>Point number: 10116


Longitude: 147-33-31 DMA 98-9 0 Grid Easting: 301770.00

Grid Northing: 5944702.00 Convergence: -1-30-28 Latitude: 70-15-11

Scale factor: 0.999944638807 Longitude: 147-36-07


Scale factor: 0.999942732097

>>Point number: 10126 DMA 98-14 Grid Northing: 5935909.00 Grid Easting: 296088.00 Convergence: -1-32-56 Scale factor: 0.999947234682 Latitude: 70-13-43 Longitude: 147-38-45

P. 2

bs13351.dgn

APPENDIX B Chain of Custody Records

<u> </u>	đ	Anx mo	لسب		<u>ں</u>		1		-	<u>248</u>	- 8	४४४५	
Monigom	ry Watson		•		_			SOIL			w	ATER	· · · ·
Anchorage (907)24 Fax (907)		Extensiony: PIEX: Leberality (BP) West Prado Bay, Alaska (907) 659-4356							1				· · ·
		Aitn: Al Kukis									130	a	
	U I	MW Job Number:									Turbkity- EPA 189.1 100 ml poly	BOD5- EPA 405.1 	
Sampler's	Signature	48-hour holding time	<u>i</u>			9 1 4 4	- 5 (1)	- Effer	्भः		E E Exa		Comments Internet Statistics of the state of
Sumpler's 1998	-	Brichan				Cool in i	degrees (Ċ					
Date	Time	Sample ID	Matrix	Total Conteiders	· `								
3-18	2100	98BPXLI CZ. WAOI	ພີ	2							\checkmark	V	
3-18	2/30	988PXLI 02 WA02	ι ω	2							V	レ	
3-19	2200	988PXLI 22 WA03	دى	2							レ	$\overline{}$	
3-18		988PXLI 09 WADI	دى	y	-						~	~	
3-18	1540	988PXLI 01 WA02	ω	2							~	$\overline{}$	
3-18		98BPXLIO 9. WA03	ε Ω	2							2	4	
3-18	1300	988PXLILL WADI	3	2						4	~	~	
3-18	1315	988PXLI 14 WA02	3	2							~	-	
3-19	0700	98BPXLIZO WA03	a	٨							V	レ	
3-19		988PXLI 📩 WAOI	ι U	2							~	70	
3-19	0140	98BPXLI 30 WA02	ن ا	۲							~	~	
		98BPXLI WAUS					-				}		
3-190		988PXLI 30 WAGZ	w								10		BOP only
3-18		988PXLI 02 WA61	20	1					1		40	12	Boo one
	<u> </u>	98BPXLI WA											1
	<u> </u>	98BPXLI WA					-	}					
Relinquished by				Date	•	11905	Delivered	Shipped	Vint	A	Airbill	· ·	
. <u> </u>		· -	 	Time		μV	N	L	- -		\vdash		Time
Received for La	boratory by:			Date		1	Temperat	ure		*C		ry Notified	
		·····		Time		Upon A	urival				Faxed		

.

Ч,

· ·

.

ſ	 	ary Watson.	[1	60				SOIL					MAS 821354				
	4100 Spe Anchonge (907)2 Picz (907)	and Razi AX 99117 48-9913 1212-1284 In DeGeorge	Lakondory: Teleficiona, Analydest Stordam 2008 Witz powerational Arigon Road Archargo, Alacha 98302 (1977) 243-4273 2907) 243-4273 FA2 Astr. JClin Vagd MW Job Narmberg JCS Y 210.2 21-DAY 330/0/	859-3 ja	4.	Ch. 2364a 2-oa ambur gina	OC-EXT For andre give	C. 415.1 4-cu amicer piana		ttein Binn- ASTM 12487 4-cz unber ginn		- 164.2 Port inc.	00.415.1 1 230 nu muter					
ŀ	Sees in 1		TUENAROUND	<u>r</u>	l													
	199	i Berninn 18 17 Sint 1845	Bricha	HISSIN, LYNN	1-12.12													
l																		
Ļ	3-18		SIBPXLL O Z-WAOI	w	2	[]			{			~	~					
F	3-18		SUPPLI O'WAR	100	2	 			[[4	~					
-	3-18		SUBTYLL 62.WAG	w	Z	 			┝──┦		`	4	~	······································				
Ļ	3-18		SUBLIC OF WADE	10	2	 _			 			4		marman				
ŀ	3-18		SEPTILI O TWAR	<u> (12</u>	2	[~	·				
Į	3-18		PROFILIOS WARD	w	2	Į			<u> </u>			2	~	· ·····				
н	3-18		SOBPELL TWAN	Jw.	2	Į			┟_┥				~	· · · · · · · · · · · · · · · · · · ·				
ŀ	3-18		MAN LIL LINAM	w	2	 -	<u> </u>	L	 				レ	· · · · · · · · · · · · · · · · · · ·				
Ļ	3-19	0200	SUBTELL 30 WADS	w	2		<u> </u>			┝╼╼╄				· · · · · · · · · · · · · · · · · · ·				
ŀ	3-19	0 (20	SIBINAL 30 WAOI	w	2	┥╼╍				┝╼╸┨		12						
ļ	3-19	0140	SEPTILIZO WADE	<u>u</u>	2	<u> </u>			 	┉╻	<u> </u>	6	~	· · · · · · · · · · · · · · · · · · ·				
ŀ	<u> </u>	$ \succ $	STRATE MART	<u>†</u>	F_	Γ_	┟╍╍┥		 	╞━╍┠		 	┝╌┯╴	No Sompan				
			SAMON BOWAGE	<u></u>	2	1	┝──┤					<u> </u>						
Ļ	3-18	210	PROFILIOZ-WAS I	1	2	4				┝━┛			-					
L			PROFINE WA	+	45-1									· · · · · · · · · · · · · · · · · · ·				
L		<u> </u>	AW LICENSE	<u>+></u>								 						
ŀ	alley is say is		check		2000-74 Time / 01	2-28	124		Shipped 1	Via		MARY	innite/	Dety Time				
ŀ		This	· ·	╺╁╌───╸	Time / 01	0		 Re	5.1	0 7	70 2		ry Hullind					

Mantgomery Watum	<u> </u>	2-3 1								ATER	330101		
4100 Spenned Road Anchorage AK 99517 (907)248-8883 Pax (907) 248-8884 ATTN: Lynn DeGeorge (90) 248-873 (90) 248-73 (90) 248-73 (018) 3/40		VOCa- 2364 2 a 2-os ambri glass	SYOC. 4278 1 x 8-ce amber glass	170C-415.1 1 x 4-os embrs gian		Perticts Size- ASTM D2487 x 4-og amber gines		F Acd pr 052	TOC-416.1 1 x 250 mi amber	MAS 821354		
(998 Bmcl				TULKE							医肾管肠炎的现在分裂结果的		
3-18 22-10 911 PXLI 62 504	an) 2	5		\checkmark	V	1							
3-18 2230 910721102 5002		5			1					_	· · · · · · · · · · · · · · · · · · ·		
3-18 2330 MUTXLI 07 500		.5_							Ľ				
3-18 1610 MAPELICI 95001		S				┟╌╎╌	[]		 		MS(MSD		
3-13 1620 913PXL109 5002		5	╏╌┠─╴		Ŀ Ĺ				ļ				
3-18 1630 MAPXL 09500	<u>m</u> 5	5			-			ļ!	 		·		
3-18 1330 marzul 19 stor		5		L.E.	-i-				∥				
5-18 1345 900 PILL 14 5002		5					\square						
3-18 1400. MERTILI 14 500	<u>m</u> 5	.5	11_	∐_			\square		╟				
3-19 02-50 STIPTEL 30 SDOI	(01)	5											
3-11 0300 MARXLI 30 SD01	(03) >	5				LV			II				
3-15 0336 948FXL 30 500		5	12	$ \mathbf{V} $	J	V	2						
319 03 10 SERVI 30 506		3	√	~	~						•		
3-18 2200 91110 67506		3	~	V	~	1							
		1					I.][[<u></u>			
91BPXLI		1		[<u> </u>		1			11				
mingded b.	╘╾┙╧──╴┤─────	0.2-20	-98	-	245-4444	Shipped	Yie		1.1477	i	,-Duh		
(man-	<u>~ </u>	Tan / 61		\mathbf{c}	<u>2 H</u>						Time -		
Barriant Bergetannery by:		Com 3-7 Tan/0:0		Center Upon A		hand		-0		ny Hed Ded			
- paring formant	I	Time case							Frend				

Mark 23 198 199444M MULTICHEM ALASKA		P.4	
itiChem Analytical Services, LLC	•••	Anchora	ege, AK
SAMPLE LOG D	CHRCKENST	e bried and the	
TESSION # 8213,54	SUBCONTRACT WORK?		/ NO
IT NAME: Monta enery Watson	TO LAB (circle) (MAS-R)		
		TZ z.T.	<u> </u>
GED-IN BY (print): Coary Fisher received: 3/20/48	(sign):	- ANV	
e project for: ACOE? YES (NO) NAVY			
Did cooler arrive with shipping document?	(Hand delivery) N	A YES	NO
Are Custody seals present on cooler? YES (NO	How many? Where? Intact? N	A YES	NO
Seal date: Seal name:	Intact? N	YES	NO
If "YES", intact?	N		NOS
	YES (NO) Taped to cooler li		(NO)
<u>محمد الله المحمد المحمد المحمد المحمد الله المحمد الله المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد</u>	YES / NO Analyses marked o		NO
C-O-C or other representative documents, letters, and/or shipping memor.	Signed/received by la	b: YES	NO
the C-O-C in agreement with samples received?			
Sample ID's: YES / NO	Marrix:	CEED	NO
Date sampled: <u>YES</u> / NO	# Containers:	YES	(ND)
as the main logbook been filled out properly?		YES	NO
samples are RUSH has notice been given?	(N		NO
proper preservation indicated on label(s)?	(Volatiles) N		NO NO
yre sufficient sample volume for analyses?	(Volantest IX)	(YES)	NO
samples in proper containers? (see reference chart)	<u></u>	(YES)	NO
all samples within holding times for requested analy	sis?	OES	NO
re all sample containers intact? (i.e. not broken, leaking		YED	NO
re samples individually bagged ?		(YES)	NO
re all volatile samples headspace-free (<pea-size for="" td="" w<=""><td>aters)?</td><td>A YES</td><td>NO</td></pea-size>	aters)?	A YES	NO
ipping container (circle one):	Cooler / Box	Other:	
والمستحد فيتحدث والمساجر والمستعلي والمستخدين والمستخد والمستقل والمستحد والمستحد والمستحد والمستحد والمستحد والم	Wrap) / Styrofoam Peanuts /	Vermiculit	
بمستعدا والأحصين مستجارك ومستناك وبمست كالبا فتحالك فتشار ومحتك فتشار ومحت والمتحا والمتعال والتحاك فالمتحا	Ice Loose Ice / Other:	T T	/ None
<u>is refrigerant frozen upon receipt?</u> ooler temperature(s):	1 1 - 6 41 - 1 0 90	#2: 3.7	<u>NO</u> °C
e tagging check for QC:	ta 11.7℃ #1: 4,8 ℃	#6: 217	
the ID's issued in order of appearance on C-O-C;	<i>.</i>	YES	NO
"laced in appropriate areas of sample containers:	······	TYES	NO
of reviewer;			
the any "NO" items from checklist above: Sample	#1 Time in Laber = 21:00, on	Coc-zz(0,0	ell else w
Moles # 14-25 Only Four of E	lach Not Five	as 1:5	End
	trone of Earth Not		al ed
	Name of person contacted:		
ent contacted: YES / NO / N/A Date:			
ent contacted: YES / NO / N/A Date: lient instructions or actions taken:	rame et person sommer.		

-1330 14-64

1.005-6

Î

•

I.

ł

1

. •

.

PROJECT RECEIPT CHECKLIST	
clien Name: Montgomeny Watson Logs: 50-2	
Project # (LIMS ID):98184 Project copied:	_ _
Location(s): W2E Initials Date	
Date Received: 3-21-98 Time Received: 0930 At 3-21-9	K.
Delivered by: Express Airborne	•
Courier Express DHL	
White Cotton Delivers UPS	
• Over the counter (OTC) Go-Getters	
Other:	
Custody Scal Status: Intact Broken N/A	
Custody Seal Number(s): 1745 (174 52-	
Shipping Container(s): Quanterra Chient N/A	
Temperature Record (in *C):	
COC#	
Temp Black:	
Anubichu Temp:	
pH Measured: Yes Anomaly SQ N/A	
Sample Labeling Checked By:	
\mathcal{H}	
Wet Chem 52 N/A	
Metals (Filt/Pres)	
Complete shipment received in good condition, with appropriate	·
Anomaly (-les)/comments:	
PM notified N/A	
	•
Leave so spaces blank. Use "N/A" if not applicable. Initial and date all "N/A" entries. QA185 02/96 M	CD

Bren. P							<i>.</i>					۲.	1 - * ** k 1	
Montgomery Weston	T						OIL.			WA	TER			
4100 Spenned Road Anchorage AK 99517 (907)248-8883 Pan (907) 248-8884 ATTN: Lynn DeGeorge	Queente 100 Elvertié Palewry Net Secondo, CA 9306			de Marury- 7471, uis Barian, Chronium, Lead-6020, gins									·	
	TURNAROUND				Ĺ							Comenta		1
1998	Boncham			nessen O		e se c		南			灦			
there Thure	Stanote (D	Marix	Trial Canadiana				. *			3111 113.4	圞			
	918PXLI OZ-SD01(01)	5		1									*	1
	9887XLIOZ SD02(03)	5	•	1										j
	968PXL/02-5D03(09)	5	1	~									-]
3-18 160	MARXI OF SDOI(01)	3	1				 	<u> </u>				MS/MSD]
3-18 1420	SEMPXLE 9 SDO2(01)	5	_					<u> </u>		ļ	<u> </u>]
3-18 1630	STEPALIO E SDOKOS	5		1			 <u></u>				I]
3-18 1330	9139241 14 8D01(01)	5								 		- <u></u>] ·
3-18 1345	9189701 1 U SO02(03)	5		~				<u> </u>		l	<u> </u>			1
318 1400	SIBPXLI 4 50(0(09)	2									ļ		·]
	988PALL 30 8D01(01)	3		~			L	<u> </u>	·	<u> </u>	<u> </u>]
3-19 0350	SEBERLA @ SDONOD	2		~						ļ	 			1
3-19 0330	9181XLI 32 5003(09)	5	1									···	·	1
	PARPXLIAT 5062(03)	5	1	1V				1	L	ļ	<u> </u>			
3-10 0310	91 MPXLI 30 506 2103)	9		~		·		<u> </u>			<u> </u>			1
	TO DE LIXAGER						ha	<u>\$ 7</u>		He				
	STATEST	1				l	<u> </u>		<u> </u>			80169935	5828]
Retireptished by Lin	release		<u>-3-</u>	<u> 979</u>	{ } }	7.5	5%-107441 Ye	-2	∽	A		Dan		4
La AH	A		0- 3-	71-28		Temperen			3214	Land	ry Holi		- 032198	6
	V									/			15.25	r-
. •	•					R	ut	<i>а</i>	. good	Ci	nd	1: non- 132198 m	15:30	
									-		C	5478 m	المهعر	

P.83

THE ICOM PROPERTY

Montgomery Watron				SOIL							WATER	
4100 Spenard Road Anchorage AK, 99317 (907)248-8883 Fax (907) 248-8884 ATTN: Lyun DeGeorge	Taboretary: Quantern ND Electride Parkway West Sacrameron, CA 93606 (916) 574-1637 (916) 572-1039 FAX Ara: Mile Ligi MW Job Numbert										Jarlum, Chromian, Last- 6020. 7471	
	21-DAY TURNAROUND					:						Станка
Sumplic's Expression (958	Bren				d = 4 +	Deserge	7		加速			
	Betrete (D	Merte	Tanai Cantairent		ļ			:		課		
	SEPALIOZ WADI	w	1									
3-18 2130	968PXLIQ2WA02	ω	-								1	
	SIBPXLI DZ WAOS	3	1								5	· · · · · · · · · · · · · · · · · · ·
	SEEPXLIOT WAD	عرا									ン	
	STEPXLIC TWA02	فعا	-								3	
	STEPXLI 09 WAR	u)	1								~	
3-18 300	SEBPXEL 14 WADI	w	1									
3-19 1315	918FXLL 14 WADZ	ω.										
3-19 0700	STEPXLI 30 WARD	υ	1									
3-19 0120	PIBPXLI 30 WADI	لن	1									
3-19 140	STEPXLIZO WAD	Les _	1.									
	TIBPKLI WAR		<u> </u>	100 '	×	1.2.	عصم	<u>-</u>				
3-19 150	98BFXLI ZQ WAS	5	1									1
	91HP201 02-W/ 01	W	1						•			
•	VIBPALI WA			LAS	7	T	ter					
	910PXLIWA											- 80/695358828
Rother and Bonchen			Time					20	×		A Hander	
Clim Totat			Dans 🤊 — Time	21-18		Tenperal		/	ۍ سور د	Lah- Face	-mo	La (a5 05498
							032	19. N	\mathcal{E}_{φ}		Keig	15:32

ALL ICOM HANDINERS

ļ

ł

ţ

٠.

P. 84

	ארכי בשאר ריקס
erra Environmental Services, Sacrament 'verside Parkway	CALLAB-098184 to -
amento, California 95605 3-5600	Date Received : 21 MAR 98 09:30
n DeGeorge mery Watson - penard Road	Project ID, EPA Case, RMA Lot : ICPMS Metals + Hg
age, Alaska 99517	P.O. Number :
	Delivered By :
	Storage Location : W2E
248-8883 Fax: (907) 248-8884	Logged in by : KGONYEA
-J005-SA 98BPXL109SD02(03) 0006-SA 98BPXL109SD03(09) 0007-SA 98BPXL114SD01(01) -0008-SA 98BPXL114SD02(03) -0009-SA 98BPXL130SD01(01) -0010-SA 98BPXL130SD02(03) -0011-SA 98BPXL130SD02(03) -0012-SA 98BPXL130SD03(09) -0013-SA 98BPXL102SD62(03) -0014-SA 98BPXL130SD62(03) -0015-SA 98BPXL102WA01	<pre>18 MAR 98 22:30 125CGJ 18 MAR 98 23:30 125CGJ 18 MAR 98 16:10 125CGJ 18 MAR 98 16:10 Matrix Spike 18 MAR 98 16:10 Matrix Spike Dup 18 MAR 98 16:30 125CGJ 18 MAR 98 16:30 125CGJ 18 MAR 98 13:45 125CGJ 18 MAR 98 13:45 125CGJ 18 MAR 98 14:00 125CGJ 19 MAR 98 02:50 125CGJ 19 MAR 98 03:00 125CGJ 19 MAR 98 03:30 125CGJ 18 MAR 98 03:10 125CGJ</pre>
0016-SA 98BPXLI02WA02 -0017-SA 98BPXLI02WA03 -0018-SA 98BPXLI09WA01 0019-SA 98BPXLI09WA02 0020-SA 98BPXLI09WA03 -0021-SA 98BPXLI14WA01 -0022-SA 98BPXLI14WA02 0023-SA 98BPXLI30WA03	18 MAR 98 21:30 500PBn 18 MAR 98 22:00 500PBn 18 MAR 98 15:30 500PBn 18 MAR 98 15:40 500PBn 18 MAR 98 15:50 500PBn 18 MAR 98 13:00 500PBn 18 MAR 98 13:15 500PBn 19 MAR 98 02:00 500PBn
Samples not destroyed i of thirty (30) days	in testing are retained a maximum s unless otherwise requested.

٠

: Manager:

:

ц)	Client's label info	Date/Time Samp. Containers
-0025-SA 0026-SA	988PXL I30WA01 988PXL I30WA02 988PXL I30WA62 988PXL I30WA62	19 MAR 98 01:20 500PBn 19 MAR 98 01:40 500PBn 19 MAR 98 01:50 500PBn 18 MAR 98 21:10 500PBn

Samples not destroyed in testing are retained a maximum of thirty (30) days unless otherwise requested.

.

ţ

.

: Manager:

Í

.

ł

TOTAL P.P.