ALASKA POWER AUTHORITY

SUSITNA HYDROELECTRIC PROJECT

PROGRESS REPORT
FOR
SEPTEMBER - OCTOBER 1981

ACRES AMERICAN INCORPORATED 1000 Liberty Bank Building Main at Court Buffalo, New York 14202 Telephone: (716) 853-7525

ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
MONTHLY PROGRESS REPORT

Report No. 20

Period: September and October, 1981

Progress Report No. 20 covers the activities on the Susitna Hydroelectric Project for the months of September and October 1981.

Task 1, Power Studies, is complete.

Task 2, Survey and Site Facilities, began to wind down during September as various teams ceased this field activity. High Lake Lodge camp was terminated on September 30. Winterization of Watana Camp was begun and helicopter support dwindled to one Bell 206.

On October 9, 1981, a 1,200-gallon diesel fuel spill occurred at the Watana camp as a result of a faulty foat switch on one of the generator tanks. Cleanup action was started immediately by CIRI/H&N with assistance from Crowley Environmental Services. The Alaska Department of Environmental Conservation was informed of the spill and it is very satisfied with the cleanup measures taken.

Access road work progressed with reports received on the routes identified in March 1981 as the routes remaining after the initial screening. Parties involved in the selection process met with the Steering Committee and held two public meetings during the period to acquire new input. Layout drawings for the camps and townsites were commenced along with conceptual designs for utilities.

CIRI/H&N were active during the period by carrying out camp winterization. Also, they were involved in the fuel oil spill cleanup during October.

R&M Activities continued with the Subtask 2.08 Closeout Report being submitted to Acres. All ground-control surveys were completed on all alternative access corridors. Additional cross sections were taken in the lower reaches of the Susitna River at four sites.

Task 3, Hydrology, continued with routine monitoring of R&M's field work and review of the processed data. The Watana reservoir filling schedule was updated. Probable maximum flood studies in the basin and design values for spillway capacities were finalized. Results of the R&M open water modeling were reviewed and incorporated in the ice simulation model. Temperature modeling of the reservoirs and the downstream reach above Talkeetna were completed.

R&M activities continued data collection from stream gages, crest stage data, and water surface elevations. All climatic stations are operating routinely. A snow gage was installed at the Watana climatic station. Estimates on reservoir evaporation were calculated. Calibration and verification of the HEC-2 Water Surface Profile Model were completed between Devil Creek and Deadman Creek. An interim report on river morphology and reservoir sedimentation was completed.

Flow duration curves and high/low flow analysis of major rivers were completed. Revisions were made to incorporate recent data into the draft of the Subtask 3.10 report.

Task 4, Seismic Studies, continued with a review of field geologic studies conducted by WCC's review group in early September. A presentation was made to Drs. Seed and Sykes in San Francisco. Acres participated in the APA's consulting board meeting in early October.

WCC activities included an evaluation of historic earthquakes within 200 km of the project site. The size and closest approach of the terrain or floating earthquake to the sites are being analyzed. Analysis of the worldwide Benioff zone earthquakes was completed. Work on the network monitoring manual commenced. Analysis of the stress regimes in portions of the Talkeetna Terrain is essentially complete. The review group has concluded that the main seismic sources to consider are the Denali and Castle Mountain faults and the Benioff zone. Field studies for Task 4 were complete September 3, 1981. Data analysis and report preparation began September 14 and a draft report is due by December 23. Acres' comments are expected by January 18, and a final report is due by February 19. Work commenced on the seismic exposure analysis, including assessment of maximum credible earthquakes, recurrence, slip rate, and other local features. An approach to ground motion studies is under review by Acres and WCC.

Task 5, Geotechnical Investigation, continued with the data reduction necessary for engineering layouts, design and cost estimates. R&M's final photo interpretation report was reviewed. The rock-testing program was finalized, as was the scope for the soil testing program. The results of these programs are expected in December. Subsurface drilling at Watana was completed during September. The rock quality was found to be good to excellent. Instrumentation is to be installed during November. During October, an additional 30,000 If of seismic lines were laid out in the Fog Lakes area to investigate depths of overburden and the potential for reservoir leakage in the area. The scope and implementation of the mapping program for the Devil Canyon and Watana reservoirs were undertaken during the period.

R&M Activities continued with the Photo Interpretation Closeout Report submitted to Acres. Major field programs were completed, and equipment and personnel left the area by the end of September. Lab testing and reduction of data intensified during October as field crews returned.

Task 6, Design Development, continued with a second draft of the Watana and Devil Canyon design criteria being completed. Static and dynamic analyses of the rockfill dam have been completed. A final review of the economic dam height is in progress. A cost comparison of various spillway alternatives has been completed for the Watana site. A combination of low-level outlet and valve discharges, together with a chute and flip bucket type, main spillway, and emergency spillway with fuse plug, has been selected. At Devil Canyon, a comparison of stilling basin and flip bucket schemes is complete, and these are now being refined. Camp design and cost estimates continued during the period. Studies to date indicate two 35-foot-diameter tunnels are the best Watana diversion scheme. Optimizing this scheme is continuing. A scheme using a single 30-foot-diameter tunnel is being finalized for the Devil Canyon diversion scheme.

During optimizing of the Watana powerhouse it was decided to use an underground powerhouse having a six-generating unit design. The Devil Canyon scheme will utilize an underground powerhouse with a four-generation unit design. Work on refining these designs is underway.

Task 7, Environmental Studies, continued with many discussions being held to gather the information required for TES to conduct its studies. Access road strategies were discussed with APA. A meeting was held with Stephen Braund to clarify the sociocultural work products. Acres personnel attended the Fisheries Mitigation Task Force meeting to contribute information regarding downstream flows and temperatures to the Task Force. The mitigation policy was finalized by the interested parties and forwarded to APA for approval. Access road alternatives and their environmental impacts were discussed with TES and APA during the period.

TES activities continued with reports being prepared to assess the status of Subtasks 7.07, 7.08, 7.09, and 7.14. The status of Phase I modifications and escalation was discussed with Acres. Discussions were held in October with Acres relating to the Fish and Wildlife Mitigation Policy, access routes, and the latest dam designs. The camp requirement for 1982 was discussed with Acres' Resident Manager. FO&A continued a review of the ISER forecasting model and prepared an abstract of the Socioeconomic Analysis for Acres' review. TES and FO&A met with the public participation staff of APA to discuss the impacts of the access route and camp alternatives. The Alaska Museum continued to work on the analysis of cultural material collected during the 1981 field season. Additional archaeological evaluation and survey were performed in the Fog Lakes area along proposed seismic lines. TES sent Acres a draft outline for the report on Aesthetic Resources along with recommendations for Acres design team. An overflight of lower Susitna River tributaries was conducted as part of the navigational use study. A draft report, including maps, is in preparation for this study. During September, TES prepared a draft abstract for Recreation Planning. During the report period, TES addressed the Susitna Hydroelectric Project Steering Committee explaining the TES procedure for addressing impacts and mitigation issues. The prime effort of the TES Wildlife Ecology Group Leader was the completion of the habitat value comparison and its application to the access plans. A final Wildlife Mitigation Policy Statement and decisionmaking methodology were sent to Acres for review. Field work with birds, non-game mammals, and furbearing mammals continued with avian surveys, radiocollaring, and snow tracking being performed. Plant ecology studies proceeded with vegetation mapping of the transmission line corridors. Work on the Access Route Environmental Analysis Report continued. The TES environmental, socioeconomic, and land use access report was completed for Acres' review.

Task 8, Transmission, continued with a final draft of the Subtask 8.01 Closeout Report being forwarded to APA. APA agreed with Acres' suggestion that the transmission lines be brought into Anchorage via submarine cables under the Knik Arm and then to Anchorage Municipal Light and Power and Chugach Electric Association by overhead lines. Study efforts continued within the recommended transmission corridors and on tower configurations. Switchyard arrangements and single line diagram drawings commenced. Cost estimates were updated.

Task 9, Construction Cost Estimates and Schedules, continued with updating quantities and costing on refined designs. The costing system was adapted to the FERC code of accounts, and this format will be used for future estimates. The Watana and Devil Canyon schedules and the computerized logic network were updated during the period. An estimating and scheduling review was conducted in late October with Acres internal estimating consultant.

Task 10, Licensing, continued with FERC approving final rules in October for applications for major unconstructed projects. These are unchanged from the proposed rules issued in February.

Task 11, Financing and Risk Analysis, continued with a meeting in mid-October to address potential changes in the Task 11 scope caused by recently enacted legislation in Alaska. Acres is preparing a revised scope as a result of this meeting. A new scope of work was prepared for risk analysis studies, and adjustments were made to the FEEZBL program for assessing financing alternatives.

Task 12, Public Participation, continued with attendance at workshops in Talkeetna and Cantwell concerning access route alternatives.

Task 13, Admininistration, continued with the schedule being updated to reflect current project direction. An in-house computer cost report was accepted by APA in place of the Lanier System generated report. Acres revised escalation calculations during the month.

Task 14, ADF&G Support, continued routinely during September and October.

TASK 1 - POWER STUDIES

Task 1 complete.

TASK 2 - SURVEY AND SITE FACILITIES

ACRES ACTIVITIES

Subtask 2.02 - Provision of Field Camps and Associated Logistic Support

Watana Camp operations began to wind down during September as the various geology, archaeology, seismology and environmental teams ceased their respective field activities. Support from High Lake Lodge declined gradually, terminating on September 30. Winterization activities were initiated at the Watana Camp prior to an early 16-inch snowfall. Helicopter requirements were also reduced; by month's end, only one Bell 206 remained.

On Friday, October 9, 1981, a fuel spill occurred at the Watana Camp as a result of a faulty float switch on one of the generator day tanks. Approximately 1200 gallons of diesel fuel was lost through the tank vent before it was detected at 11:00 p.m.

Cleanup action began immediately, utilizing sorbent sheets pre-positioned for such an emergency. CIRI/H&N began extensive cleanup operations the next day, and fuel that could be safely burned off, to the extent practicable, was burned, with the remaining spill being contained by sorbent material and plastic membrane-lined snow berms.

Continued monitoring and additional cleanup will take place in the spring as the snow melts to insure all detectable fuel is absorbed or burned off.

Crowley Environmental Services provided technical assistance and recommended the placement of sorbent booms to contain remaining fuel during spring breakup. The Alaska Department of Environmental Conservation was informed of the spill and all subsequent cleanup actions. They are very satisfied with the measures taken. The faulty float valve has been replaced and an electrical alarm system has been installed.

Costs associated with the cleanup activities are approximately \$10,000 for labor and materials. Sufficient diesel remains to supply needs through June 30, 1982.

Helicopter use hours decreased substantially this month, with the greatest percent used for Subtasks 7.11.1 and 7.11.2. Total helicopter days totalled 40, or 172.4 hours utilized during the month.

Su ' k 2.10 - Access Roads and Camps

Work in the access road continued during the report period. Reports were received from the various groups and subcontractors working on the access road. These reports presented the additional studies carried out on the routes identified in March 1981 as the routes remaining after the initial screening.

The reports included R&M Consultants' report concerning Engineering and Costs, TES's report concerning Environmental Impacts, Steven Braund's report and Alaska Power Authority's (APA's) report addressing public preference, and Acres' report concerning overall project scheduling requirements.

In addition to the reports received, all parties contributing to the selection met with the Susitna Steering Committee; and two public meetings, one in Talkeetna and one in Cantwell, took place during the report period. The meetings were held to convey information and acquire new input from all parties concerned to aid in the access road decision, scheduled during the next report period.

Agency contact meetings were held with the Bureau of Land Management, Alaska District Corps of Engineers, and the Department of Public Safety, Division of ADF&G. Alternative routes were presented and discussions held pursuant to obtaining the necessary permits required prior to construction of the selected access route. Additional meetings are planned with the Department of Transportation, U.S. Fish and Wildlife Service, and the Department of Environmental Conservation.

Continued coordination and planning meetings were held with FMA and R&M to obtain necessary planning data for access road construction activities.

Work continued on the camps and townsites during the report period. Layout drawings have commenced along with conceptual designs concerning site services such as water supply, sewage, and electrical service. Work continued on producing and updating capital cost estimates of the camps and townsites.

CIRI/H&N ACTIVITIES

A declining camp population was serviced during September, reflecting the end of the summer field program. Camp services also continued to be made available on an intermittent basis to those field personnel based at nearby tent camps.

In addition to its regular operation, maintenance, and related inspection of camp facilities, CIRI/H&N carried out winterization activities in preparation for the upcoming season. CIRI/H&N began cleanup of an oil spill of 1,200 gallons of diesel fuel which was caused by an unexpected malfunction of a float switch which controls the amount of diesel fuel being pumped from the camp's POL storage area to the day tank in the generator module. The spill was contained within five days after the spill occurred. Additional preventative measures were undertaken in terms of both the day tank and the absorption of spilled fuel which may flow again during upcoming winter break-up conditions.

R&M ACTIVITIES

Subtask 2.07 - Site-Specific Surveys

The data and information obtained from the river cross sections, channel geometry surveys, and water surface profiles are contained in the Subtask 2.08 - Closeout Report which was submitted to Acres during October.

Subtask 2.08 - Aerial Photography and Photogrammetric Mapping

All ground control surveys have been completed on all alternative access corridor flight courses. This subtask is essentially complete except for contour mapping of selected access corridor areas and removal of flight panels from the field. Terrain unit analyses of transmission corridors are nearing completion. A project closeout report is being prepared.

Subtask 2.10 - Access Corridors

The requested logistics requirements have been provided by Acres. The full report on alternative access plans is now in preliminary draft form and was submitted on October 5, 1981, for review and comment.

Subtask 2.16 - Hydrographic Surveys

Additional cross sections in the lower reaches of the Susitna River have been accomplished at four sites. Office plotting and analysis of these were completed in September and early October. A draft Closeout Report has been submitted to Acres, thus completing this subtask.

TASK 3 - HYDROLOGY

ACRES ACTIVITIES

Subtask 3.03 - Field Data Collection and Processing

Routine monitoring of R&M field work and processing of data continued. Processed climate data collected during 1980-1981 have been received from R&M and is under review.

Subtask 3.04 - Water Resources Study

An update of Watana reservoir filling schedule was made with minimum downstream releases of 2000 cfs and 6000 cfs from the dam. Revised post-project flows downstream from the dams were calculated for input to fisheries studies. Several modes of reservoir operation to take account of downstream flow requirements for fisheries are being analyzed to arrive at the most acceptable operation to satisfy energy and environmental requirements.

Subtask 3.05 - Flood Studies

Studies on the probable maximum flood in the basin have been substantially completed and design values for spillway capacities finalized. Documentation of the study is underway. A variety of flood routing analyses was completed to finalize discharge capacities of spillway and other discharge facilities for the Watana and Devil Canyon Developments.

Subtask 3.06 - Hydraulic and Ice Studies

Results of the R&M open water modeling of the river reach above Talkeetna were reviewed and incorporated into the ice simulation modeling. Temperature modeling of the reservoirs and the downstream river reach above Talkeetna were completed and results were reviewed in the Fisheries Mitigation Task Force meeting on October 1, 1981. Revised operations incorporating multilevel intake at Watana were analyzed to bring post-project summer temperatures to environmentally acceptable levels in this reach. Winter temperatures post-project indicate the possibility of open water regime almost up to Talkeetna confluence, and the impact on fisheries and environment is being studied.

Results of the open water modeling have been consolidated, and information on pre- and post-project discharges and water levels in the downstream reach have been transmitted to the environmental group for their analyses on fisheries and other impacts.

Subtask 3.07 - Sediment Yield and River Morphology

R&M has prepared an interim report on the subject. This was transmitted to environmental group for information. Dr. D. R. Neill of the University of Alberta will serve as Acres' expert consultant in the morphology studies.

Subtask 3.08 - Climatic Studies for Transmission Lines

Preliminary studies made earlier in the year are presently being reviewed with data from climatic stations collected during 1980-1981. Revised design values for wind speeds and icing for the transmission lines are due to be finalized by the end of November.

Subtask 3.10 - Lower Susitna Studies

A meeting was held with TES on September 1, 1981, to finalize transmittal of all available information on pre- and post-project flows, water quality, and sediment transport in the river reaches below the dams. Progress to date on the transmittals is according to accepted schedule.

R&M ACTIVITIES

Subtask 3.03 - Field Data Collection and Processing

All USGS stream gages are operating satisfactorily. The Watana stream gage is operating, and data for September to mid-October were reduced. Crest stage data and water surface elevations were collected at several sites at a flow of about 22,000 cfs at the Gold Creek station. No crest stage data were collected during October. R&M and Peterson & Associates are interpreting available water quality data for the Susitna River Basin. A quality control check on the Chem-Geo laboratory analysis indicated problems with several parameters. Chem-Geo is to explain the discrepancies. Water quality samples were collected in the midst of flowing frazil ice at the Vee Canyon and Gold Creek sites. Malfunction of the sediment sampler prevented collection of suspended sediment samples on the dates of water quality sampling. All climatic stations are operating well. Climatic summaries through June 1981 for all stations have been received and forwarded to Acres. A Wyoming snow gage was installed at the Watana climatic station. Daily

readings were taken at the Watana Camp evaporation pan until late September, when readings were discontinued for the winter. Velocity points on the Susitna Basin glacier were surveyed. These were the final data collected for the 1981 season. Ice study observations were initiated in late September when large amounts of frazil ice appeared at the Gold Creek site and in October at the Susitna River site.

Subtask 3.04 - Watana Resources Studies

Estimates of reservoir evaporation were made. An interim report on glacier studies was received from Dr. Will Harrison.

<u>Subtask 3.05 - Flood Studies</u>

Comments received from Acres on the report, and minor modifications were made.

Subtask 3.06 - Hydraulic and Ice Studies

Calibration and verification of the HEC-2 Water Surface Profile Model were completed for the river between Devil Creek and Deadman Creek, and the results transmitted to Acres.

Subtask 3.07 - Sediment Yield & River Morphology Studies

A literature search on the trap efficiency of lakes on glacial rivers and of the settling characteristics of glacial suspended sediment was completed. An extensive interim report on the river morphology from Devil Canyon to the confluence of the Susitna, Chulitna, and Talkeetna Rivers was completed, as was an interim report on reservoir sedimentation. Additional data on the morphology of several sloughs above Talkeetna are being reduced by ADF&G.

Subtask 3.10 - Lower Susitna Studies

Flow duration curves and low-flow and high-flow analyses of major rivers in the Susitna River basin were completed. Cross-section and staff gage data were collected near several major boat launching sites and other areas with possible navigation problems under post-project conditions, and the data transmitted to the Alaska Department of Natural Resources for inclusion in the navigation studies. An aerial reconnaissance of the lower river was made to help assess its morphology.

Aerial photographs of the lower Susitna were taken at low stage to assist in defining its morphology. Revisions of the earlier draft of the 3.10 report were made, incorporating more recent data.

TASK 4 - SEISMIC STUDIES

ACRES ACTIVITIES

Acres participated in the final review of the field geologic studies conducted by Woodward-Clyde Consultants' (WCC's) review group on September 2 and 3, 1981. The review was conducted at the job site. Later in the month, the results of

field studies and other ongoing Task 4 studies were presented to Drs. Seed and Sykes in San Francisco, California. Acres participated in this meeting and APA staff members were present in both meetings.

Acres participated in the APA Consulting Board Meeting No. 3 held in Buffalo, New York, on October 6 through 8, 1981. Jon Lovegreen of WCC presented the results of the studies to date. Verbal guidance was transmitted to WCC on the long-term seismic network manual, and location maps for the transmission line corridor and the access road corridors were provided to WCC for seismic studies along these routes.

WCC ACTIVITIES

Subtask 4.08 - Preliminary Dam Stability Analysis

Included as part of Subtask 4.13.

Subtask 4.09 - Long-term Seismologic Monitoring Program

Evaluation of selected large historic earthquakes within 200 km of the Susitna project site has been completed. The quality and quantity of seismograms for these earthquakes are variable, and qualitative or quantitative assessments of focal depth, location, and focal mechanism have been made where possible. The following earthquakes were evaluated: 27 August 1904 (M_S 8.3); 7 July 1912 (M_S 7-1/4) 3 July 1929 (M_S 6-1/4); 4 July 1929 (M_S 6-1/2); 27 April 1933 (M_S 7); 3 November 1943 (M_S 7.3); 19 August 1948 (M_S 6-1/4); 29 June 1964 (M_S 5.6); and 1 January 1975 (M_S 5.9).

The epicenter region for the 1943 earthquake (which occurred in the upper crust approximately 150 km from the dam sites) will be reviewed using small-scale imagery and photography in November and December 1981. This review will be conducted to identify potential sources for this earthquake. This study is being conducted in response to concerns of Dr. Lynn Sykes about the source of the event.

The size and closest approach of the terrain (or floating) earthquake to the sites are being analyzed. This analysis includes review of historical worldwide earthquakes which both have and have not had surface rupture. This work is expected to be completed in mid-November 1981.

Analysis of worldwide Benioff zone earthquakes is complete. Paul Somerville of WCC has defined the Benioff zone in the project region as having two major subzones—an interplate subzone and an intraplate subzone separated by a transition zone. The seismologic characteristics and maximum earthquake have been developed for these two zones. The results of this analysis were presented to Dr. Lynn Sykes and were accepted by him as discussed under Subtask 4.12 below.

Work on the network monitoring manual has commenced and is expected to be completed in November 1981. Verbal guidance from both the APA and Acres have been incorporated into development of the manual.

Analysis of the stress regime in portions of the Talkeetna Terrain is essentially complete. Records for selected earthquakes in the Terrain were reviewed at the University of Alaska Geophysical Institute (UAGI) by Barbara Bogaert and Woody Savage and incorporated into the analysis along with records from the 1980 Susitna Project microearthquake network. This work will be completed in early November 1981.

Subtask 4.10 - Reservoir-Induced Seismicity

Review of the model developed in August 1981 has been conducted by Jon Lovegreen and Duane Packer of WCC. Review comments will be incorporated into the model during October and November 1981. The model will then be used as part of the seismic exposure analysis (Subtask 4.13) to determine the ground motions of significance to dam design.

Subtask 4.11 - Seismic Geology Field Studies

The final field review by WCC's review group was conducted on September 2 and 3, 1981, at Watana field camp. Members of Acres and the APA also attended the review. The main conclusion of the review group was that the seismic sources to consider for dam design are the Denali and Castle Mountain faults and the Benioff zone.

All WCC field personnel departed from the field on September 3, 1981. This concludes the seismic geology field studies for Task 4.

The final draft of review comments by the WCC Project Review Team was sent to each of the reviewers for review and comment. The final version of these comments will be completed by mid-November 1981. No other work was conducted on this subtask.

Subtask 4.12 - Evet tion and Reporting

Data analysis and report preparation began on September 14, 1981, and will continue virtually full-time through December 1981. According to the present schedule, WCC is to submit a draft copy of the report to Acres for review on December 23, 1981. Acres' review comments are expected to be transmitted to WCC by January 18, 1982, in order to produce a final report by February 19, 1982.

A review meeting was held in the San Francisco office of WCC. At the meeting, preliminary seismic geology, seismology, and earthquake engineering results were presented to Drs. Seed and Sykes of the APA and Acres' review boards. Selected members of Acres and the APA were also present at the meeting. The primary review comments concerned the size and distance from the site that a terrain (or floating) earthquake could occur, the sources for the 1929 $M_{\rm S}$ 6-1/4 and 1943 $M_{\rm S}$ 7.3 earthquakes, the effect on ground motion analyses from these events, and a request for additional confirmation of the judgment that the local features studied in 1981 are not active faults.

An informal request was made by Robert Mohn of the APA to develop a working approach for interacting with the UAGI on WCC's geologic and seismologic results. A proposal to do this work will be submitted by WCC to Acres in early October 1981.

WCC was requested to participate in the October 6 to 8, 1981, review meeting in Buffalo, New York. The preparation for this meeting began in late September 1981. It is requested that Jon Lovegreen will attend and present WCC's preliminary results and conclusions.

WCC addressed review comments by Drs. Seed and Sykes which were made at this meeting, as well as the September 22, 1981, meeting. The additional work being carried out to address the comments include: interpretation of remotely sensed data in the 1943 earthquake epicenter region to identify potential causative faults; analysis of the size and depth of earthquake which could reasonably be expected to cause surface rupture, and implementation of a probabilistic approach to describe the likelihood that the 13 local features are active faults and assess the impact on seismic design. The conceptual approach to the latter topic has been discussed verbally with Acres.

Report writing and figure preparation continues. An in-house draft of the report will be submitted to the WCC Project Review Team on November 23, 1981.

Work has commenced to provide data for the seismic exposure analysis. This work includes assessment of maximum credible earthquake, recurrence, slip rate, b-slope, and likelihood that a fault is active for the known seismic sources and the 13 local features. A similar assessment is being made for the interplate and intraplate sections of the Benioff zone and the terrain earthquake. This work will be completed in early November 1981, and will be provided to the earthquake engineers.

Subtask 4.13 - Ground Motion Studies

A preliminary deterministic estimate of ground motion parameters was prepared by WCC. These estimated parameters were submitted to Acres on September 16, 1981, and presented at the review meeting on September 22, 1981.

It has been agreed within WCC that conducting a probabilistic assessment of ground motion parameters (i.e., what is the likelihood of exceedance of design ground motions if an earthquake were to occur on a particular source) would be in the best interests of the project. This decision is being discussed with Acres. While these discussions are being held, work on this subtask has been limited to that of coordinating input from geology and seismology for the seismic exposure analysis. Ground motion studies will commence in mid-November 1981, when the approach has been agreed upon with Acres.

Subtask 4.14 - Dam Stability Consulting Services

Consulting services were provided by Maurice Power, as requested by Acres.

Subtask 4.15 - Transmission Line Evaluation

Transmission line and access route right-of-way maps have been received from Acres, and interpretation of remotely sensed data has commenced. This work is expected to be completed in early November 1981.

TASK 5 - GEOTECHNICAL INVESTIGATIONS

ACRES ACTIVITIES

General

Acres' work on Task 5 through the months of September and October has principally involved reduction and data interpretation necessary for engineering layouts, design, and cost estimates.

Subtask 5.02 - Photo Interpretation

Acres received the finalized photo interpretation from R&M and reviewed the report to insure that all comments have been incorporated. R&M continued lab testing of materials obtained from test pits in the river near Watana and test trenches and auger holes at Devil Canyon. Work on this subtask was completed during October 1981.

Subtask 5.03 - Exploratory Program Design (1981)

Work under this subtask consisted of locating test pits on the river alluvium upstream from the Watana Dam Site during September. Work was completed on defining the rock-testing program for the project. The scope of the soiltesting program will be completed in October. Both the rock- and soil-testing programs were scoped and samples shipped to the respective laboratories. The testing program is expected to be completed during December.

Subtask 5.06 - Exploratory Program (1981)

Subsurface drilling of the Watana site was completed during September with the completion of BH-3 in the area of the proposed right abutment powerhouse location. BH-4 at the powerhouse was drilled to 950 feet and permeability testing was completed. This completed the planned 1981 program. The rock quality in the area was found to be good to excellent. Several small alteration zones were found in the powerhouse borings, but these zones were not considered to adversely impact the suitability of the location for underground structures. Diamond drill and other equipment crews demobilized from the site by the end of September. All auger holes were completed on the proposed access routes by Semptember 20. During September approximately 20 shallow test pits were excavated on sand bars and small islands in the river channel from upstream of Deadman Creek to about 3 miles downstream of the confluence of Fog Creek and the Susitna River. Remaining field activities consisted of instrumentation which is expected to be completed in November.

During October, an additional 30,000 lf of seismic lines were laid out in the Fog Lakes area to investigate the depth of overburden and the potential for reservoir leakage throughout this area. An archaeologist from the University of Alaska investigated the areas through which the lines passed and recommended clearance so that explosives could be used when required. A two-man seismic crew from WCC, along with two technicians from R&M, started work on the lines near the end of the month.

Geologic logging of the U.S. Corps of Engineers core for Watana was completed during September. Fracture logging was completed during the month.

Logging of the Bureau of Reclamation cores is expected to be completed in early December.

The scoping and implementation of the mapping program for the Devil Canyon and Watana reservoirs were undertaken during September and October. The mapping will be based principally on photo interpretation with field checking where appropriate. The mapping will be directed toward identifying areas that would experience potential slumping and breaching under operating conditions. The mapping is anticipated to be completed during December.

All the geotechnical field work was reviewed during September by Dr. A. Merritt, Consultant for APA.

Subtask 5.08 - Data Compilation

Extensive effort was placed on reduction and the preparation of geologic maps, cross sections, boring logs, and figures in preparation for Task 5 report. A preliminary outline for the final Task 5 report was prepared for comment. Work continued on preparation of text and figures.

R&M ACTIVITIES

Subtask 5.02 - Photo Interpretation

Revisions were made in the Terrain Unit Maps and summary report, and the alternative North Access Corridor photo mapping was nearly completed during September. During October final maps and Closeout Report were submitted. Photo maps for alternative North Access Corridor were also submitted.

Subtask 5.06 - Exploratory Program, 1981

Permeability testing at BH-3 at the Watana damsite was completed, and BH-4 was drilled and tested. The diamond core drill rig was demobilized to Anchorage.

The auger drill rig drilled 26 test holes along the proposed access routes and then demobilized to Anchorage.

The trench shores used in the WCC linement trenches were sent to Anchorage and the trenches were backfilled. The small Kubota backhoe excavated 21 material site test pits in the Susitna River on gravel bars and islands in the general area of the Watana damsite.

All major geotechnical field programs were completed and all associated personnel and equipment left the job site on or before September 26, 1981.

At the end of October, mobilization was underway for additional seismic refraction surveys in the Fog Lakes area. No other field activities took place. Laboratory testing schedules were developed and some testing was completed. Reduction of survey elevations and coordinants was on-going, and final logs, permeability data and core photos were in preparation for submittal.

TASK 6 - DESIGN DEVELOPMENT

Subtask 6.09 - Design Criteria for the Watana Development

Subtask 6.10 - Design Criteria for the Devil Canyon Development

A second draft of the design criteria has been completed and will continue to be updated as data and criteria are further developed.

Subtask 6.11 - Preliminary Design of Watana Dam

Static and dynamic analyses of the rockfill dam have been completed based on a dam cross-section utilizing alluvial gravel and boulders from the riverbed in the outer shell. Further study of sources of materials has continued.

Final review of the economic dam height is in progress to determine whether any slight adjustment of crest and reservoir pool level is required based on the most recent system load forecasts.

Subtask 6.15 - Watana Spillway Alternatives

Various spillway alternatives have been designed and costed to a level of detail sufficient to give a basis of comparison for the various schemes. A combination of low level outlet and valve discharges together with a chute and flip bucket type, main spillway and emergency spillway with fuse plug has been selected. Work is now in progress on refining this scheme for inclusion in the feasibility report.

Subtask 6.16 - Devil Canyon Spillway Alternatives

Comparison of stilling basin and flip bucket schemes has been completed, and a system of discharges based on a flip bucket spillway coupled with fixed core valves incorporated in the dam has been developed. Refinement of this scheme is in progress.

Subtask 6.20 - Access and Camp Facilities

Work continued on the camp design and cost estimates during the report period. Concepts developed included: a three-level camp; campsite which would house the majority of unmarried workers; permanent townsite which would eventually house the permanent operations and maintenance personnel, while during construction, house management personnel and their families; temporary townsite that would augment the permanent townsite during construction.

Note: Henceforth, Subtask 6.20 will be included with Subtask 2.10.

Subtask 6.21 - Watana Diversion Scheme

The free-flow and submerged tunnel schemes were redeveloped in conjunction with incorporation of a permanent, low-level outlet into one of the diversion tunnels. Studies to date have shown two 35-foot diameter tunnels best meet the overall objectives of the diversion scheme. One tunnel would act as a submerged tunnel during diversion operations and would be plugged for permanent operation. The other tunnel would act as a free-flow tunnel during diversion and would become a permanent low-level outlet with energy dissipation for permanent operation. A system of high-pressure slide gates located in the diversion closure plugs has been developed to provide for low-level releases during reservoir filling and to serve as an emergency facility for drawing down the reservoir.

Work continued during October on the optimizing of the selected diversion scheme in conjunction with producing capital cost estimates for the scheme.

Subtask 6.22 - Devil Canyon Diversion Scheme

The Devil Canyon Diversion Scheme was redeveloped during September. Studies to date indicate a single, 35-foot diameter, concrete-lined pressure tunnel with upstream rockfill cofferdam has been developed for the Devil Canyon Diversion.

The tunnel would act as a submerged tunnel during diversion and would be plugged for permanent operation.

The Devil Canyon Diversion Scheme continued to be refined during October. Continuing studies and evaluations indicated the concrete arch dam has only a 2-to 3-year critical period, not the 6-year complete schedule originally anticipated, when overtopping of the cofferdam would cause substantial damage. For this reason, the design flood was reduced from a 50-year recurrence period flow. This reduced the optimum tunnel diameter from 35 feet to 30 feet.

Subtask 6.23 - Optimize Watana Power Development

A study of the comparative costs of a surface and underground powerhouse has been completed. An underground powerhouse has been selected and comparison of a four-generating-unit configuration to a six smaller unit configuration has indicated the latter to be preferable.

Subtask 6.24 - Devil Canyon Power Development

A four-generating-unit underground powerhouse has been adopted and work is proceeding on a comparison of directing flows from a single unit or providing a separate pumping system to discharge environmental flows down Devil Canyon.

TASK 7 - ENVIRONMENTAL STUDIES

ACRES ACTIVITIES

Subtask 7.01 - Administration

Numerous telephone conversations and two meetings in Buffalo were conducted to supply TES with information necessary to conduct its studies. Discussions and meetings with APA were held regarding access road strategies. A meeting was held with Stephen Braund to clarify the sociocultural work products. Work was begun on obtaining costs and planning logistics to carry out project-wide report distribution.

Outlines of portions of the Volume 1 Feasibility Study were prepared. The DNR-APA interagency agreement was reviewed.

Subtask 7.05 - Socioeconomics

Discussions were held with TES, APA, and Frank Orth and Associates to clarify the socioeconomic study schedule and work product.

Subtask 7.09 - Tranmission Line Analysis

A meeting was held with TES to discuss the results of their studies. The draft 8.01 Closeout Report was completed and submitted to APA.

Subtask 7.10 - Fish Ecology Studies

The Fisheries Mitigation Task Force meeting held in Anchorage was attended by Acres personnel. Information concerning downstream flows and temperatures were provided to the Task Force.

Subtask 7.11 - Wildl' . - Ecology Studies

Conversations were held with TES and APA regarding finalization of the mitigation policy. The policy was received, reviewed, finalized, and forwarded to APA.

Subtask 7.14 - Access Route Environmental Analysis

Preliminary access route analysis was conducted. Discussions were held with TES regarding environmental impacts of the various alternatives. Information for meetings held with APA in October was assembled. Meetings were held with the Steering Committee and Cook Inlet Regional Corporation to discuss access road alternatives and solicit their input.

TES ACTIVITIES

Subtask 7.01 - Administration

Considerable discussion (a meeting in Buffalo and numerous phone conversations) was held concerning TES information needs. TES received a list and schedule of deliverables from Acres in response to the TES list and schedule of information needs (December 1980, revised August 1981).

During September, TES prepared reports assessing the status of Subtasks 7.07, 7.08, 7.09, and 7.14, and discussed the status of Phase I modifications and escalation with Acres. TES submitted to Acres the escalation report pertaining to the University of Alaska for the period of January 1 to June 30, 1981. Budget constraints associated with escalation costs for Subtask 7.06 were discussed with University officials.

TES obtained cost estimates to supply additional copies of 1980 Subtask Annual Reports and forwarded this information to Acres.

Discussions occurred with Acres at the October 9 meeting regarding the Fish and Wildlife Mitigation Policy, the TES access route evaluation, the Phase II transition budget, and the latest dam designs. Further discussions were held in October concerning the TES list of information needs and Acres' list of deliverables.

The TES Project Environmental Study Manager, and the Anchorage Resident Manager held a second series of agency contact meetings during the week of October 12. A total of 15 state and federal agencies were contacted, with a total of 30 officials participating in the briefings. The TES Resident Aquatic Biologist, Dr. D. Schmidt, joined the team when agencies with a professional interest in fisheries were contacted.

Discussions were held with the Acres Resident Manager to define and plan for camp requirements for the period December 1, 1981, to June 30, 1982.

Subtask 7.02 - Field Monitoring

Organization and preparation of the field office at Watana for winter was completed during the first part of September. The field representative returned to work in the TES Anchorage office on September 8, 1981, and has spent some time since that date compiling information collected during this summer. Additional time was spent researching landownership as part of the transmission line routing studies.

Subtask 7.05 - Socioeconomic Analysis

During September, FO&A prepared an abstract of the Socioeconomic Analysis for inclusion in the draft report sent to Acres (see Subtask 7.15). FO&A continued work on evaluation of the ISER forecasting model (Work Package 4). In concert with this, Peter Rogers met with Scott Goldsmith of ISER to insure consistency between FO&A and ISER methodologies. FO&A conducted a literature review of studies on fish and wildlife values.

During the month, the TES Group Leader and the FO&A Project Manager met in Alaska with the public participation staff of APA. Discussions were held concerning access route alternatives and construction camp arrangements. Potential impacts resulting from optional schemes were identified.

While in Alaska, the Group Leader also met with APA public participation staff and Steve Braund, Acres' sociocultural consultant, to discuss coordination of activities. The Group Leader summarized socioeconomic and land use analysis to date concerning access plan evaluations.

The Group Leader provided additional input on access routes. He also met with Acres' personnel to discuss the construction camp and permanent operations village for Susitna during October. Frank Orth and Associates' staff traveled to Anchorage and Mat-Su Borough (Palmer) to review planning standards for project facilities, and collected housing and related data for the baseline forecast. Staff also participated in technical Susitna team meetings and public meetings concerning access. Ajdustments were made in the Baseline Forecast Methodology (Work Package 4) and the forecast without Susitna was initiated. Frank Orth & Associates also reviewed several methodologies for estimating fish and wildlife values.

Subtask 7.06 - Cultural Resources Analysis

The University of Alaska Museum continued to work on the data analysis of cultural material collected in the Susitna area during the 1981 field season. Reports on cultural resources in the vicinity of the alternative access routes and transmission corridors were prepared for TES. TES and the Museum prepared an abstract of results to date and expected project impacts on these resources.

George S. Smith had a preliminary meeting with Mr. Doug Reger, State Archaeologist, and Mr. Bob Shaw, SHPO, concerning the Susitna Project on Subtask 7.06.

Work is in progress on the analysis of cultural material from the sites located this past field season. All of the faunal material recovered during recommaissance testing has been analyzed. Lithic analysis is presently underway. Radiocarbon dates are not available at this time. Portions of the final report are in preparation. Graphics to be included in the report are approximately 75% complete.

At the request of Acres, TES had the University of Alaska Museum conduct an archaeological evaluation and survey of a proposed seismic line in the Fog Lakes area. No cultural material was encountered and clearance was recommended provided some minor changes were made in the position of the line.

Subtask 7.07 - Land Use Analysis

TES prepared draft abstracts on the land use and visual and aesthetic impact studies for review by U of A project team members. These were included in the abstract sent to Acres. TES also sent Acres a draft outline for the Report on Aesthetic Resources, which contained preliminary recommendations for consideration by the Acres design team.

During the month, the Group Leader traveled to Alaska to conduct an overflight of tributaries to the lower Susitna River as part of the navigational use study. The flight involved a survey of boating use on the Skwentna, Yentna, Kahiltna, Lower Susitna, Kashwitna, and Deshka (Krotoa Creek) Rivers, and Willow and Alexander Creeks. Locations, types of craft, and power source were noted. As part of this effort, the Group Leader also met with Woody Trihey (in-stream flow consultant) and Paul Janke (DNR - Water Management) to facilitate coordination of the study.

The Group Leader performed additional analysis of alternative access plans for incorporation in the TES report. The land use analysis was coordinated with socioeconomic input previously prepared by FO&A and the Group Leader.

Additional analysis was performed related to assessment of alternative access plans. The University updated draft maps on aesthetics and visual resources management.

The Principal Investigator for Land Use Analysis attended the technical meeting on October 19 concerning analysis of access plans. TES began preparation of maps and a draft report on the navigational use investigation.

<u>Subtask 7.08 - Recreation Planning</u>

During September, TES prepared a draft of the abstract for Recreation Planning. University of Alaska project staff reviewed the draft and TES included it in the abstract sent to Acres.

While in Alaska, the Group Leader met with the U of A Principal Investigator to revise the schedule for the Recreation Planning effort in response to changes in timing of the access road decision.

The Group Leader and Principal Investigator met with Jack Wiles of DNR - Division of Parks to exchange information and provide the Division with an over-view and status report on the Recreation Plan.

Work continued on additional analysis and refinement of the working draft recreation plan document by the U of A project staff. This work also involved revisions to the participation survey instrument which is now scheduled to be sent out to the public in early January 1982.

Subtask 7.09 - Transmission Line Analysis

During September, a draft Transmission Line Assessment Procedures Manual was completed and sent to Acres for comment. In addition, a copy of the draft final Subtask 8.01 Closeout Report was received and reviewed by TES. Aerial photographs of the Knik Arm area south of Wasilla were received and reviewed.

Subtask 7.10 - Fish Ecology Studies

Since the last monthly report, Alaska-based activities included a presentation by D. Schmidt to the Susitna Hydroelectric Project Steering Committee explaining the TES procedure for addressing impacts and mitigation issues. Additional dissolved gas measurements were taken in the vicinity of Devil Canyon. Technical support and visits to ADF&G field crews have continued through the month of September.

The major activity of the entire Fish Ecology Study Team has been the preparation of the Fish Ecology Studies Abstract. This was submitted to Acres in draft form during the latter portion of September along with the abstracts from the other subtasks.

The results of the June dissolved-gas measurements in Devil Canyon have been put into report form and were submitted to Acres. The life history and ecology literature reviews of selected fishes underwent internal review and editing.

A policy for the Fisheries Mitigation Technical (Core) Group has been completed. Work is continuing on a joint Fish and Wildlife Mitigation Policy.

Additional activities included the continued literature review for pertinent materials related to impact, mitigation, estuaries, and arctic lakes and impoundments. At Acres request, TES commented on an article concerning hydroelectric development on the Columbia and its relationship to salmon populations.

Major activities of the Fish Ecology Study Team concerned meetings of the Fisheries Mitigation Technical Group in Seattle on October 1-2, 1981, and a second meeting held in Anchorage on October 22 and 23, 1981. Seasonal flows thought necessary to avoid flow impacts upon salmon were developed.

Additional topics including predicted post-project temperature regimes and their possible impacts were discussed at the meetings of the Fisheries Mitigation Technical Group. Potential mitigation options on a variety of impacts are presently being compiled and analyzed by the mitigation technical group.

Final recommendations on the joint Fisheries/Wildlife Mitigation Policy Statement have been submitted to Acres.

Resident fish ecology/life history summaries are completed and analyses on additional dissolved-gas sampling are being undertaken. A report entitled "Life History and Ecology of Selected Fishes That Occur in the Susitna River" was finalized and submitted to Acres. Interviews were conducted with several team members by the APA during the October 22-23 meeting period. Alaska-based activities included presentations of the Susitna fisheries studies at several meetings with agencies.

Subtask 7.11 - Wildlife Ecology Studies

The Wildlife Ecology Group Leader devoted a considerable amount of time to tasks associated with the analysis of access route alternatives. The prime effort in this regard was the completion of the habitat value comparison and its application to the access plans. Additional time was spent reviewing the recommendations of consultants and subcontractors in regard to this issue.

Progress was made on the development of a final wildlife mitigation policy statement and the development of a decision-making methodology. The results of this effort were forwarded to Acres for review and comment.

Steps were also taken to initiate the development of a habitat comparison to assist in the routing of the transmission lines. Subcontractors and ADF&G were requested to supply the necessary life requisite data to be used in this effort.

Field work concerning birds and non-game mammals included the continuation of the avian survey during the fall migration period and a survey of waterfowl on water bodies in the upper Susitna basin. Analysis efforts continued on the breeding bird data collected during the spring/summer as well as habitat data collected during August.

A considerable amount of field work concerning furbearers took place during September. This effort resulted in the radio-collaring of five marten. A survey was conducted of red squirrel middens to ascertain the extent of marten use at this time of the year. Other field work included the continued monitoring of red fox dens and the pre-dispersal activity of pups. Due to the availability of snow, the snow-tracking program commenced during this month.

A considerable amount of furbearer field work took place during October. Additional marten were radio-collared and relocated on a daily basis. Several new marten resting sites were found and over 50 marten scats collected. Through radio monitoring, the timing and extent of fox pup dispersal was documented during late September and early October. Snow tracking began in October but poor snow conditions and inclement weather impeded the desired effort. Site-specific inventories were conducted to increase familiarity with the occurrence of less common furbearer species such as lynx and coyote. Visits were also made to proposed borrow sites not previously visited.

The major effort during the month of October concerned the development of a wildlife mitigation plan. During early October, a meeting was held in Anchorage to discuss mitigation options that could be recommended to deal with the predicted impacts of the Susitna Project. A variety of suggestions and recommendations were discussed during that meeting and selected ideas have been forwarded to Acres for consideration. During the remainder of October, the Wildlife Ecology Group Leader worked on assembling the mitigation ideas and organizing them for consideration by other project personnel. That effort will continue into November and be available for additional consideration by the end of the month.

Avian field work was terminated on October 23. Most of the bird and small mammal work during the month was still preliminary to report writing, and included the autopsy of almost half of the season's small mammal specimens, the placing of the rest of the vegetation-habita data from the supplemental mammal lines onto the computer, and some preliminary statistical runs of the bird analyses. All waterfowl survey data has been tabulated and progress has been made on the preparation of a rough draft of the raptor portion of the report.

Subtask 7.12 - Plant Ecology Studies

The AES located available aerial photographs for the Clear MEWS to Healy area and ordered them for vegetation mapping purposes. The AES continued data analysis of downstream information and proceeded on vegetation mapping of transmission line corridors.

TES/AES discussed the burning project planned by BLM for Alphabet Hills region of the upper Susitna basin.

TES reviewed manuscripts submitted by the AES for possible publication in Agroborealis, and corresponded with Acres concerning approval of articles.

TES reviewed input received from the AES for the access route report and finalized information presented in the report. TES also reviewed and revised the abstract submitted by AES and incorporated this input into the draft abstract submitted to Acres.

The AES continued work on the Feasibility Report during October, with emphasis on data analysis of the downstream information and preliminary impact predictions. AES attended wildlife mitigation meetings on October 13 and 14 and provided input into various aspects of mitigation, with special emphasis on the clearing of the impoundment areas and reclamation of disturbed areas. In addition, possible studies that would be performed in conjunction with the BLM potential burn experiment in the Alphabet Hills region were discussed with ADF&G, AES, and Acres.

TES developed a sensitivity map and recommendations for Acres concerning the utilization of borrow areas for the dam sites.

Subtask 7.14 - Access Route Environmental Analysis

Considerable effort was expended in the preparation of the Access Route Environmental Analysis Report. Input received from Principal Investigators was incorporated into the report in addition to information supplied by Group Leaders in-house. Preparations were begun to attend a series of meetings concerning access with project team members, the Steering Committee, and perhaps the public.

During the first week in October, the TES environmental, socioeconomic, and land use access route report was completed and submitted to Acres.

Time was spent, toward the end of the month, preparing input to submit to R&M consultants regarding environmental concerns associated with identified borrow areas for some of the access corridors. This information will be submitted in early November.

Subtask 7.15 - Preparation of FERC Application

Considerable discussion was held between Acres and TES concerning organization and format of the environmental report. TES submitted to Acres a preliminary draft of an abstract (75 pages) for the Susitna environmental report.

A revised outline for environmental sections of the feasibility report and license application was prepared. Revisions of the July 31 outline were based on discussions and correspondence with Acres and on other practical considerations that became evident during the preparation of the environmental report abstract.

STEPHEN R. BRAUND & ASSOCIATES ACTIVITIES

During September, effort was placed on addressing various access alternatives with residents in the study area. This was accomplished by field trips to Talkeetna, Curry, Chase, Trapper Creek, Gold Creek and Cantwell during the month. Numerous meetings with other project consultants were also held to obtain information and opinions.

During October, the sociocultural access report was submitted to Acres. Interviews with project consultants, APA, and various governmental agencies were held during the month to obtain further data for the Sociocultural Study which is in progress.

TASK 8 - TRANSMISSION

Subtask 8.01 - Tranmsission Line Corridor Screening

A final draft of the close-out report was forwarded to the Alaska Power Authority in September for review and comment.

Subtask 8.02 - Electric System Studies

Work continued on the first draft of a planning memorandum entitled "Preliminary Transmission System Analysis." This memorandum will review all the work completed on electric system studies up to June 15, 1981.

During this period, the termination of the transmission line at Anchorage was under review. It was suggested to APA that the lines be brought into Anchorage via submarine cables under the Knik Arm and then to Anchorage Municipal Light and Power and Chugach Electric Association by overhead lines. This line could probably parallel the transmission line being constructed by Chugach for its 220 kV system. APA agreed with the review and referred Acres to the Municipality of Anchorage for further information on a contemplated bridge crossing of Knik Arm.

Commonwealth Associates requested information on the upper limit of line loading for each of the three 345 kV lines from Devil Canyon to Anchorage. In the letter of October 19, 1981, Acres specified an ultimate line loading of 950 MVA per circuit.

Subtask 8.03 - Transmission Line Route Selection, 1981

The study effort is being concentrated within the recommended corridors. The results of field studies from other tasks is being assembled and will be available shortly. The specific information will be forthcoming from the environmental and geotechnical groups.

Subtask 8.04 - Tower, Hardware and Conductor Studies

Study has commenced on various configurations of towers for the transmission line. Loading criteria parameters were prepared for determining structure requirements.

Subtask 8.05 - Substations

Some preliminary work was started which included single-line diagrams and switchyard arrangements.

Subtask 8.07 - Transmission Line Cost Estimates

Transmission system estimates were updated during this period.

TASK 9 - CONSTRUCTION COST ESTIMATES AND SCHEDULES

ACRES ACTIVITIES

During September, a review and update commenced on base unit cost rates that are to be part of the preliminary cost estimates. Initial quantity takeoffs were started with additional takeoffs to be completed as the design progresses. An extensive review of working area, fill and excavation quantities at various elevations of the Watana Dam was completed. This information will form the basis for formalization of a construction methodology and determination of appropriate production rates and schedules. It will also be used as a basis for on-going design under Task 6.

During October, work continued on Subtask 9.02 on the preparation of preliminary quantities and estimate for use by EBASKO. A review was made of the items to be used for quantity takeoffs and costing. This expanded list of items was adapted to the FERC code of accounts. The FERC system will be used in all future presentations. Work started on the coding of data for use by the Acres estimating system. This will allow future estimates to be computer-generated in the adapted FERC format. Work also continued on preparation of preliminary quantity estimates and of unit costs.

The Watana and Devil Canyon schedules and the computerized logic network for each site were updated under Subtask 9.04. Particular emphasis was placed on the impact of access decisions on the initial few years of work at each site.

An estimating and scheduling review was conducted in late October with Acres external estimating/construction consultant. Results and comments from this review will be incorporated into future work.

TASK 10 - LICENSING - OCTOBER 1981

FERC approved final rules in October for applications for major unconstructed projects. A review of the rules indicated that they were virtually unchanged from the proposed rules published in February.

The formal coordination program was finally initiated with the available documents released to agency heads for official comments.

TASK 11 - FINANCING AND RISK ANALYSIS

ACRES ACTIVITIES

A meeting with the APA Director of Finance and with First Boston was held in Buffalo on October 13, 1981, to address potential changes in Task 11 scope resulting from recently enacted legislation in Alaska. It was agreed that Acres should proceed with submission of a revised scope of work for Task 11. Primary concentration will be on (1) study of financial feasibility under varying assumptions as to State participation, (2) a review of marketability, and (3) a risk analysis focusing upon the probabilities of meeting cost and schedule alternatives. A new scope of work has been prepared for risk analysis studies and ajdustments were made to the FEEZBL program for assessing financing alternatives.

TASK 12 - PUBLIC PARTICIPATION

ACRES ACTIVITIES

Public workshops in Talkeetna and Cantwell concerning access road selection were attended.

TASK 13 - ADMINISTRATION

ACRES ACTIVITIES

Subtask 13.04 - Develop Schedule - Control System

Work continued on monitoring and updating the project schedule. The proposed schedule for each site was reviewed and updated in accordance with current access schemes and pre-construction planning.

Subtask 13.05 - Cost Control

During the month an edited in-house computer cost report was accepted by APA. The in-house computer replaces the Lanier System as the machine developing the monthly cost report. In order to determine whether Acres is in compliance with Article 12 of the Contract, Acres reevaluated our salary increase for the year and submitted a schedule to the client. Acres analyzed the revised escalation calculation for 1980 and estimates for 1981 and incorporated the results into our proposed Amendment #2. Other adminsitrative functions continued routinely.

TASK 14 - ADF&G SUPPORT

ACRES ACTIVITIES

Purchasing for ADF&G continued routinely during September and October.

STATE OF ALASKA

JAY S. HAMMOND, GOVERNOR

DEPARTMENT OF FISH AND GAME

333 RASPBERRY ROAD ANCHORAGE, ALASKA 99502

September 9, 1981

Kevin Young Acres American, Inc. Liberty Bank Building Main at Court Street Buffalo, New York 14202

Dear Kevin:

Once again I find myself slipping behind on monthly reports. I intentionally skipped the July report as our activities were covered in the quarterly report. Therefore this report covers August, September, and the first two weeks of October.

Field activities were fairly routine. Radiocollared animals generally followed expected patterns. We have identified a different component of the upstream moose population which wintered in the vicinity of the Watana Impoundment then migrated to Coal Creek for the summer.

A short tagging operation was conducted in early August to replace bear collars. One new brown bear and three new black bears were collared. One of the blacks had been collared earlier but had shed the collar.

Black bears entered their dens substantially earlier this year than last. Some had denned by September 9 and all had by October 7. In 1980 they entered dens between September 29 and October 13. There was some evidence that brown bears also were beginning to den earlier but most were still out on October 7. The distribution of black bear dens appears similar to those observed in 1980-81 with those near the Watana Impoundment below the projected water level and those near the Devils Canyon Impoundment somewhat higher than the projected water level. In fact many 1980-81 den sites were being reused in 1981-82 sometimes by the same bear. More detailed information will be collected when the dens are visited next summer.

Movements of moose radiocollared below Talkeetna indicate that the 1980 and 1981 capture operations sampled different subpopulations. Four of five moose captured in 1980 in this area have spent the summer on the east side of the river while 15 of 16 1981 moose are on the west side. It is possible that other subpopulations exist but have not been sampled. There is some evidence of one such subpopulation in the area between the Kashwitna and Little Susitna Rivers but additional collaring will be necessary to confirm this.

Data entry continued to be our highest priority activity and occupied much of the field staff's time. Manpower shortages and gaps in availability of hardware and software have created some delays but an outstanding effort on the part of the entire staff has overcome these problems. Principal investigators analysed data that are already available and worked on portions of the Phase I report.

BLM's plans to conduct a prescribed burn to enhance habitat for moose have been reviewed. The area lies 10 to 15 miles east of the upper end of the Watana Impoundment and contains habitat similar to that which will remain adjacent to the impoundment after filling. This burn appears to present an opportunity to evaluate prescribed burning as a mitigation tool for the Susitna Project. Additional moose and vegetation studies beyond those planned by BLM will be necessary. Some of these will have to be initiated this fiscal year. We will attempt to develop a recommendation on a course of action in cooperation with TES in the near ruture.

The fall caribou composition count is scheduled for the week of October 12. The count is the final step in our caribou census procedure and a 1981 population estimate will be available shortly after the count is completed.

Towards the end of the same week we expect to radiocollar wolves. As soon as snow conditions permit, probably early November, we will attempt to capture wolves from new packs and wolverine.

Sincerely,

Karl Schneider

STATE OF ALASKA

DEPARTMENT OF FISH AND GAME

JAY S. HAMMOND, GOVERNOR

2207 Spenard Road Anchorage, Alaska 99503

03-81-7.10-0.4

October 19, 1981

RECEIVED

OCT 27 1981

ACRES AMERICAN INCORPORATED

Dr. John Hayden
Technical Study Director
Acres American Incorporated
The Liberty Bank Building
Buffalo, New York 14202

Dear Dr. Hayden:

RE: Su Hydro Aquatic Studies Monthly Report - September

FIELD STUDIES

Resident Juvenile/Aquatic Habitat

Impoundment Reach

Two trips to the proposed impoundment area were undertaken in September. The first trip, September 15 through September 28 was conducted by a composite RJ/AH crew and resulted in the capture of those resident species listed in Table 1 (Attachment 1) from the trip report. The humpbacked whitefish listed was the first of this species taken in the impoundment area this season.

Catch per unit of effort (angling with sport tackle) on arctic grayling was the lowest recorded this season. Of the 458 total grayling taken, 128 were taken within the designated study areas at a rate of 3.9 fish per man hour.

The total number of fish tagged was 420 (Table 3, Attachment 2). Graylaccounted for 47% of the fish tagged. There were 41 previously tagged grayling and one that had lost it's tag, recaptured.

General observations of Arctic Grayling by stream are reported on Table 4 (Attachment 3). General observations are the fish have moved from their summer habitat of small, shallow pools and riffle areas to large, deep pools in some of the streams and out of those streams that do not have many pools.

Tributary stream levels were low and clear. The mainstem Susitna was the lowest of the season and is now beginning to clear.

	SUSITNA									
	FILE P5700 . /1.70									
	SEQUENCE NO. F 3043									
	ACTION	INFORM,	DISTRIB.	INITIAL						
			DCW							
			J . ľ							
			CAD							
			JOG							
_		1=	14:	K gla						
}			JPS							
			IPGH							
			ENS							
			SNT							
1	nc	1	DWL							
			MRV							
			HRC							
	_	XC	AK	2						
e	_									
9										
	-	-	FILE							

ALASKA POWER

Gillnets placed in the mainstem Susitna near the mouths of major tributary creeks resulted in the capture of 13 grayling confirming that they are utilizing the mainstem river. Inspection of tag recoveries at the mouths of tributary streams also reveal that fish tagged upstream are now moving down to the mainstem.

Two small pools near the mouth of Watana Creek were found to contain large numbers of juvenile fish. Dip-net sampling confirmed a species composition of grayling, whitefish, longnose sucker and sculpin. The pools were formed when the water level in the mainstem Susitna dropped for the winter and are now isolated from the mainstem.

The second trip was conducted by two biologists from September 21 through September 23. Study areas on some tributary streams were fished for grayling. Fishing was not as productive as previous trips and only 28 grayling, including one recapture from Watana Creek, were taken.

Deadman Lake was fished in an effort to learn something about resident fish within. A falls on Deadman Creek will be inundated by the proposed impoundment thus possibly rendering Deadman Lake accessable to fish now residing below the falls. Deadman Lake produced 3 lake trout and 2 grayling; all of which were tagged and released. Approximately 70 grayling had been previously tagged above the falls but none of these were caught in the lake.

The Sunshine Camp Fishwheel was operated by Resident and Juvenile personnel from September 25 through September 28 to capture resident and non-salmon anadromous species. Forty-one fish were captured during this period. Of these, 39 were tagged and released and 2 were dissected. All fish captured and tagged in the fish wheel were identified as anadromous Bering cisco.

An electro-shocking unit was fished along river stretches from Birch Creek to about 1.5 mile below Montana Creek this same period. The most productive areas were along the outside of gravel bars and riffle areas. Back water slough and quiet water areas of the Mainstem River produced relatively few fish. Total fish tagged by species using this method of capture were:

Bering cisco		42
Round whitefish		12
Arctic grayling		16
Rainbow trout		4
Longnose sucker		3
Burbot		1
Humpback whitefis	sh	2

Yentna River Confluence Reach

Crews continued to sample the river reaches below Devil Canyon according to plan. The most downstream reach was sampled by the Yentna River crew from the Yentna River camp from September 9 through 17 and again from September 26 through October 1, 1981. A total of 421 fish were processed on these trips. Two unusual specimens were noted in the catches. These were a 28 inch Northern pike and a nine-spine stickleback. The Northern was the first of this species taken by Su Hydro crews and the stickleback the second of it's species. Northern Pike were reported to have been introduced into a lake leading to a tributary on the Yentna River several years ago and will in all probability, eventually spread throughout the sloughs and backwaters of the Susitna drainage where suitable habitat is found.

One hundred twenty fish were tagged and released during these trips. No recaptures were reported.

The upstream migration of Bering cisco passed through the lower river reach in Mid September and all those examined were in ripe spawning condition. Cisco were not observed in any of the tributary streams along this river reach.

Talkeetna Reach

Sampling along the river reach monitored by the crew based at the Talkeetna camp was conducted with electroshockers and also with gear types previously used. Conductivity of the water was low thus reducing the effective range of the electroshocking gear. The electroshocker produced rainbow trout, grayling, juvenile coho and scuplins at the various sites fished.

Burbot catches were heavy with 46 taken on trot lines. One was exceptionally large at 36 inches long. All burbot examined were sexually mature.

Scales were read from the juvenile chinook and coho salmon taken from sites along this reach. Chinook were all the 0+ age class and 66 to 89 mm long. Coho were all 0+ and 1+. The 0+ fish were 70 to 95 mm and the 1+ were 95 to 141 mm long.

Three O+ sockeye salmon were taken as were chinook and coho smolts at several sites.

Ten juvenile grayling were also taken with minnow traps at the mouth of Birch Creek.

Gold Creek Reach

Two survey trips were undertaken by the crew based at Gold Creek camp. The first trip took 252 juvenile 0+ chinook, 147 coho 0+, 1 coho 1+, 22 rainbow trout, 45 grayling, 3 Dolly Varden, 5 suckers, 5 whitefish sp., 13 burbot, 12 sculpins, 5 three spine stickleback, 1 adult chum salmon and one common merganser. The second trip captured 595 chinook 0+ salmon, 35 coho 0+, 7 rainbow trout, 7 grayling, 1 Dolly Varden, 21 whitefish sp., 4 burbot, 8 sculpin and 6 stickleback.

October 19, 1981

The 0+ chinook fry have apparently moved into sloughs 10 and 20 for winter rearing as the catch of fry in these two sloughs was higher than on any trip since last spring.

The electroshocking boat manned by Adult Anadromous crews assisted the RJ/AH crews with the capture of I rainbow trout, 5 grayling and 17 whitefish sp. from the mouth of Portage Creek.

A total of 88 fish were tagged in the Gold Creek reach during September. A tagged rainbow trout was sighted in Slough 8A but eluded capture. Another that was tagged on July 6 in Slough 10 was taken by an angler fishing at the mouth of Sherman Creek in August, and a large, tagged rainbow was recaptured in August on a trot line set in the same slough from which it was tagged. Unfortunately, the fish did not survive the recapture.

On several occasions, adult salmon were observed digging redds in silty, side channels to the mainstem river. The fish were observed to be sockeye and chum salmon.

Aquatic Habitat

The Aquatic Habitat (AH) crew members continued their accompaniment of RJ personnel to take point specific measurements and record other habitat data. Cross sectional surveys on side sloughs by an independent AH crew using leased surveying instruments were also completed. Some of the thermographs buried by high water deposits of silt and gravel have now been recovered. Brown bears destroyed one thermograph.

Adult Anadromous

The field season for the Adult Anadromous crews is essentially over.

Table 5 (Attachment 4) gives a condensed summary of salmon catches and counts for the season.

The radio telemetry crew has completed tracking coho salmon and is now implementing a resident fish tracking program with the RJ crews. Tracking of coho was highly successful. Milling behavior in coho was observed as the result of radio tagging as was the location of a mainstem spawning site which was confirmed by "egg pumping" with portable pumps and driftnet catches of fish in spawning condition.

Adult Anadromous personnel expended considerable time working with the data processing staff, cartographer and assistant coordinator on the draft species/subject chinook salmon report which was submitted after the close of the chinook salmon data collection period in August. The report will be further polished and the material included in the Draft Phase I Anadromous Adult report along with similarly reported data on the other species of salmon.

Sincerely,

Thomas W. Trent Aquatic Studies Coordinator Su Hydro Aquatic Studies Telephone: (907) 274-7583

cc: V. Lucid

J. Gill

D. Schmidt D. Wozniak

M. Warner

Table 1. Fish captured by species and stream Susitna River Impoundment studies, September 15-28, 1981.

		GRAYLI				
CTDCAWADATE	TOTAL ALL	STUDY	NUMBER	SCALES	PUDDAT	OTHER
STREAM/DATE	AREAS.	AREA	TAGGED	SUMLES	BURBOT	UITER
Oshetna River 9/15-9/18	167	7	134	34		1 Cottid
Goose Creek 9/18-9/20	13	2	11	4	7	
Jay Creek 9/20-9/22	68	65	64	13	9	
Kosina Creek 9/22-9/24	167 <u>1</u> /	23	-158	16	2	6 Round Whitefish 1 Humpback Whitefish
Watana Creek 9/24-9/26	26	25	25	3	3	2 Round Whitefish 1 Longnose Sucker
Deadman Creek 9/26	3	_	3	1		
Tsusena Creek 9/27	9	1	8	7		
Fog Creek 9/27	5	5	5	2	-	
TOTALS	458	128	408	74	22	1 Cottid 8 Round Whitefish 1 Humpback Whitefish 1 Longnose Sucker
Includes fish captured in pper pools hich we snuttled into by helicopter						
			AT	ACHMENT		
				34		

Table 3. Fish tagged through September trip, Susitna Impoundment Studies, 1981.

STREAM	DATES	GRAYLING	(CUM.)	BURBOT	(CUM.)	ROUND WHITEFISH	(CUM.)	L.NOSE SUCKER	(CUM.)
Oshetna	9/15-18	134	(427)		(0)		(3)	-	(13)
Goose	9/18-20	11	(355)		(4)		(0)	-	(12)
Jay	9/20-22	64	(371)	1	(5)		(7)		(25)
Kosina	9/22-24	158	(660)	2	(4)	5	(5)		(1)
Watana	9/24-26	25	(209)	1	(10)	2	(2)	1	(43)
r™an	9/26	3	(251)	0	(10)		(0)		(3)
a _{l suc} ena	9/27	8	(269)		(0)		(0)		(0)
Fog	9/27	5	(74)		(0)		(0)		(0)
TOTALS	9/15-27	408	(2616)	4	(23)		(7)	1	(97)

TRIP TOTAL ALL SPECIES: 420

TOTAL ALL SPECIES TO DATE: 2753

ATTACHMENT 2

Table 4. Observed grayling numbers by stream.

STREAM	GRAYLING NUMBERS
Oshetna	155 fish caught in one pool. Few scattered fish in larger pools.
Goose	Few scattered fish, fished large pool - 2 miles upstream - no fish caught.
Jay	Many fish at mouth, observed and caught a few fish in large pools 1.5-2.0 miles upstream.
Kosina	Some fish at mouth, many fish in pools - 1-3 miles upstream.
Watana	Poor fishing at mouth but 15 grayling gillnetted, few fish upstream.
Deadman	No fish at mouth, at least a few fish in deep pool above Section 2.
Tsusena	Large pool .3 mile up with many fish, 1 fish caught at mouth.
Fog Creek	Few fish off mouth.

ATTACHMENT 3

Table 5. Summary of apportioned sonar counts for Susitna, Yentna, Sunshine and Talkeetna stations, Adult Anadromous Investigations, Su Hydro Studies, 1981.

	LAST DATA			SPECI	- S				
SONAR LOCATION	ENTRY DATE	CHINOOK	SOCKEYE	PINK	СНИМ	соно	MISC.2/.	COUNT 1/	
Susitna Station	9/2/81	1,752	340,232	113,349	46,461	33,468	4,965	540,227	
Yentna Station	9/7/81	427	139,401	36,053	17,765	17,018	2,716	215,480	
Sunshine Station	9/15/81	2,415	89,906	72,945	59,630	22,793	1,135	248,824	
Talkeetna Station	9/15/81	1,154	3,464	2,529	10,036	3,522	752	21,457	

Table 5. Summary of fishwheel catches for Susitna, Yentna, Sunshine and Talkeetna stations, Adult Anadromous Investigations, Su Hydro Studies, 1981.

TAG/RECAPTURE	LAST DATA ENTRY			SPECIES				TOTAL	
LOCATION	DATE	CHINOOK	SOCKEYE	PINK	CHUM	соно	MISC.	COUNT	
unshine Station	9/15/81	612	9,528	7,099	9,167	2,928	263	29,597	
alkeetna Station	9/15/81	134	391	371	1,273	527	112	2,808	
urry tation	9/21/81	284	461	227	1,258	180	51	2,461	

^{1/} This table does not include non-apportioned sonar counts.

^{2/} Miscellaneous pertains to species other than adult anadromous salmon.

STATE OF ALASKA

DEPARTMENT OF FISH AND GAME

JAY S. HAMMOND, GOVERNOR

2207 Spenard Road Anchorage, Alaska 99503

YAKARARAKANAN BABAKARARAKAN KANAN BABAKAN BARAKAN BARA

November 12, 1981

02-81-0.4

RECEIVED

NOV 2 0 1981

ACRES AMERICAN INCORPURATED

Dr. John Hayden
Technical Study Director
Acres American Incorporated
The Liberty Bank Building
Buffalo, New Yor 14202

Dear Dr. Hayden:

RE: ADF&G Su Hydro Monthly Report October, 1981

ADMINISTRATIVE SUPPORT

During the month of October Tom Trent, Project Coordinator, attended two meetings, one of which was held in Seattle, of the Mitigation Technical Group. These meetings resulted in the development of recommendation letters on organization and impact evaluation considerations and mitigation alternatives.

Staff meetings were held to review second half FY 82 budget requirements. Requirements were identified and memos drafted for submission to APA.

Tom also spent one day in the field reviewing spawning sites with Dana Schmidt and Woody Trihey.

Other administrative office duties were completed as required by all support staff.

ADULT ANADROMOUS PROGRAM

Activities of the Adult Anadromous program were centered around preparatio of a Species/Subject report on Chum, Coho, Pink and Sockeye Salmon. Many hours were spent analyzing data in coordination with Data Processing and Cartographic services by AA personnel.

RESIDENT AND JUVENILE ANADROMOUS SPECIES PROGRAM

A final trip to Indian and Portage Creeks was undertaken by one RJ and one Aquatic Habitat crew member from October 2 through 4. Water levels were low and water temperatures ranged from 1.5°C to 3.4°C.

Seasonal catches for these two important tributary systems are listed in Tables 1 and 2 (Attachments 1 and 2).

	AUTHORI SUSITA	WER TY JA
ion	FILE P57	
•	SEQUENCE F. 313	NO.
	ACTION INFORM, DISTRIB.	INITIAL
-	- FCN	
F	C 1D	
. -		
. -	1 JAH	
ion-	JFS	
	IPGH	-
_	ENS	
-	SILT	
-	DWL	
	MRV	
	XC AK I	+
-	VOV	4.
	MMG	→ i
-		
	ME]
	the control of the co	

ALASKA POWED

Two electroshocking trips were conducted during October; one in the Montana Creek and one in the Talkeetna area. The first trip was in the Talkeetna area between river mile 70 and 105.5. Approximately 60% of the fish tagged on this trip were Bering Cisco. The fish were in spawning condition and believed to be engaged in spawning activity. Bering cisco were distributed from Mile 70 to approximately mile 101 where the majority were caught in water two feet deep or less over gravel substrate.

Round whitefish in spawning condition and coloration were also observed. This species was found in all habitat types sampled and appeared to be concentrated in areas having lower water velocity than that occupied by the Bering Cisco.

Rainbow trout and burbot were also taken for tadio tag implantation. A dummy tag was placed in a 383 mm (FL) grayling as an acceptance trial. The trial appeared successful as the fish was functioning normally after several days with the tag.

A total of 444 fish were tagged. few tagged fish were recovered. Table 3 (Attachment 3) reports on the tag recoveries for this trip.

The second electroshocking trip to the Montana Creek area produced mostly Bering Cisco as well. Sampling was concentrated in those areas that produced high catches on the first trip of the month. The relative abundance of Cisco appeared down from that experienced on the first trip and those captured were largely spawned out indicating that the majority of spawning activity for this species took place between October 7 and 13.

A rainbow trout was implanted with a radio transmitter for tracking and a Bering Cisco was implanted with a dummy transmitter for a survival test. Both fish recovered while being held in a live box and were subsequently released. A total of 75 fish were tagged on the second trip and five fish, all Bering Cisco, were recaptured. Four of the five recaptures were tagged on the first trip of the month.

Some sites were also sampled with standard gear which proved impractical because of slush ice. Never-the-less, four sites were sampled with 24 hour sets and produced a catch of three chinook 0+, five coho 0+, two rainbow trout, one grayling, 16 burbot, three sculpin and three stickleback. The two rainbow, grayling and 15 of the burbot were tagged. Three of the burbot were radio tagged.

Two thermographs were also recovered in the Talkeetna area.

The Yentna River camp was dismantled for the season with much of the gear being stored on the Deshka River.

AQUATIC HABITAT

Aquatic Habitat personnel accompanied RJ personnel on the electroshocking trips where they collected habitat and instream flow data in areas holding fish. An example of a portion of the type of data collected by AH personnel is displayed by the field notes exhibited in Attachment 4. Data of this type will later be correlated with fish catch data collected by RJ personnel. Some thermographs and staff gages placed earlier were pulled and stored for the winter season.

An AH biologist accompanied the Resident and Juvenile propject leader and Dana Schmidt into the upper river area to identify sites for winter sampling of that area. Altogether, ten sites were identified. .

One AH crew surveyed several side sloughs between October 6 and 15.—Headpins were surveyed on several transects of Slough 8-A (RM 125) and Slough 9 (RM 128). Discharge measurements were taken at some transects along with elevation of the water surface.

Sincerely,

Thomas W. Trent

Aquatic Studies Coordinator Su Hydro Aquatic Studies Telephone: (907) 274-7583

cc: Vince Lucid
Jim Gill

D. Schmidt

D. Wozniak

M. Warner

Table 1. Numbers of salmonics captured Indian River and Portage Cree, by habitat location and month of sampling, 1981.1.

		ı	NDIAN RIVER				PORȚAGE CREEK		
BITAT			ROUND				ROUND		
ATION	SPECIES		2	3	TOTAL	1	2	3	TOTAL
1	Chinook	2	47	12	71	0	104	44	148
	Coho	0	3	3	6	0	0	6	6
	Dolly V.	0	4	0	4	1	28	3	32
	Rainbow	0		0		0	0	. 0	0
	No. Traps	20	8	7	35	20	10	10	40
	Trap Hours	44.2	113.8	126.0	681.8	4.86	260.0	192.5	938.
2	Chinook	0	63	13	76	0	5	6	11
	Coho	0	22	2	24	0	0	0	0
	Dolly V.	0	16	1	17	3	41	7	51
	Rainbow	0	0	Ö	Ó	Ŏ	0	Ó	0
	No. Traps	20	9	7	36	20	10	10	40
	Trap Hours		150.0	129.5	798.5	484	255.0	192.5	931.
3	Chinook	0	44	16	60	0	0	0	0
- 1	Coho	0	40	19	<u>59</u>	0	0	0	0
	Dolly V.	0	22	7	29	3	35	6	44
	Rainbow	0	0	Ó	0	0	0	0	0
	No. Traps	20	10	- 7	37	20	10	10	40
	Trap Hours		197.5	133.0	823.5	453	237.0	197.5	887.
Stream				estada firministratura en estada en estada en estado en estado en estado en estado en estado en estado en esta					and the second s
Totals	Chinook	2	154	41	197	0	109	50	159
	Coho	0	65	24	89	0	0	6	6
	Dolly V.	Ö	42	8	50	7	104	13	124
	Rainbow	0	1	0		Ó	0	Ö	0
	No. Traps	60 🙄	• 27.	- 21	-108	60	30	30	120
	Trap Hours		461.3	388.5	2,303	1,423	752.0	582.5	2,757
Total a	11			and the interest of the continue					
IULDI d	4.4				•			•	

1/ Sampling dates: Round 1; 6/7-10, Round 2: 8/25-28, Round 3; 10/2-4.

Table 2. Catch of salmonius per trap day by habitat location and rom: of sampling Indian River and Portage Creek. 191...

			And the same of th			
SPECIES		2	3 ROUND	<u> </u>	2	3
Chinook	0.1	5.88	1.71	0	10.4	4.40
Coho	0			0	0	0.60
Dolly Varden	0	0.50	0	0.02	2.8	0.30
Rainbow	0	0.13	.0	0	0	0
Chinook	0	7.00	1.86	n	0.5	0.6
•						0.0
	the state of the s					0.7
Rainbow	0	0	0	0	0	Ö
	0	4.40	2.29	0	0	00
Coho	0	4.00	2.71	0	0	0
	0	2.20	1.00	0.15	3.5	0.6
Rainbow	0	0	0	0	0	0
Chinagh	6 22	F 70	3.05	•	5 C5	7 ,
						1.67 0.20
						0.20
Rainbow	0	0.04	0.38 0	0.12	0	0.43
	0.07	9.70	2.88	0.12	7.10	2.30
	Chinook Coho Dolly Varden Rainbow	Chinook 0.1 Coho 0 Dolly Varden 0 Rainbow 0 Chinook 0 Coho 0 Dolly Varden 0 Rainbow 0 Chinook 0 Coho 0 Dolly Varden 0 Rainbow 0 Chinook 0 Coho 0 Dolly Varden 0 Rainbow 0	SPECIES 1 2 Chinook 0.1 5.88 Coho 0 0.38 Dolly Varden 0 0.50 Rainbow 0 0.13 Chinook 0 7.00 Coho 0 2.44 Dolly Varden 0 0 Chinook 0 4.40 Coho 0 4.40 Coho 0 4.00 Dolly Varden 0 0 Chinook 0.33 5.70 Coho 0 2.41 Dolly Varden 0 1.56 Rainbow 0 0.04	Chinook 0.1 5.88 1.71 Coho 0 0.38 0.43 Dolly Varden 0 0.50 0 Rainbow 0 0.13 0 Chinook 0 7.00 1.86 Coho 0 2.44 0.29 Dolly Varden 0 1.78 0.14 Rainbow 0 0 0 Chinook 0 4.40 2.29 Coho 0 4.40 2.71 Dolly Varden 0 0 0 Chinook 0.33 5.70 1.95 Coho 0 2.41 1.14 1.14 Dolly Varden 0 1.56 0.38 Rainbow 0 0.04 0	Chinook	SPECIES 1 2 3 ROUND 1 2 Chinook 0.1 5.88 1.71 0 10.4 Coho 0 0.38 0.43 0 0 Dolly Varden 0 0.50 0 0.02 2.8 Rainbow 0 7.00 1.86 0 0.02 2.8 Coho 0 2.44 0.29 0 0 0 Coho 0 2.44 0.29 0 0 0 Dolly Varden 0 1.78 0.14 0.15 4.1 Rainbow 0 4.40 2.29 0 0 Coho 0 4.00 2.71 0 0 Dolly Varden 0 2.20 1.00 0.15 3.5 Rainbow 0 0 0 0 0 0 Chinook 0.33 5.70 1.95 0 3.63 Coho 0

Table 3. Recapture:

īac =	Species	Tagging Location	River Mile	Date Tagged	Capture Location	River Mile	Date Captured	Released
1394	Round White- fish	Sunshine Fishwheel	78.6	9/9	1 mile North of con- fluence of Chulitna	99.5	10/2	Yes.
5329	Humpback Whitefish	Sunshine Fishwheel	78.6	9/20	Opposite Sunshine Camp	78.5	10/5	Yes
653	Bering Cisco	Opposite Sunshine Camp	78.5	10/5	Opposite Montana Creek	77	10/5	Yes
70ó	Bering Cisco	Opposite Montana	77	10/5	.25 mile north of Mainstem West Bank	74.5	10/5	Yes
642	Grayling	Opposite Sunshine Camp	78.5	10/5	Opposite Montana Creek	77	10/5	Yes
657	Bering Cisco	Opposite Sunshine Camp	78.5	10/5	Opposite Sunshine Camp	78.5	10/6	Yes
676	Bering Cisco	Opposite Sunshine Camp	78.5	10/5	Opposite Sunshine Camp	78.5	10/6	Yes
670	Long Nose Sucker	Opposite Sunshine Camp	78.5	10/5	Opposite Montana Creek	77	10/6	Yes
625	Bering Cisco	Opposite Montana Creek	77	10/4	Opposite Montana Creek	77	10/6	Yes
888	Bering Cisco	.25 mile North of Mainstem West Bank	74.5	10/6	Opposite Montana Creek	77	10/7	Yes

LISCO Spowning HREA

10点 数 3.0 图	depth (feet) / velocity (fool/sec)
12 28 53	
의 등 가	Hydrolab data.
0.7 1.0 1.5	H20 temp - 318°C.
	Conductivity - 127
0.7 1.7 2.5	pH-7-0
10 44 21	Dissolved Orygen-12.3.
1	
15 17 22	
0.7 4.0 1.5	Average substrate
10 20 25	40%: 1"-3" gravel
13 20 23	25%: 3°-6° gravel
12 20 23 10 13 13	20%: silt and sand
4 73 15 15 15 15 15 15 15 15 15 15 15 15 15	Igravel is partially imbedded
10 15 20	by the silt depending on the velocity)
0.7. 1.5 1.9	
Shocking depth 0.5-2,0'-	

WORK REMAINING: FROM NOVEMBER 1, 1981

ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT

TIME NOW: PAGE 1

I-NODE	J-NODE	DUR SELECT CODES											CL.
20400 20400	20300	33 R OFA C2 33 R OFA C2 0 OFA 1 C3	2022 203	FIELD CAMP	OPERATIONS EMERGENCY SERVICE MATERIAL COMPLETE NTRY D O		2NOV81	18JUN82	9N0V81	25JUN82	1	1	1
215A0 21000	215B0 21100	0 OPA 1 C3 15 R OPA C2 2 DPA C3	203 204XX	EXHIBIT F	MATERIAL COMPLETE		. 2NOV81	300CT81	3000081	27NOV81	4	Ď	1
22400		2 OPA C3	20á 210	ACCESS ROA	niki D	CT-2	2NUVB1	13FE883	15MAR82	25JUN82 25DECR1	19	19	1
22400		7 OFA CC3	210	ACCESS ROA		FIN	1600081	1JAN92	28DEC81	12FE882	á	1	i
36700 37600	36800 37700	33 R OPB 1 C4 3 R OPB 1 C4	3022 3033	FIELU DATA	INDEX OPERATION COLLECTION RIPE?	FIN	200081	18JUN82	\$N0V81	25JUNB2	1	1	1
37700	37800	22 122 124	3033	FIELD DATA	COLLECTION 81-82	FÍN	23NOV81	23AFR82	25JAN92	25JUN82	9	Ģ	i
33500 333A0	34600	2 OPB 1 C4 4 OPB 1 C4 6 R OPB 1 C4 6 OPB 1 C4 4 OFB 1 C4	3041 3042	WATER RSRC	INDEX OPERATION COLLECTION 81-82 COLLECTION 81-82 S-FLOW EXTENSION S-FREO ANALYSIS S-RESERVOIR STUDY S-RESERVOIR STUDY S-PRE&POST PROJECT S-GLACIAL STUDIES S-GLACIAL STUDIES MATERIAL COMPLETE MATERIAL COMPLETE ERVOIR ROUTING ERVOIR ROUTING ICE WIR LVLS ESER SLIDE SURGE	FIN	200081	1300081	18VONOE	11DEC81	4	4	1
34500	34600	3 R OPB I CA	3043	WATER RERC	S-RESERVOIR STUDY	£173	2NOV81	11DECB1	2NOV81	11DEC81	ő	5	I CRITICAL
34600 35000	34800	6 OPB 1 C4	3043	WATER RSRC	S-RESERVOIR STUDY	FIN	14DECB1	22JAN82	21DEC81	29JAN82	i	- <u>1</u> .	1
35200	33400	4 OPB 1 C4	3044 3044	WATER RERC	5-FRE&FUST PROJECT 5-PRE&POST PROJECT	51 FTN	1405081	BJANB2 SEERB2	14UEU81	8JAN82 SEER82	0	0	1 CRITICAL
39400	39700	4 OFB 1 C4 14 R OFB 1 C4	3044 3044	WATER RSRC	S-GLACIAL STUDIES	SŢ.	2NOV81	5FER82	2300081	26FEBB2	3	Ŏ	1 CRITICAL
39700 35400	39800 354A0	3 OPB 1 C4 0 OPB 1 C4	3046 304XX	EXHIBIT H	NATERIAL COMPLETE	FIN	BFERB2	26FERB2	29MAR82	16APRB2	7	10	4
35400	354B0	0 UFB 1 C4	304XX	EXHIBIT I	MATERIAL COMPLETE		BFEB82	5FEB82	19APR82	16APR82	10	10	
31800 32000		4 R OPB 1 C4	3053 3053	FLDODS-RES	ERVOIR ROUTING	CT-1	2N0V81	27NOV81	2NOV81	27NOV81	Q	0	1 CRUTICAL
30400	30400	5 OPB 1 C4 9 R OPB 1 C4	3061	HYDRLICS &	ICE WIR LVLS	FIN	2NOV81	1JAN92	2N0V81	1JAN82	0	0	1 CRITICAL 1 CRITICAL
39000 35800	39100 36000	8 OPB 1 C4 3 R OPB 1 C4	3043 3071	HYDR&ICE-R	MATERIAL COMPLETE MATERIAL COMPLETE ERVOIR ROUTING ERVOIR ROUTING ICE WIR LVLS ESER SLIDE SURGE IELD 1 DEPOSITION	EIN	2NOV91	25DECB1	21DECB1	12FE982	0 0 7 55	00705002110	i
33600	33800	5 R UPB 1 C4	UV : -	RIVER NORP	HOLOGY	CT-1	23NOV81	1.JAN82	S8DEC81	SEFR82	j S	0 5	
33800 31100		4 OFB 1 C4	3072	RIVER MORP	HOLOGY HOLOGY DS HYDROLOGY A STUDIES-FOLLOWUP	FIN	BFEB82	5MAR82	8FEB92	5MAR82	Ŏ	5	1 CRETICAL
31400		6 R OPB 1 C4 6 OPB 1 C4	309 3102	ACCESS RUA LUR SUSTIN	DS HYDRULUGY A STUDIES-FOLLOWD	FTN	2NOV81	11DEC81	23NDV81	1JAN82	3	ğ	1
31500	31400	8 R OPB 1 C4	3102	FMV DODING	H DINNTED-LOFFNANL	ししてと	SUUVET	50NFFR1	ANUARI	1JANB2	ĩ	1	1
44000 42800		6 OPB 1 C1	408 409	DAM STABIL	ITY MONITORTNO PROCRAM	FIN	200001	117664	178670	35 III)103	£0	40	. 1
40200	41800	23 R OPA 1 C4 5 R OPB 1 C1	410	RESERVOIR	INDUCED SEISMICTTY		2NOV81	4DEC81	14DEC81	25JUNB2 15JAN82	11	115	
42400 41400		16 R OFA 1 C4	411	SEISMIC GE	MONITORING PROGRAM INDUCED SEISMICTTY DLOGY-FIELD STUDY	0.7	200081	19FEB82	8MAR82	25JUN82	18	17	1
41600	41800	2 OPB 1 C1	412 412	EVALUATION	2 REPORT DRAFT 2 REPORT DRAFT 1 REPORT DRAFT	51 CT-1	280FC81	BIANES	4 IANB2	1JAN82 15 IAN82	1	0	1
41800 44500	42000	2 OPB 1 C1 4 OPB 1 C1 10 R OPB 1 C1	412	EVALUATION	1 REPORT DRAFT	FIN	11JAN82	5FEB82	18JAN82	12FEB82	i	ĭ	
45600	41800	10 R OPB 1 C1	413	OVORHIT LINE	ION STUDIES ITY CONSULTING	FIN	TUNDI	BJANB2	AMOART	15JAN82 15JAN82	. 1	Ŏ	
45400	45700	6 OFB 1 C1	415	SOIL SUSCE	PTRTY-SEISMIC FAIL	FIN	2NOV81	11DEC81	21DEC81	29JAN82	7	0 6	1
53800 53200	54000 53300	7 R OPB 1 C1 3 OPB 1 C1	507 5082		PROGRAM DESIGN	ETM	2NOV81	180EC81	30NOV81	15JAN82	4	0	
53400	53500	3 OFB 1 C1	5083	DATA ASSEM	BLY-1981 DRAFT BLY FINAL-DRAFT	FIN	280V81	20NOV81 20NOV81	25JAN82	12FEB82	12 12	0	
53500 60702	53400	4 OFB 1 C1	5083	DATA ASSEM	BLY FINAL-DRAFT NA DAM ALTERNATES	FIN	23NOVB1	18DECB1 300CTB1	15FEB82	12HAR82	12	12	1
40802	60704 60808	0 H OPB 1 C5 C 2 H OPB 1 C6	607 608	FRELIM NEUT	NA DAM ALTERNATES L CANYON DAM ALT		2NUV81	300CTB1 13NOV81	18VUNS	300CT81 15JAN82	9	0	1 CRITICAL
60808	80806	2 R OPB 1 C6	808	UPDATE DES	IGN CRITERIA(DC)	FIN	2NOV81	13N0V81	4JANB2	15JANB2	9	ŏ	
\$0910 80902	60912	8.H OFB 1 C4 8 R OFB 1 C4	609 609	ESTAB WATAN	A DESIGN CRITERIA T&ASSUMPTIONS(WAT)	FTN	2NOV81	25DEC81 25DEC81	2NOV81	15JAN82	33	0	1
51002	61012	B H OFB 1 C4	610	ESTAB DEVIL	CANYON DESIGN CRI	TERIA	2NOVB1	25DEC81	2NOV81	15JANB2	3	0	
61010 61102		8 R OPB 1 C4	610	UPDATE CRI	T&ASSUMPTIONS(DC)	FIN	2NOV81	25DEC81	23NOV81	15JAN82	3	Ø	
01102	61168	11 H OPB 1 C5	611	LUETIU DEPT	GN WATANA DAM		SMOARJ	15JAN82	500081	15JAN82	Q.	0	1 CRITICAL

	I-NODE	J-NODE	DUR	SELECT COD	S	-D E S (RIP	TION	tina and the title day only and		E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL	
	61117 61118	61118 61119	5 R	OPB 1 C5	611 611	INCOR	GENL	AMENDMEN	TS (WAT)	CT-1	2NOV81	4DEC81	7DEC81	L.F. BJAN82 15JAN82 15JAN82 115JAN82	5	0	1	
	51140 61146	61144 51150	2 R	OPB 1 C5 OPB 1 C5 OPB 1 C5	311 311	OPTIM	IZE DAM	HEIGHT	1	ETAL	200081	1300081	4JAN82	15JAN82	9	590	ì	
	61148	61154	7	OPN I C5	611	DAM F	DUNDATI	ON TREAT	MENT-WAT	FIN	2NOVB1	18DEC81	2300081	8JAN82	3	2	1	
	61162	61164 61168	<u> </u>	OPB 1 C5 OPB 1 C5 OPB 1 C5	611 611	DRAFT	REPORT	DRAWING	S(WAI)	CT-3	14DEC81	15JAN82	14DEC81	11 NECB1 15 JAN 82	0	O O	1 CRO 1 CRO	TICAL
	61168 61170	61170	4	OPB 1 C5 OPB 1 C5	611 611	DRAFT DRAFT	REPORT REPORT	DRAWING DRAWING	S(WAT) S(WAT)	CT-4 FIN	18JAN82 15FEB82	12FEB82 12MAR82	10JAN82 15FEB82	12FEB82 12MAR82	0	0	1 CKI 1 CKI	TICAL
	51202 51224	61264 61226	11 H	OPB 1 C6	612 612 612	PRELIM	DESIGN PRENI	DEVIL C	ANYON DA	H	2NOV81	15JANB2	2NOV81	15JAN82	0 3	0	i eri	TICAL
	61246	61249	1 R	OPB 1 C4 OPB 1 C4	812 612	DESIG	DAM(D	C)		CT-3	200081	5N0V81	2300001	27NOV81	3	2	i	
	61250	61252 61254	8 R	OFB 1 C6	312	FOUND	ATION T	REATMENT	(DC)	FIN	2NOV81	25DEC81	1600081	SJAN82	2	, i	i	
	61260 61262	61262 61264	5	OFB 1 C6	612 612	DRAFT	REPORT	DMG2 (DC	\$	Ç1-3	14DECB1	15JAN82	14DEC81	15JAN82	Ŏ	Ö	i eni	TICAL
	61264 61266	61266 61268	4	OPR 1 C6 OPR 1 C6	612 612	DRAFT	REPORT	DWGS (DC)	CI-4 FIN	18JAN82 15FEBB2	12FEBB2 12MAR82	18JAN82 15FEB82	12FEB82 12MAR82	0	. 0	1 PRE	TICAL
)	61325 61325	61350 61330	10 H	OFB 1 C4	613 613	DAM SEI DAM SI	LECTION	REPORT N REPORT		ST	30NOV81 30NOV81	5FEB82 11DEC81	14DEC81	12FEB82 25DEC81	1 2	0	1	
	61330 61335	61335	2	OPB 1 C4 OPB 1 C4 OPB 1 C4 OPB 1 C4	613 613	DAM SI	ELECTIO	N REPORT		CT-1 CT-2	14DEC81	25DEC81 15 JANR2	28DEC81	8JAN82	2	1	1	
	61340 61345	61345 61350	2 1	OPB 1 C4 OPB 1 C4	613 613	DAH S	ELECTIO	N REPORT		CT-3	18JAN82	29JAN82	25JAN82	5FEB82	Ī	Ŏ	į	
	51402	61412	. 8 H	OPB 1 C4	614	SPILLU	Y DESI	GH CRITE	RIA	1 411	200081	25DEC81	2NOV81	15JAN82	3	Ŏ	i	
	61408 61410	61410	2	OFB 1 C4 OFB 1 C4	614 614	UPDATI	E CRITE	ASSUMPTI ASSUMPTI	ons (SPW))FIN	14DEC81	25DEC81	4JAN82	1JAN82 15JAN82	3	Ŏ	i	
	61502 61602	61518 61626	0 H	OPB 1 C5 OPB 1 C4	615	WATANA DEVIL	SPILLW CANYON	AY ALTER SPILLWAY	NATIVES ALTERNA	TIVE	2NOV81 2NOV81	300CTB1	2NOV81 2NOV81	300CT81 300CT81	0	0	1 CRI 1 CRI	TICAL
	61702 61704	61786 61705	11 1	OPB 1 C5 OPB 1 C5	617 617	PRELIM	DESIGN P GENL	WATANA AMENDHEN	SPILLWAY ITS (WAT)	CT-1	2NOV81 2NOV81	15JAN82 4DEC81	7DEC81 7DEC81	15JAN82 8JAN82	0 5	0	1 CRI	TICAL
	61705 61716	61706	1	OPB 1 C5	617 617	INCOR	GENL	AHENDMEN	TS (WAT)	FIN	7DEC81	11DEC81	11JAN82	15JAN92	5 3	10	1	
	61721 61732	61722 31738	3 6	OPB 1 C5 OPB 1 C5 OPB 1 C5	417	PREL I	DESGN C	HUTEZROC	K ANCRS	ÇŢ-1	200081	2000081	14NOV81	4DEC81	Ž	Ŏ	i	
	61733	61743	ě	OPB 1 C5 OPB 1 C5	617	PREL	DESGN C	ONTRL ST	RUCTURES	FIN	2110181	11DEC81	7DEC81	15JAN82	5	5	i	
	61742	61744	_ 4 F	OPB 1 C5	617 617	DESGN	GROUTI	NG/DRAIN	A ANCKS	LTM	2N0V81	27NOV81	16NOV81	11DEC81	$\frac{2}{2}$	Ő	1	
	61752 61760		4 R	OPB 1 C5 OPB 1 C5	617	DESIG	N WATER	PASSAGE	S	FIN	2NDV81	27NOVB1	23NOV81	18DEC81	3	2 0	1	
	61770 51772	61776 61774	4 F 2	OPB 1 C5 OPB 1 C5	617 617	DESIG	N CLOSU N ENERG	RE/CONTR Y DISSIF	L STRUCT ATION	FIN	30NOVB1 2NOVB1	25DEC81 13NOV81	21DEC81 14DEC81	15JAN82 25DEC81	• 3 6	3 4	1	
	61702 61784	61784 61786	6 F	OPB 1 C5 OPB 1 C5	617	DRAFT	REPORT	DRAWING DRAWING	is(WAT)	CT-2	2NOVB1 14DECB1	11DEC81	2NOV81	11DEC81	0	0	1 CRI 1 CRI	TICAL
	61786 61788	61788 61790	4	OPB 1 C5 OPB 1 C5	317 317	DRAFT	REPORT	DRAWING DRAWING	SS(WAT)	CT-4 FIN	18JAN82	12FEB82	18JAN82 15FEB82	12FEB82	0	0	1 CRI	TICAL
	61802	61870	11	I OPB 1 C6	618	PRELIN	DESIGN	I DEVIL C	CAN SPILL	WAY	2NOV81	15JAN82	9N0V81	15JAN82	ŏ	0	į čri	TICAL
	61803 51804	61804	1	OFB 1 C6	618 618	INCOR	P GENL	AMENDMEN AMENDMEN	ITS(DC)	CT-1 FIN	16NOV81		23NOV81	27NOV81	į	0	į	
	61810 61828	61838 61830		OPB 1 CA	618 618	SPILL PREL	WAYS EN DESGN C	IERGY DIS CONTRL ST	RUCT(DC)	FIN		20NUVB1 27NOVB1	28DEC81 21DEC81	15JAN82 15JAN82	원 7	8 7	ł	

ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT

PAGE 2N/DV81

TIME NOW:

					THE SECOND SECON								•
I-HODE	J-NODE		SELECT CODES		-DESCRIPTION		E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
61836 61842 61856	61840 61844 61846 61860	2	OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB 1 C6	618 618 618 518	OPT AGAINST DAN FREEBRD(DC) PREL DESGN CHUTE/ROCK ANCRS PREL DESGN GROUTING/DRAINAGE LL RELEASES ENERGY DISTFATIN	FIN FIN	2NOV01 2NOV81 9NGV81 2NOV81	20NOVB1 27NOVB1 18DECB1 13NOVB1	28DEC81 21DEC81 7DEC81 4JAN82	15JAN82 15JAN82 15JAN82 15JAN82	8 7 4 9	8 7 4 9	
61868 61868 61870 61872 61925	\$1858 \$1870 \$1872 \$1874 \$1755	5 4 4	OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB C4	618 618 618 617	DRAFT REPORT DWGS(DC) DRAFT REPORT DWGS(DC) DRAFT REPORT DWGS(DC) DRAFT REPORT DWGS(DC) SFILLWAY SELECTION REPORT	CT-2 CT-3 CT-4 FIN	2NOV81 14DEC81 18JAN82 15FE882 2NOV81	11BEC81 15JAN82 12FEB82 12MAR82 29JAN82	2NOV81 14DEC81 18JAN82 15FER82 7DFC81	11DEC91 15JAN82 12FEB82 12MAR82 5MAR82	00005	0000	1 CRIGICAL 1 CRIGICAL 1 CRIGICAL 1 CRIGICAL
61925 61930 61935 61940 61945	61930 61935 61940 61945 61950	C1514 515	OFB 1 C4 OFB 1 C4 OFB 1 C4 OFB 1 C4 OFB 1 C4 OFB 1 C4 OFB 1 C5	619 619 619 619	SPILLWAY SELECTION REPORT SPILLWAY SELECTION REPORT SPILLWAY SELECTION REPORT SPILLWAY SELECTION REPORT	ST CT-1 CT-2 CT-3	2NOV81 16NOV81 30NOV81 28DEC81	13NOV81 27NOV81 25DEC81 8JAN82	7DEC81 21DEC81 4JAN82 1FER82	18DEC81 1JAN82 29JAN82 12FEB82	រភភភភភ	0000	
61950 62010 62029 62030	62040	2 R	OPB 1 C4 OPB 1 C5 OPB 1 C5 OPB 1 C5	619 620 620 620	SFILLWAY SELECTION REPORT ACCESS & CAMP FACILITIES DETERMINE AUX REQUIREMENTS IDENTIFY & EVALUATE SITES	FIN FIN	25JAN82 2NOV81 2NOV81 2NOV81 2NOV81	29JANB2 29JANB2 13NOVB1 13NOVB1	1MAR82 7DEC81 7DEC81 7DEC81	5MAR82 5MAR82 18DEC81 18DEC81	១ភភភភភ	0000	1
62032 62044 62046 62050 62102	62042 62046 62048 62052 62132 62116	4 3	OPB 1 C5 OPB 1 C5 OPB 1 C5 OPB 1 C5 OPB 1 C5 OPB 1 C5	620 620 620 620 621	PRELIM LAYBUT OF TOWNSITE REVISE & FINALIZE LOAD PARAM PREP DESIGN TRANSMITTAL FINALIZE DESIGN TRANSMITTAL WATANA DIVERSION SCHEMES	ETERS	2NOV81 16NOV81 14DEC81 11JAN82 2NOV81	13NOV81 11DEC81 .BJANB2 29JANB2 12FER82	70EC81 21DEC81 18JAN82 15FEB82 2NOUR1	18DEC81 15JAN82 12FE882 5MAR82	55550	0 0	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .
62110 62118 62120 62126 62128	62116 62122 62121 62128 62130	7 R	OFB 1 C5 OFB 1 C5 OFB 1 C5 OFB 1 C5 OFB 1 C5	621 621 621 621	DESIGN CLOSURE/CONTRL STRUCTI DESIGN WATER FASSAGES-WAT DESIGN COFFERDAM HEIGHT DRAFT REPORT DRAWINGS(WAT)	FIN FIN CT-2	2NDVB1 30NOVB1 2NOVB1 2NOVB1	4DECB1 25DEC81 18DEC81 11DEC81	14DEC81 21DEC81 30NOV81 2NOV81	15JAN82 15JAN82 15JAN82 11DEC81	4 0	4 0	i i i i CRITICAL
62130 62132 62202 62208	62132 62134 62236 62214	4 15 H 2 R	OFB 1 C5 OFB 1 C5 OFB 1 C6 OFB 1 C6	621 621 622 622	DRAFT REPORT DRAWINGS(WAT) DRAFT REPORT DRAWINGS(WAT) DEVIL CANYON DIVERSION SCHEME DESGN COFFERDAM HEIGHT(DC)	CT-4 FIN ST	18JAN82 15FEB82 2NOV81 2NOV81	12FEB82 12HAR82 12FEB82 13NOV81	18JAN82 15FEB82 16NOV81 30NOV81	12FEB82 12FEB82 12FEB82 11DEC81	0 0 4	0000	1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL
 62210 62218 62220 62230 62232	02234	8 R 5 6 R	OFB 1 C6 OFB 1 C6 OFB 1 C6 OFB 1 C6	622 622 622 622 622	DRAFT REPORT DUGS(DC)	FIN FIN CT-2 CT-3	2NOV81 2NOV81 16NOV81 2NOV81 14DEC81	20NOV81 25DEC81 18DEC81 11DEC81 15JANB2	16NOV81 23NOV81 14DEC81 2NOV81 14DEC81	4PEC81 15JAN82 15JAN82 11DEC81 15JAN82	23400	23400	1 1 1 1 CRITICAL 1 CRITICAL
62234 62236 62302 62341 62342	62236 62374 62374 62346 62348	2 R 1 R	OFR 1 C4 OFR 1 C4 OFR 1 C4	623 623 623	OFT WATANA POWER DEVELOPMENT REVIEW ALIGNMENTS-WAT REVIEW INTAKE WATER PASSAGES	FIN	2NOV81 2NOV81 2NOV81	15JAN82 13NGVB1 6NOV81	2NOV81 4JAN82 30NOV81	15JAN82 15JAN82 4DEC81	0 0 9 4	0 0 9 0	1 CRITICAL 1 CRITICAL 1 CRITICAL 1
62344 62356 62352 62372 62373 62374	62358 62354 62368 62373	6 R	OFB 1 C4 OFB 1 C4 OFB 1 C4 OFB 1 C4 OFB 1 C4	623 623 623 623 623	OPTIMIZE POWER FACILITIES PREL DESIGN INTAKE STRUCTURE PREL DESIGN OF POWERHOUSE DRAFT REFORT DRAWINGS(WAT) DRAFT REPORT DRAWINGS(WAT)		2NOV81 9NOV81 2NOV81	20NOV81 18DEC81 1JAN82	28DEC81 7DEC81 14NOV81 2NOV81 14DEC81	15JAN82 15JAN82 15JAN82	8 4 2 0	84200	i i i critical
62374 62375 62402 62441	52374 52375 62378 62470 62450	4 1 11 1 3	OPB 1 C4 OPB 1 C4 OPB 1 C4 OPB 1 C4	623 623 624 624	DRAFT REPORT DRAWINGS(WAT) DRAFT REPORT DRAWINGS(WAT) OPT DEVL CAN POWER DEVELOPMENT REVIEW ALIGNMENTS(DC)	FIN	15FEB82 2NDV81	12FEBB2 12MAR82 15JAN82	18JAN82 15FEB82	12FER82 12MAR82 15JAN82	00008	80008	1 CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL 1

	I-NODE	J-NODE	DUR	SELECT CODES		D E S	CRI	PTIO	N		E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
	62442 62444	62452	2 R 2 R	OPB 1 C4 OPB 1 C4	624 624	REVIE OPTIN	W INTA	E WATER	PASSAGES ILITIES AKE PASSSAGES DUSE DC) DC) DC) DC) SHER DEVEL ENTS (WAT) T/R CHANN		2NOV81 2NOV81	13N0V81 13N0V81	7DEC81 30NDV81	180EC81 11DEC81	5 4	0 0 5	1
	62446 62448 62456	62458 62454 62460	4 K 2 R 7 R	OFR 1 C4 OFR 1 C4 OFR 1 C4	624 624 624	PREL PREL	DESIGN DESIGN	WATER I	ASSSAGES USE		1800VB1 2NOVB1 16NOVB1	1111EUS1 13NOV81 1JAN82	4JAN82 14DEC81	15JANB2 15JANB2 29JANB2	5 9 4	9 4	1 1
	62468 62468 62470	62468 62470 62472	6 R 5	OPB 1 C4	624 624 624	DRAFT DRAFT	REPOR REPOR	T DWGS() T DWGS() T DWGS()	0C) 0C) 0C)	CT-2 CT-3	2NOV81 14DEC81 16 (4N82	11DEC81 15JAN82 12FF882	2NOV81 14DEC81	11DEC81 15JAN82 12FFR82	0	0	CRATICAL CRATICAL CRATICAL
	62472 62502	62474 62522	4 0 H	OPB 1 C4 OPB 1 C4 C	624 625	DRAFT OPTIM	REPOR ZE DAM	T DWGS() HEIGHT	ic) 3	FIN	15FED82 2NOV81	12MAR82 300CT81	15FEB82 2NOV81	12MAR82 300CT81	Ŏ	0	1 CRITICAL 1 CRITICAL
	62602 62604 62605	62664 62605 62605	6 R	OPB 1 C5 OPB 1 C5 OPB 1 C5	626 626 626	PREL 1 INCOF	IESUN W RP GENL RP GENL	ATANA PI AMENDNI AMENDNI	JWER DEVEL ENTS (WAT) ENTS (WAT)	CT-1 FIN	2HOV81 2NOV81 14DEC81	15JANB2 11DEC81 18DEC81	11JAN82	280AL8 280AL8 280AL51	0 4 4	0	1 CRATTICAL 1
	62616 62618 62619	62320 52619	3	OPB 1 C5 OPB 1 C5 OPB 1 C5	626 626 626	LAYOU COST COST	IT SUKF LAYOUT LAYOUT	ACE F/H SURFACI SURFACI	T/R CHANN U/G STRU U/G STRU	EL ST CT-1	2NOV81 2NOV81 9NOV81	18V0N3 18V0N3 20N0V81	28DEC81 30NOV81 7DEC81	15JAN82 4DEC81 18DEC81	8 4	B 0 0	1
-	62622 62625	62524 52625	1	OFB 1 C5 OFB 1 C5	626 626	SELEC	T TYPE LAYOUT	OF FOWI	RHOUSE U/G STRU	FIN	23NOV81 23NOV81	27NOV81 27NOV81	21DEC81 21DEC81	25DEC81 25DEC81	4	0	1
	62629 62630 62632 62538	62634 62636 62646	3 R	OPR 1 C5	626 626 626	REVIE OFTI	W INTA	KE WATEI WER FAC	R PASSAGES	LIN	2NOV81 30NOV81	13NOV81 18DEC81	200V81 200V81 28DEC81	13NOVB1 15JAN82	0	004	CRITICAL CRITICAL
	62538 62644 62650	62652	9	OFB 1 C5 OFB 1 C5	626 626 625	PREL PREL PREL	DESIGN DESIGN DESIGN	INTAKE INTAKE OF POW	STRUCTURE STRUCTURE ERHOUSE (WA	ST FIN T)	16NOV81 21DEC81 16NOV81	18DEC81 15JAN82 15JAN82	16NOVB1 21DECB1 16NOVB1	18DEC81 15JAN82 15JAN82	0	0	1 CRITICAL 1 CRITICAL 1 CRITICAL
	62660 62662 62664	62662 62664	6 R 5	OPB 1 C5 OPB 1 C5	626 626 626	DRAFT DRAFT	REPOR	T DRAWII T DRAWI	VGS(DC) NGS(DC) NGS(DC)	CT-2 CT-3	2NDV81 14DEC81	11DEC81 15JAN82	2NOV81 14DEC81	11DEC81 15JAN82 1255882	. 0	0	1 CRITICAL 1 CRITICAL 1 CRITICAL
٠.	62664 62702	62658 62750	11 1	OPB 1 C5 UPB 1 C5 OPB 1 C6	626 627	DRAF	REPOR	T DRAVI EVL CAN	NGS (DC) POWER DEV	FIN'	15FEB82 2NOV81	12MAR82 15JAN82	15FEB82 16NOV81	12MAR82 15JAN82	ŏ	Ŏ	i CRITICAL i CRITICAL
•	62703 62704 62721	62706 62730	1 4 F	OPB 1 C4 OPB 1 C4 OPB 1 C4	627 627 627	INCOI INCOI REVII	RP DENL RP DENL EW ALIG	AMENDA AMENDA MENTS (IMER DEVEL ENTS (WAT) ENTS (WAT) T/R CHANN E U/G STRU ENTS STRU ENTS STRUCTURE STRUCTU	FIN FIN	9NOV81 2NOV81 2NOV81	13NDV81 27NOV81	23NOV81 21DEC81	27NOV81 15JAN82	27	17	
	62724 62725 62728	62732 62738 62734	6 F	OPB 1 C6 OPB 1 C6 OPB 1 C4	627 627 627	OPTII PREL PREI	NIZE WA DESIGN DESIGN	TER FAC OF INT WATER	ILITIES AKE PASSAGES		2NOV81 2NOV81 2NOV81	20NOV81 11DEC81 13NOV81	7DEC81 7DEC81 4.JAN82	25DEC81 15JAN82 15JAN82	559	0 5 9	
	62736 62746	62740 62748	9	OFB 1 C4 : OFB 1 C4	827 827 827 827	PREL	DESGN REPOR	POWERHO T DWGS(USE DC)	CI-2	23NOV81 2NOV81	22JAN82 11DEC81	28DEC81 2NOV81	23FEBB2 11DEC81	5 0	50	1 1 CRITICAL
	62748 62750 62752	62752 62754	4	OPB 1 C6 OPB 1 C6 OPB 1 C6	627 627 627	DRAFT	REPOR	t Dugs (ĎČ)	FIN	15FEB82	12HAR82	15FEB82	12MARB2	ŏ	ŏ	1 CRITICAL 1 CRITICAL 1 CRITICAL
	62810 62810 62820	62820 62830	9 ł 2 2	OPB C4 OPB 1 C4 OPB 1 C4	628 628 628	POWE	R DEVEL	PMENT R OPMENT OPMENT		ST	4JAN82	5MAR82 15JAN82 29JAN82	4.JAN82	5MAR82 15JAN82 29JAN82	0	0	i CRITICAL 1 CRITICAL 1 CRITICAL 1 CRITICAL
	62830 62840 62850	62840	221	OPB 1 C4 OPB 1 C4 OPB 1 C4	628 628	POWE!	R DEVEL R DEVEL	OPMENT OPMENT OPMENT	REPORT REPORT	CT-2	1FEB82 15FEB82	12FEB82 26FEB82 5MAR82	1FEB82 15FEB82	12FEB82 26FEB82	0	0	1 CRITICAL 1 CRITICAL 1 CRITICAL
	62902 62906	62912 62908	15 H	OPR 1 C5 OPR 1 C5	629 629	WATAN DRAF	A GENER T REPOR	AL ARRA T DWGS(NGEMENT DC)	CT-2	2NOV81 2NOV81	12FEB82 11DEC81	7DEC81	19MAR82 15JAN82	າເສເຕຸດ	0	1
	62908 62910 62912	62912	4	OPB 1 C5 OPB 1 C5 OFB 1 C5	629 629 629	DRAF	T REPOR	T DWGS(T DWGS(T DWGS(DC)	CT-4	18JAN92	15JAN82 12FEB82 12MAR82	22FEB82	19MAR82	5 5 5	0	

I-NODE	J-MODE	DUR	SELEC	T CODES		DES	CR:	I P	TIO	N		E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
52914 63002	62916 63014	0 23 H	TINK T	1.6	630	DEAL I	LANYUN	V GE	NERAL	COMPLETE ARRANGEM	ENT	2N0V81	9APRR?	QNNUA 1	16APR82 16APR82	5119111111	5	1
63004	2005 2005	37	OPB 1 OPB 1 OPB 1 OPB 1 OPB 1	64 64	630 630	URAF	T REP	JRT	DRAWI	NGS(DC) NGS(DC)	CT-i	2N0V81	20N0V81	9NDV81 30NDV81	27NOV81	1	Ö	1
43010	63010 63012	5	OPB 1	C6 C8	630	DRAF	REP	JRT I	DRAWT	NGS(DC)	CT-3	11.JAN82	12FFRR2	19.JANR2	19FFRR?	į	Ŏ	Ī
63012 62860	63014 62862	4	UPB I	Çó	630 630XX	DRAF	I REPO	RT	RAWI	NGS(DC) NGS(DC) COMPLETE	FIN	15MAR82	PAPR82	22HAR82	16AFR82	į	Ŏ	
63014	33016	U	urb 1	Lo	630XX	EXHI	BÎT K	HAT	ERIAL	COMPLETE		12APR82	9AFR82	19APRB2	16APR82	i	1	1
63125 63125 63130	63150 63130 63135	5 3 H	OFB 1	C4 C4	631 631 631	PROJ	FEASI	BIL	ITY R	PUKI <u>EPORT</u>	FIN ST	187W85	19MAR82 29JAN82	18JAN82 18JAN82	19MAR82 29JAN82	0	0	1 CRITICAL 1 CRITICAL
63135	63140	2	OPB 1 OPB 1 OPB 1	C4	631	PRO.J	FEAS!	BIL	ITY R	EPORT EPORT	CT-1 CT-2	1FEB82 15FEB82	12FEB82 26FEB82	1FEB82 15FEB82	12FEB82 26FEB82	0	0	1 CRITICAL 1 CRITICAL
63145 63145 63150	63145 63150 53152	2 1	OPR 1 OPR 1 OPB 1	1.4	631 631	PROJ PROJ	FEAS!	BIL	ITY R ITY R	EPORT EPORT	CT-3	1MAR82 15MAR82	12MAR82	1MAR82	12MAR82	0	0	1 CRETICAL
63150 6C100	53152 5C200	0 5 R	OPB 1	C4 C2	631 631XX 637	EXHI:	BIT L TE GEN	HAT	ERIAL TION	COMPLETE		22MAR82	19HAR82	19APR82	16APR82	4 21	29	i
6BB00 71400	6B900 71600	- 33 R	OPD 1	C2 C8	638	LIAI	SON PO	WER	ALTS	NGS (DC) NGS (DC) COMPLETE COMPLETE FORT EPORT EPORT EPORT COMPLETE PLAN CONSULTAI ALTERNATI ZED DESIGN VITIES	NT F FIN	2NOV81	18JUN82	9N0V81	25JUN82	i	í	1 CONTROL
71800 72100	72000 72200	0 20 R	OPB 1 OPB 1 OPB 1	ČŠ CR	7012	STUD		₹Ď-P	RELIM	ALTERNAT	V FÎN	2NOVB1	3000181	2N0V81	300CT81	Ŏ	Ŏ	1 CRITICAL
79300 79400	79400 79500	33 R	OPB 1	ČB	702	MONI	TOR F	ELD	ACTI	VITIES	CT-1	2NOV81	18JUN82	9N0V81	25JUN82	1	Ö	
72000 73200	70600	17 R	OPB 1	C8	7043	WTR	RES-OF	J M	AT & DE	VL CAN DE	S	2NOV81	26FEB82	28JUNB2 21DEC81	16AFR82	7	7	1
73300	73400 73200	9 15 R	OPB 1	CB	705	SOCI	DECOM	MIC	ANAL	YSIS	CT-2	2NOV81	16AFR82 12FEB82	2NOV81	16AFR82 12FEB82	0	0	1 CRITICAL 1 CRITICAL
79000 79100		0	OPB 1	CB .	7062 7062	CULT	URAL F URAL F	'KEL	im al Ih al	TERNATIVE: TERNATIVE:	S CT-1 S FIN	2NOVB1 14DEC81	11DEC81 11DEC81	2NOV81 14DEC81	11DEC81 11DEC81	0	0	1 CRITICAL 1 CRITICAL
79600 79700	79700 79800	18	OPR 1	C8 CB	7063 7063	CULTI	JRAL-(URAL-()PTI)PTI	MIZED	DESIGN DESIGN	ST CT-1	2NOV81 14DEC81	4DEC81 16AFR82	9NOV81 14DEC81	11DEC81 16APR82	1	1 0	1 1 CRITTEAL
79800 79900	79900 799A0	Ô	OPB 1	C8 C8	7063 706XX	CUI TI EXHTI	URAL-(RIT V	IFTI MATI	YIZED ERIAL	DESIGN COMPLETE	FIN	19APR82 19APR82	16APR82 16APR82	19APR82 19APR82	16APR82 16APR82	0	0	1 CRITICAL 1 CRITICAL
75300 75900	76000 76000	4 R	OPB 1	C8	7071 7072	LAND	USE A	ALTE	RNATI	VE SITES TERNATTUES	FIN	2NOV81	27NOV81	2NDVB1	27NOV81	Ŏ	Ŏ	1 CRITICAL
76000 76100	76100 76800	10	OFB 1	C8	7072	LAND	USE I	REL	IM AL	TERNATIVE	S CT-1	30NDV81	5FEB82	30NDV81	SFERR2	Ŏ	Ŏ	1 CRITICAL
76700 76800		11 R	OFB 1	CB CB	7073	LAND	USE	PTI	MIZED	DESIGN	ST	200081	15JAN82	23NOV81	5FEB82	3	3	1 COSTICAL
	77000	20 0 5	OPB 1	čš	7073	LAND	USE	FŢĪ	MIZED	DESIGN	FIN	28JUN82	25JUN82	2BJUNB2	25JUNB2	Õ	Õ	i CRITICAL
72700	72600	14 R	OPB 1	CB	708	RECRI	EATION	FL	ANNIN	G G	CT-2	2NOV81	5FEB82	9NDV81	12FEB82	ĭ	Ŏ	
73500 73600	73680 73680	21	OPB 1	C8	7092	TRAN	S_{LIN}	AS	SESS_	RIE SELCII	N CI-I N FIN	53NDA81	15AFR82	2NUVB1 23NOV81	20NUV81 15APR82	0	0	I CRITICAL CRITICAL
73700 73900	74200 73700	0 2 R										441110 1 1 1 1 1	- W	2 mm m m m	a m m m m m w	5	4	1
74100 74200	74200 74300	6 R 10	OPB 1	C8	7102 7102	FISH	ECOL	IGY IGY	PRELI	M ALIEKNA M ALTERNA	1 51 T CT-1	2NOV81	11DEC81	9NOV81	180EC81	11	0	
74300 74500	74600 74600	0 12 R	OPB 1		7102 7103	FISH	ECOLO	JGY I JGY	PRELI DPTIM	N ALTERNA IZED DESG	T FIN N ST	22FEB82 2NOV81	19FEB82 22JAN82	1MAR82	26FEBB2 26FEBB2	1 5	Õ 4	
74600 74700	74700 74800	17	OPB 1	C8	7103 7103	FISH	ECOLO	OGY	optim	IZED DESGI IZED DESG	N CT-1	22FEB82	18JUN82 18JUN82	1MAR82	25JUN82	1	Ŏ	

ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT

TIME NOW: PAGE
2MOV81

I-NODE	J-NODE	DUR	SELECT CODES	ين نيس شاه شده بيناو وين بيد ان ينها شده الله الات ماراي بين ينها شده شده ليناو يكنو بالدو جا	DESCI	IPTI	0 N		E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
75000 755000 755000 755000 755000 755300 7755300 775000 7775000 777800 778000 778000 778000 778000 778500 7	75100 75000 75000 755000 76400 76500 77500 77500 77500 777500 777900 77900 77900 77900 77900 77900 77900 77900 77900 77900 77900 77900 785	103300 R R R R R 100300000 R R R 1002	OPB 1 C8 OPB 1 C3	7111 71112 71112 71112 71112 71112 71122 71122 71123 71123 71123 7115 7115 80222 803 804 804	WILDLIFF WILDLIF WILDLIFF WILDLIFF WILDLIFF WILDLIF WILDL	ECOLOGY ECOLOGY ECOLOGY ECOLOGY ECOLOGY ECOLOGY ECOLOGY OLOGY OLOGY OLOGY OLOGY OF COLOGY OF COL	ALTER SITES ALTER SITES ALTER SITES PRELM ALTER PRELM ALTER PRELM DESGN OPTIM DESGN TERNTY SITES FINIZE DESGN PTIMIZE DESGN PTIM	FOR THE TANK TO THE TOTAL TO THE TANK TO THE TANK TO THE TANK TO THE TOTAL TO THE TOTAL TO	23NOV81 2NOV81 2NOV81 23NOV81 23NOV81 1FEB82 2NOV81 2NOV81 2NOV81 2NOV81 3ONOV81 2NOV81 2NOV81 1FEB82 2NOV81 1FEB82 2NOV81 1FAPR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82 19APR82	29 JAN82 20 NOV81 20 NOV81 29 JAN82 29 JAN82 29 JAN82 29 JAN82 27 NOV882 27 NOV882 27 NOV882 27 NOV882 27 NOV882 27 NOV882 27 JAN82 25 JUN82 26 JAN82 16 APR82 16 APR82 16 APR82 16 APR82 16 APR82 16 APR82 16 APR82 16 APR82 16 APR82 16 APR82 17 APR82 17 APR82 17 APR82 18 JAN82 18 JAN82 18 JAN82 18 JAN82 18 JAN82 18 JAN82 18 JAN82 18 JAN82 18 JAN82 22 JAN82	30NOV81 9NOV81 9NOV81 30NOV81 30NOV81 30NOV81 28JUN81 2NOV81 2NOV81 30HUR82 9NOV81 8FER82 9NOV81 8FER82 19AFR82 19AFR82 17MAR82	5FEB82 27N0V81 27N0V81 5FEB82 25JUN82 25JUN82 27N0V81 27N0V81 27N0V81 27N0V81 27N0V81 25FEB82 25JUN82 25JUN82 25JUN82 25JUN82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82 16APR82	111111111000010011001110	F.F. 0000000000000000000000000000000000	
84600 84800 84800 84200 85200 90204 90208 91203 91214 91218 91200 91218 91400 92013 92014 92014	84800 85400 85400 85400 85500 90200 91213 91214 91214 91400 91214 91400 912014 92014 92018	8 4 R 8 1 R	OPB 1 C3 OPB 1 C7	805 805 806 807 902 902 903 903 903 904 9042 9042 9042 9042	SUBSTATI SUBSTATI DISPATCH DISPATCH TRANS LI PREP PRE PREP PRE PREP PRE PREP PRE COST EST COS	ONS	COMMUNICATINS COMMUNICATINS COMMUNICATINS ESTIMATES ESTIMATES ESTIMATES ESTIMATES PLATES PLATES PLATES PLATES PLATES	STN FIN STIN-12 CT-2 CT-3 FIN CT-2 FIN ST-12 CT-2	2NOV81 2NOV81 2NOV81 2NOV81 2NOV81 2NOV81 2NOV81 2NOV81 2NOV81 2NOV81 2NOV81 4JAN82 1FEB82 1FEB82 1FEB82 1FEB82 1NOV81 2NOV81	27NOV81 22JAN82 27NOV81 22JAN82 6NOV81 5MAR82 6NOV81 20NOV81 4DEC81 18DEC81	9NOV81 7DEC81 9NOV81 25JAN82 1FE882 2NOV81 9NOV81 23NOV81 21DEC81 4JAN82 15FE882 15FE882 19APR82 2NOV81 21DEC81 4JAN82 18JAN82 18JAN82	40EC81 29JAN82 29JAN82 29JAN82 12HAR82 12HAR82 40EC81 18DEC81 1JAN82 15JAN82 29JAN82 29JAN82 24FER82 16AFR82 16AFR82 15JAN82	111121000000000000000000000000000000000	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 CRITICAL

I-NODE	J-110DE	BUR	SELECT	CODES		ES	CRI	РТ	U N -			E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
9201B 92200	ODDAA	2	OPB 1 C	7	9042	ENGR.	CONST	SCHE	OULE FI	NAL	FIN	15FEB82	26FEB82	15FEB82	26FEB02	<u>o</u>	<u>0</u>	1 CRITICAL 1 CRITICAL 1 1
92400	92400	10	OFB 1 COFFLC CO	7	905	CONT	INGENC	Y ANAI	LYSIS	rleit		21DEC81	26FEB82	21DEC81	16APK82 26FEB82	0	0	1 CRITICAL
A1200 A3200	A1600 A2600	9 4	FLC C	110 110	1001 10022	IMPA	CT OF UPDATE	NEW FE	RC REG	ULATIO RFD	NS	2NDV81	1JAN82	30NOVB1	29JAN82	4	0 20	1
OOEEN	A2600	4	FLC C	110	10023	2ND	UPDATE	-REGUL	ATORY	REO		30NUA81	25DEC81	22HAR82	16APRB2	16	16	1
005EA A3800	A4000	9	FLC C	110	1003 1003XX	EXHI	FKUM BIT A	UTHERS B & C	i MATERI	ан сли	PLETE	2NOV81	4DEC81	12APR82	14MAY82	23	23	
A1400	VITU	0 0		110	1004	COOR	D EXHI	BIŤ PE	EPARAT	IDN	ST	2NOVB1	1JANB2	3000081	29JANB2	4	0	1
A1600 A1600	A1700	2	FLC C	110 110	1004	COOR	D EXHI	BLI PI BIT PI	KEPARAT	JON TAN	CT-2	4JAN82	8JAN82 22 JAN82	1FER82	5FEB82	4	0	1
A1700 A17A0	A17A0	3	FLC C	110	1004	COOR	D EXIII	BIT P	EPARAT	ION	ČŤ-3	25JAN62	12FEB82	22FEB82	12MAR02	4	ž	1
A17B0	A1800	3	FLC C	110 110	1004	COOR	D EXHI	BIT PI	REPARAT	ION IUN	CT-5	22MAR82	19MAKB2 9APR82	15MAR82 29MAR82	26MAR82 16APR82	1	0	1
A1800 A0400	A2400	10	FLC C	110 110	1004	COOR	U EXHI	RIT PR	EPARAT	ION	FIN	19AFR82	16APRB2	19APR82	16AFR82	Õ	Ŏ	I CRUTICAL
A0700	A0900	10	FLC C	110	10052	PREF	ARE EX	HIBIT	Ď		• •	3000081	5FEB82	BMAR82	14MAY82	14	14	1
0080A 0000A	HIVVO	iv		110 110	1005	PREF	ARE EX	HIBIT	K T		ST	30NDV81	5FEBB2	BFEBB2	16APR82	10	10	1
A0200	A1100	4 2 6	FLC C	110	1007	FKEP	ARE EX	HIBIT	ł	1.	FIN	30NOV81	11DEC81	SAFRB2	16APRB2	18	18	1
A2200 A2400	A2400 A2400	6 O	FLC C	110 110	1008	PREP	APPLI APPLI	CATN F	ORM-DR	AFT	ST	1FER82	12MAR82	8MAR82	16AFR82	5	5	1 CDFFTD1
A2600	A2800	ž	FLC C	110	1007	KEVI	EW AND	CORRE	CT	DI I	1 714	19APR82	30APR82	19APR82	30AFR82	ŏ	ŏ	i CRITICAL
A2800 A3000	A3400	6	FLC C	110 110	1010 10XXX	PRIN	KNAL K T i ICF	EVIEW NSF AF	PL TCAT	ากพ		3MAY82	14MAY82	3MAY82	14MAY82	0	0	1 CRITICAL
B0000	B0200	33 R	FLC C	210	1101	FROJ	ECT OV	ERVIE	1			2NOV81	18JUN82	9NOV81	25JUN82	ĭ	1	1 CATALCHE
B0400 B0500		23 K	FLC C	210 210	1102 1102XX	EXHI	KNAL K BIT II	EPURTS MATERI	IAL CON	PLETE	•	2NOV81	9APR82 9APR82	9NOV81	16APR82	1	0	1
B1200 B1400		15 R	FLC C	210	1103	SUSI	TNA BA	SE FLA	N RISK	ANALY	ST	2110181	12FEB02	21DEC81	2AFR82	2	Õ	1
B1600	B1800	12 R 30	FLC C	210 210	1103	SUSI	INA BA TNA BA	SE PLA	W EXTE	ANALY N/REVI	FIN S	10FEB82 1MAR82	12FE882 21MAY82	5APR82	2APK82 25.JUN82	7 5	2 5	1
B2000 B2400	B2200 B2600	30	FLC C	210	1105	SUSI	TNA FI	NANCE	RISK A	NALYSI	Ŝ	2NOV81	28MAY82	30NOV81	25JUN82	4	4	\mathbf{i}
B2800	B3000	30	FLC C	210 210	1107	IDEN	TIFY P	ARTIES	S INTER	EST		2NOV81	166PKB2 28MAY82	11JAN82 30NOV81	25JUN82 25JUN82	10	10	1
B3200	B3400 B3800	22 R	FLC C	210 210	1108	REVE	NUE AS	SURANC	E	IIDTTEL		2NOVB1	2APR82	1300081	16APRB2	2	Ģ	į
B3400	B34A0	Õ	FLC C	210	1109XX	EXHI	BIT G	MATERI	AL COM	PLETE		5APR82	2APRB2	19AFR82	16APR82	2	2	CRETICAL CRETICAL CRETICAL CRETICAL CRETICAL CRETICAL 1 1 1 1 1 1 1 1 1 1 1 1 1
C0400 C1200	C0800 C1400	4	OFB 1 C	810 810	12022 12023	CONDI	UCT PU	BLIC A	EETING EETING	#2 #3		23NOV81	18DEC81 9APRB2	3000081	25DEC81	1	O	1
C0500	C0400		OPB 1 C	810	12031	CONDI	UCT WO	KKSHOF	S 1.2.	3		2N0V81	20NDV81	3NOV81	27H0V81	i	Ò	1
C0800 C1400	C1000 D1200	12 33 R	OPB 1 C	810 810	12032 1204	CUNIN	UCT WO FURLT	KKSHOP SH TIT	S 4,5, STRIB M	ó Atfrtai			12MAR82 18JUN82		19MAR82 25JUN82	1.	0	1
C1800	D1200	33 R	OPB 1 C	018	1205	PREP	MAINT	ain ai	CTION L	IST		2NOV81	18.IUN82	9N0V81	25JUN92	i	i	1
D1000 D2200	D1200 D2400	33 K	PSB 2 C	310 310	13013 13042	SCHE	LLI FK DULE C	ONTROI	IANUAL- SYS U	UPUATE PDATE			18JUN82 18JUN82	9N0V81	25JUN92 25JUN92	1	1	1
D2800	D3000	33 R	PSR 2 C	310	13052	COST	CONTR	OL SYS	TEM-DP			2NOV81	18JUN82	9N0V81	25JUNB2	i	i	1
D3400 D3800	П3600 D4000	33 K	PSB 2 C	310 310	13062 1310				SCHED- VINISTR			2NOVB1	18JUN82 18JUN82	9NOV81	25JUNB2 25JUNB2	1	1	
D1200	D1300	Ō	, के जन्म (स्त्रा) ज	10		PROJ	ECT CO	MPLETE	XXX	,,,,,		28JUNB2	25JUNB2	28JUN82	25JUN82	Ô	183	i CRITICAL

WORK COMPLETED: TO NOVEMBER 1, 1981

ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT

TIME NOW:

age 1 2Nov81

CPH ANALYSIS LISTING

	I-NODE	J-NDDE	DUR	SELECT	T CODES	نے نوبز شاہ جان سے انداز یہ انداز شاہ جان جان انداز یہ انداز شاہ جان جان جان جان جان	DESCR	IPTI	א כ		E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
	10000 10400 12100 11800	10600 10500 11800 11900	0.0	OPB 1 OPB 1 OPB 1 OFB 1	C2 C3 C3	101 102 103 108	REVIEW DI FCST PEAN INDENT DI TERMINATI	F METHODOI CLOAD DEN F POWER AN LON REPORT	OGIES MAND TRANS TERNAT					erri erin, unit unit ann gall delli son qui			COMPLETE COMPLETE COMPLETE COMPLETE
	20200 20300 21200 21600	20300 20400 21500 21700	00000	OFA OFA OFA	C2 C2 C2	2021 2021 204 205	LAND SIA	AP SET-UP MP SET-UP TUS RESEAF ISITION AN	KLH	ST FIN ST	* * * * * * * * * * * * * * * * * * *		•				COMPTETE COMPTETE COMPTETE COMPTETE
	21700 22040 20800 25000	220A0 22000 21000 25200	0000	OPA OPA	C2 C2 C3	205 205 206 207	LAND ACOUNT OF SITE SPEC	JISITION A JISITION A ENTRY SIFIC SURV	analysis analysis Jeys	CT-1- FIN ST ST	1 Le						COMPLETE COMPLETE COMPLETE COMPLETE
	25200 25400 23000 23200	25400 25500 23200 23400	0 0	OPA GFA OFA	C3 C3 C3	207 207 2081 2081	SITE SPEC SITE SPEC AIR PHOTO AIR PHOTO AIR PHOTO AIR PHOTO AIR PHOTO	. I'P II' CHE	TE AG	CT-1 FIN ST FIN							COMPLETE COMPLETE COMPLETE COMPLETE
52	24000 24100 24100 23500	24100 24100 24200 23800	0 0 0 0 0 0	OPA OPA	C3 C3 C3	2082 2082 2082 209	PRIMINUL L	AC LANNUN DE	ING-1981 ING-1981 ING-1981 JRVEYS	ST CT-1 FIN							COMPLETE COMPLETE COMPLETE COMPLETE
	22200 22300 25400 24400	22300 22400 26600 26600		OFA OFA OFA	C3 C3 C3 C4	210 210 211 212	ACCESS RI ACCESS RI MAP & FHI FIELD REI	IAN	i GRVR CLEAR GRVR CLEAR	ST CT-1	and the second s						COMPLETE COMPLETE COMPLETE COMPLETE
	26500 27500 27700 27000 27200	26800 27700 27200 27200 27400	0 0	OFA OPA OPA	C4 C3 C3 C3	212 213 213 214	MARKETARI CST ESTM	TY & DISP TY & DISP TS RSVR CI	OSAL SIDY EARING	FIN							COMPLETE COMPLETE COMPLETE COMPLETE
	25800 26000 24400 24600	24000 24200 24500 24800	0 0 0 0 0 0	OPA	C3 C4 C4 C3 C3	214 215 215 216	SLOPE ERI	S RSVR CL DSION & ST DSION & ST PHIC SURVI PHIC SURVE	FBLTY STUDY FBLTY STUDY	FIN							COMPLETE COMPLETE COMPLETE COMPLETE
	32600 32800 34200 36400	32800 33000 36400 36400	0 0	OPB 1	C4 C4 C4	216 301 301 3021 3021	REVIEW AN REVIEW AN FIELD DAT	VAILABLE I VAILABLE I VAILABLE I VA INDEX-S	MATERIAL MATERIAL METUP	FIN ST FIN ST FIN							COMPLETE COMPLETE COMPLETE COMPLETE
	36600 37000 37400 37500	36700 37200 37500 37600	0 0	OPB 1 OPB 1 OPB 1	C4 C4 C4	3022 3031 3032 3032	FIELD DATE	TA INDEX (PERATION FION-SPECS FION 80-81	ST ST FIN							COMPLETE COMPLETE COMPLETE COMPLETE
	32800 33200 33300 34200	33200 33300 33300 34400	000000000000000000000000000000000000000	OPB 1 OPB 1	C4 C4 C4	3041 3041 3042 3043	WATER RSI WATER RSI WATER RSI WATER RSI	CS-FLOW E RCS-FLOW I RCS-FERO / RCS-RESER	TION 80-81 EXTENSION EXTENSION ANALYSIS VOIR STUDY	ST CT-1 ST ST							COMPLETE
	34400 34400 33700 32760	344A0 34500 33900 32900	0 C 0 C 0 C	GPB 1 GPB 1 OPB 1 OFB 1	C4 C4 C4	3043 3043 3545 3051	WATER RSI EVAPORATI FLOODS-FI	RCS-RESERI CON STUDIE REQUENCY	VOIR STUDY VOIR STUDY IS ANALYSIS	CT-2							COMPLETE COMPLETE COMPLETE COMPLETE
	32300 32800	32400 32300	0 0	OFB 1	C4 C4	3052 3052	FLOODS PI	AF REVIEW AF REVIEW		FIN							COMPLETE .

	I-HODE	J-NODE	DUR S	ELECT	CODES		-DESCI	RIPT	I O N	M vezi (ese gani gan yan yan gan ayan ya gi wan 400 yi y yan dan ayan ana	E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
	31400 30000	31800 30200	0 0 0	PE 1 (C4	3053 3061	FLOODS-I	RESERVOI	R ROUTING	ST JLS ST		•			·		COMETETE
	30200	30400	ŎĔ	FB 1 (FB 1 (FB 1 (24	3061	HYDRLIC	S & ICE	WTR LVLS	CT-1							CURE ELE
	38800	39000	000	FB 1 (34	3063	HYDR&ICE	-RESER	NEL WTR LV WTR LVLS SLIDE SURG TEMP REGI TEMP REGI	E ST				•••			COMPLETE
	39200 392A0	392A0 39300		PB 1 (14 14	3064 3064	HYUK &	ICE-RSVR	: TEMP REGI	INE ST							LUMPLETE
	35600	35800	öčö	PB 1	Ć4	3071	SEDIMEN	r y i El Ti	1 DEPOSITI	INE FIN	1		•				COMPLETE
	33400	33400	000	PB 1 (34	3072	RIVER MO	ĴŖ ĊĤŌĹŎ Ġ	Y TRLM PARAMT ET PARAMTR ET PARAMTR DIES-PRELI	ŠŤ	4						COMPLETE
	38200 38200	38200 38400	0 0 0	PB 1 (24	3081	TRANSMS	I LINE-F	'RLN PARAMT	[R							CUBIPLETE
	38400	38600	0 0 0	FR 1 C FB 1 C FB 1 C	-4 34	3082 3082	ieneman Ieneman	1 INE-1	EI PAKANIK ET PARANTE	ST FIN	İ						COMPLETE
	30800	31000	ÕÕÖ	PB I C	4	3101	LUR SUS	ITNA STU	DIES-PRELI	n st	į						COMPLETE
	31000	31200		PB 1 (3101	LWR SUS	ITNA STU	DIES-PRELI	M FIN							CURE FTF
	31200 43100	31500 43200	0 0 0	rb (24 24	3102 401	LWR SUS	ITNA STU	DIES-FOLLO	WUP SI	1						COMPLETE
	43200	43400	ďči	PB 1 (i i	401 ·	REVIEW	AVATLABL	DIES-PRELI DIES-FOLLO E DATA E DATA E DATA	či-1							COMPLETE COMPLETE COMPLETE
	43400	41200	0 C C	FB 1 [C1	401	REVIEW /	AVAILABL	E DATA	FIN							
	44000 44200	44200 41200	000	pa (Pa (24	402 402	SHORT TE	ERM MONI	TORNG PROG TORNG PROG INDUCD SEI	RAM ST							COMPLETE
	40000	40200	ŏöö	PB 1 C	Ži	403	PRELIM	ENN NUNI RESERVR	TABILLA SET	SKAN FIN	1			*			LUMPLETE
	40300	40300	000	PB 1 (C1	404	REMOTE S	SENSING	INAG ANALY	rsis st							COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	40500	10300	O C O	FB 1 (404	REMOTE S	SENSING	IMAG ANALY	SIS CT-1							COMPLETE
	40900 42200	42000 42400	ÖCÖ	PB 1 (14 14	404 405	REMUIE :	SENSING GENINGT	INAG ANALY INAG ANALY INAG ANALY C RECONASA	7NCE (212 FIN	Ì						COMPLETE
	41000	41200	0 0 0	FB 1 (C1	406	FRELIM	LVALUA I N	XKEPOK -116	RAFT ST	t						CONFLETE
	41200	41400	O C D	rb i c	71	406	PRELIM E	VALUATI	ON & REPOR EFORT DRAF OTION STUD	RT CT-1	į						COMPLETE
	41300 44200	41600 45000		PB 1 (PR 1 (406 407	PRELIM	EVAL & R	EPORT DRAF	FIN FIN							COMPLETE
	45500	45800	000	FB 1 (Ći	408	TIAM STAI	annumu e RTLTTY	Inital Sint	ST							COMPLETE
	45800	46000	OCO	FR 1 (21	408	DAM STA	ILITY		či-1							CONPLETE
	44400 44500	44500	0 0 0	PB 1	21	413	GROUND 1	MOTION S	TUDIES	ST		•					COMPLETE
	45200	44600 45300	0 0 0	PB 1 (. <u></u> 31	413 415	HRUUNU (C NULLUN CECTOTY	TUDIES	CT-1	\$ r		•				CONFLETE
	45300	45400	ŏčä	PB 1 C	i i	415	SOIL SUS	CEPTRTY	-SEISHIC F -SEISHIC F	AIL CI-1	•						COMPLETE
	50000	20300	Ŏ C Q	FR 1 C	[]	501 501	DATA COL	LECTION		ST		•					COMPLETE
	50200 50400	50400 · 50500		ru i i PB 1 (1	501 501	DATA CUL	LECTION		CT-1							CONFLETE
	50200	51200	OEN	PR 1 (21	502	AIR FHO	ID INTER	PRETATION PRETATION SIGN	FIN BT							COMPLETE
	51200	51400	o c c	PR 1 C	Ci	502	ATR PHO	TO INTER	PRETATION	FIN							COMPLETE
	50800 51000	51400 51400	0 C D	rb i l Pa (.1 :4	503 504	1980 PRI	JUKAM UL	SIGN W DEGREAK								COMPLETE
* ,	52000	52200		PB 1 (505	1981 FR	TUNHITU	N PROGRAM	ST							COMPLETE
	52000 52200	52600	000	FR 1 (31	505	1981 FR(igram de	SIGN	FIN							COMPLETE
	52400 52400	52600 526A0	0 0 0		C4	506	1981 EXI	PLOKATIO	IN PROGRAM	ST							COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	526A0	52700	000	FA (24 24	504 504	1081 EAI	ULIANU. ULTAGNIC	N PROGRAM IN PROGRAM	CT-1 FIN							COMPLETE
	51400	51600	000	FB 1 (31	5081	Data asi	SEMBLY-1	980-DRAFT	ST							COMPLETE
	51300	51800	000	PB 1 (C1	5081	DATA ASS	SEMBLY-1	980-DRAFT	FIN							COMPLETE
	52800 53000	53000 53200	0 0 0 0	FB 1 (FB 1 (1	5082 5082	DATA ASS	ienbly-1	981-DRAFT 981 DRAFT	ST CT-1							COMPLETE
	60120	60122	ŏčä	FBIC	14	601	REVIEW P	REVIOUS	STUDIES	CT-1 ST	•						COMPLETE
		1995 - 1995 <u>- 1995</u>			3.5	- 1 Ty				· · · · · · · · · · · · · · · · · · ·					and the second		LUIN LE IE

					· · · · · · · · · · · · · · · · · · ·	and the self-self-self-self-self-self-self-self-						
	I-NODE	J-NODE	DUR	SELECT CODES		DESCRIPTION		E.S.		L.F.		
	60122 60200	60125 60524	O C	OPB 1 C4 OPB 1 C4	601 602	REVIEW PREVIOUS STUDIES INVESTIGATE TUNNEL ALTERNATI EVAL ALI SUSITNA DEVELOPHENT	FIN					COMPLETE
	60325	30330	υC	OFB 1 C4	603	EVAL ALT SUSITNA DEVELOPMENT	VES ST					COURTELE
	£0330 £0335	60335 60340		OPB 1 C4 OPB 1 C4	603	EVAL ALI SUSTINA NEVELUPMENT	C1-2		•		•	CONFIETE
	60340	60345	ÖČ	OPB 1 C4	603 603	EVAL ALT SUSITNA DEVELOPMENT EVAL ALT SUSITNA DEVELOPMENT	FIN					COMPLETE
	50420	50425	0 0	OPB 1 C4	604	EVAL ALT SUSITNA DEVELOPMENT DEVL CAN ARCH DAM EVALUATION	ST					COMPLETE
	60425 60510	ፊ0430 ፊ0520	0.0	OFB 1 C4 OFB 1 C4	604 6051	DEVL CAN ARCH DAN EVALUATION SELECT REPORT DRAFT	FIN	4				COMPLETE
	90250	80522 89524	0.0	OPR 1 C4	6052	SELECT FINAL REPORT DRAFT SELECT FINAL REFORT DRAFT	ST	1	•			COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	60522 40524	40528	0 0	OFB 1 C4 OFB 1 C4	6052 6052	SELECT FINAL REFURI DRAFT SELECT REPORT FINAL DRAFT	CI-1 FIN					COMPLETE
	60528	60530	0 C	OPB 1 C4	6053	SELECT REPORT FINAL EDITION		i				
	60612	60614 60616	0 0	OFB 1 C4 OFB 1 C4	404 404	STAGED DEVELOPMENT ALT STAGED DEVELOPMENT ALT	ST CT-1-				•	COMPLETE
	60616	60618	0 C	OFB 1 C4	308	STAGED DEVELOPMENT ALT	FIN					LUMB'LETE
	60702 60703	60703 60704		OPB 1 C5 OPB 1 C5	607 607	DEVELOP CONCEPTUAL PLAN(WAT) DEVELOP CONCEPTUAL PLAN(WAT)	ST	1				COMPA FTF
	60802	50804	0.0	OPR 1 CA	803	HPNATE DESIGN CRITERIA(DC)	ST					COMPLETE COMPLETE COMPLETE
	60804 62506	60806 6250B	3 0	OFB 1 C6 OFB 1 C6	808 808	UPDATE DESIGN CRITERIA(DC)	CT-1	•				COMPLETE
	60902	50903	0,0	OFB 1 C4	609	UPDATE DESIGN CRITERIA(DC) OPTIMIZE DAM HEIGHTS(DC) UPDATE DESIGN CRITERIA(WAT)	ST					COMPLETE
	60903 60904	60904 60905	0 C	OPB 1 C4 OPB 1 C4	609 609	UPDATE DESIGN CRITERIA(WAT)	CT-1 CT-2	1				COMPLETE
	60905	60908	0 C	OPB 1 C4	609	UPDATE DESIGN CRITERIA(WAT) UPDATE CRIT&ASSUMPTIONS(WAT) UPDATE CRIT&ASSUMPTIONS(WAT) UFDATE CRIT&ASSUMPTIONS(WAT) UFDATE DESIGN CRITERIA(WAT) UPDATE DESIGN CRITERIA(DC) UPDATE DESIGN CRITERIA(DC)	FIN					CONFLETE
	40907 40909	60909 60909	0 C	OPB 1 C4	309	UPDATE CRITEASSUMPTIONS(WAT)	ST					CONFLETE
	50908 60909	60910	ÖĞ	OPB 1 C4 OPB 1 C4	609 609	UFDATE CRITIASSUMPTIONS (UAT)	CT-1 CT-2					CONFLETE
	61002 51003	61003 61004		OFB 1 C4 OFB 1 C4	610	UPDATE DESIGN CRITERIA (WAT)	ST					COMPLETE
	61004	61005	ÖÜ	OPE 1 C4	610 610	UPDATE DESIGN CRITERIA(DC)	CT-1 CT-2					COMPLETE
	51005	61005	0 0	OFB 1 C4	610	UPDMIE NEBIUN LATTERIMUNUT	LIN	1				CONFLETE
	61007 61008	6100B 61009	0 0	OPB 1 C4 OPB 1 C4	610 610	UPDATE CRIT&ASSUMPTIONS(DC) UPDATE CRIT&ASSUMPTIONS(DC) UPDATE CRIT&ASSUMPTIONS(WAT)	ST CT-1					COMPLETE COMPLETE
	61009	61010	Ŏ Ĉ	OFB 1 C4 OFB 1 C4 OFB 1 C5	610	UPDATE CRITAASSUMPTIONS (WAT)	ČÍ-2					COMPLETE
	61102 31103	61103	0 0	OFB 1 C5	611 611	DEV ENGRG SKCHS/LAYOTS(WAT) DEV ENGRG SKCHS/LAYOTS(WAT)	ST CT-1					CONFLETE
	61104 61105	61105	Ŏ Č	OPP 1 C5 OPP 1 C5 OPP 1 C5 OPP 1 C5	511	DEV ENGRG SKCHS/LAYDTS(WAT) DEV ENGRG SKCHS/LAYDTS(WAT) DEV ENGRG SKCHS/LAYDTS(WAT) DEV ENGRG SKCHS/LAYDTS(WAT) DEV DWGS/COST COMPRISM(WAT) DEV DWGS/COST COMPRISM(WAT)	CT-2					COMPLETE
	61108	61106 61110	ÖÖ	OFB 1 C5	611	DEV ENGRG SKLHS/LAYDIS(WAI) DEV DWGS/COST COMPRISN(WAI)	ST					COMPLETE
	61111	61111	0.6	UPB 1 65	611	DEV DUGS/COST COMPRISM(WAT)	CT-1					COMPLETE
	51112	61112	0 C		511 511	DEV DWGS/COST COMPRISM(WAI)	FIN					COMPLETE
	51116	61117	0 C	OPB 1 C5	611	INCORP GENL AMENDMENTS (WAT)	ST					COMPLETE
	61120 61124	61122 61125	0.0	OFB 1 C5 OFB 1 C5	611	DEV ENGRG SKCHS/LAYOTS(WAT) DEV ENGRG SKCHS/LAYOTS(WAT) DEV ENGRG SKCHS/LAYOTS(WAT) DEV ENGRG SKCHS/LAYOTS(WAT) DEV DWGS/COST COMPRISM(WAT) DEV DWGS/COST COMPRISM(WAT) DEV DWGS/COST COMPRISM(WAT) DEV DWGS/COST COMPRISM(WAT) INCORP GENL AMENDHENTS (WAT) DESIGN DAM(WAT) DAM FOUNDATION TREATMENT-WAT OPTIMIZE DAM HEIGHT ADJUST ALIGNMENT(WAT) DAM FOUNDATION TREATMENT-WAT DESIGN DAM(WAT) ADJUST ALIGNMENT(WAT)	ST					COMPLETE
111	61128	61130	0 0	OPB 1 C5	311	OPTIMIZE DAN HEIGHT	ŠŤ					COMPLETE COMPLETE
	61132 61134	61138 61142	0.0	OFB 1 C5 OFB 1 C5	611	NAM EUNDATION TREATMENT-MAT	ST CT-1					COMPLETE
	61136	61143	0 0	DFB i C5	611	DESIGN DAM(WAT)	ST					COMPLETE COMPLETE
	61138	61146	0.0	OPB 1 C5	611	ADJUST ALIGNMENT(WAT)	CT-1	4				COMPLETE

TIME NOW: PAGE 2NOVB1

						ريقية ويتية وينها ليدين فيدي ومنه أندان شجه ويتبار وفقه جينية شعر 1966 فحد حديد عدي 1960 فاقت.				•				
	I-NODE	J-MODE	DUR	SELECT CODES		DESCRIPTION		E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
	61143 61147 61158 61160 61202	51156 61160 61162 61204	0 0 0	OPB 1 C5 OPB 1 C5 OPB 1 C5 OPB 1 C5 OPB 1 C6	611 611 611 611 612	DESIGN DAM(WAT) DESIGN DAM(WAT) DRAFT REPORT DRAWINGS(WAT) DRAFT REPORT DRAWINGS(WAT) DEV ENGRG SKCHS/LAYOTS(DC)	CT-1 FIN ST CT-1 ST							CONSTELE CONSTELE CONSTELE CONSTELE CONSTELE
	61204 61206 61208 61212 61214	61206 61208 61210 61214 51216	0 0		612 612 612 612 612	DEV ENGRG SKCHS/LAYOTS(DC) DEV ENGRG SKCHS/LAYOTS(DC) DEV ENGRG SKCHS/LAYOTS(DC) DEV DUGS/COST COMPRISM(DC)	CT-1 CT-2 FIN ST CT-1							COMPLETE COMPLETE COMPLETE
¥	61218 61222 61223 61228	61218 61220 61223 61224 61229	0 0	OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB 1 C6	612 612 612 612 612	DEV DUGS/COST COMPRISM(DC) DEV DUGS/COST COMPRISM(DC) DEV DUGS/COST COMPRISM(DC) INCORP GENL AMENDMENTS(DC) INCORP GENL AMENDMENTS(DC) DESIGN DAK(DC)	CT-2 FIN ST CT-1 ST							CONSTELE CONSTELE CONSTELE CONSTELE CONSTELE CONSTELE CONSTELE
	61229 61232 61236 61238 61244 61256	61230 61234 61240 61242 61248 61258	0000	OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB 1 C6	612 612 612 612 612	DESIGN DAM(DC) OPTIMIZE DAM HEIGHT(DC) DESIGN DAM(DC) FOUNDATION TREATMENT(DC) OPTIMIZE DAM HEIGHT(DC)	ST				•			COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	61258 61402 61403 61404 61405	61260 61403 61404 61405 61406	000000000000000000000000000000000000000	OPB 1 C6 OPB 1 C4 OPB 1 C4 OPB 1 C4 OPB 1 C4	612 612 614 614	OPTIMIZE DAY HEIGHT(DC) DRAFT REPORT DWGS(DC) DRAFT REPORT DWGS(DC) SPILLWAY DESIGN CRITERIA SPILLWAY DESIGN CRITERIA SPILLWAY DESIGN CRITERIA	ST CT-1 ST CT-1 CT-2					•		COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	61407 61502 61503 61504	61408 61503 61504 61505	000000000000000000000000000000000000000	OPB 1 C4 OFB 1 C5 OFB 1 C5 OPB 1 C5	614 615 615 615	SPILLWAY DESIGN CRITERIA SPILLWAY DESIGN CRITERIA UPDATE CRIT&ASSUMPTIONS(SPWY DEV ENGRG SKCHS/LAYOTS(WAT) DEV ENGRG SKCHS/LAYOTS(WAT) DEV ENGRG SKCHS/LAYOTS(WAT)	CT-1 CT-2	•						COMPLETE COMPLETE COMPLETE COMPLETE
	61505 61507 61508 61510 61511	61506 61508 61510 61511 61512	000000000000000000000000000000000000000	OPB 1 C5 OPB 1 C5 OPB 1 C5 OPB 1 C5 OPB 1 C5	515 515 615 615	DEV ENGRG SKCHS/LAYOTS-WAT/S DEV ENGRG SKCHS/LAYOTS-WAT/S DEV ENGRG SKCHS/LAYOTS-WAT/S DEV DWGS/COST COMPRISM(WAT) DEV DWGS/COST COMPRISM(WAT) DEV DWGS/COST COMPRISM-WAT/S	YFIN YST YFIN CT-2 C1-2							CONFLETE CONFLETE CONFLETE CONFLETE CONFLETE
	61512 61515 61516 61602 61604	61518 61604 61603	000000000000000000000000000000000000000	OPR 1 C5 OPR 1 C5 OPR 1 C5 OPR 1 C6	515 615 615 616 616	SELECT SPILLWAY FORMAT SELECT SPILLWAY FORMAT SELECT SPILLWAY FORMAT DEV ENGRG SECHS/LAYOTS(DC) DEV ENGRG SECHS/LAYOTS(DC) DEV ENGRG SECHS/LAYOTS(DC)								COMPLETE
	61608 51612 51614 61616	61608 51610 51514 61616 61618	00000	OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB 1 C6	616 616 616 516 516	DEV ENGRG SECHS/LAYUTS(DC) DEV DWGS/COST COMPRISE(DC) DEV DWGS/COST COMPRISE(DC) DEV DWGS/COST COMPRISE(DC)	CT-2 FIN FIN CT-1 CT-2							COMPLETE
	51518 61622 51624 61702 61708	61620 61624 61626 61704 61718	0 0	OPB 1 C6 OPB 1 C6 OPB 1 C6 OPB 1 C5 OPB 1 C5	616 616 617 617	DEV DUGS/COST COMPRISM(DC) SELECT SPILLWAY FORMAT SELECT SPILLWAY FORMAT INCORP GENL AMENDMENTS (WAT) ADJUST ALIGNMENTS	FIN ST FIN ST ST							COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	61710	61720		OPB 1 C5	617	ENERGY DISSIPATION-WAT	ŠŤ							COMPLETE

	T MOTO											ر د هند جد سد جد ما جد					مِي تِحَيِّ الْمِنْ عِينٍ بِينٍ عَبِيْهِ هُ		and and any one way the What this way was the two and
	I-NODE J						DES	CR	I P T	ION			E.S.	E.F.	L.S.	L.F.	T.F.	F.F.	CL
		61721 61723	0.0	OPB 1	C5 C5	617 617	PREL	DESG	N CHUI	E/ROCK	ANCRS	ST							COMPLETE
	61718	61734	ŏč	OPB 1	ČŠ .	617	ADJUS	ar au	n cuni IGNMEN	NL BIN	UCTURES T	FIN							LUMEN ETF
	61720	31728	0 0	OPB 1	C5	617	ENERG	IQ YE	SSIPAT	TON-WA	T	FIN CT-1							COMETETE
	61723 61724	61724 61730	0.0	OPD 1 OPB 1	. C5	617 617	PREL	DESS	N CONT	RL STR	UCTURES UCTURES IT IMENTS	CT-1	•						CUMES FIF
	31728	61740	ŏč		ČŠ	617	ENER	GY DI	SSIPA1	LIUN-MV	il nrinves	FIN	i :			•	₹.		COMPLETE
	61748	61750	0 C	Ubb 1	C5	617	COHF	IRM C	DNCEPT	/ALIGN	HENTS	ŚŤ"	İ						COMPLETE
		61754			C5	617	LUNF.	ikm c	uncel i	/ALIG	IMENIS	FIN							COMPLETE
	61756 61758	61760	0 5	OPB 1	65 65	617 617	DESIL	IN WA	IEK PA FRGY 1	SSAGES	TTOM	ST	1						COMPLETE
	61758 81764	61766 31766	őČ	OPB 1	ČŠ	617	DEST	IN EN	ĔŔĠŶ Í	ISSIPA ISSIPA	TION	čt-1							COMPLETE
	61778	61780	OC	0FB 1	C5	617	LIRAF	i RFP	ues de	CAUTNES	(LAT)	ST							COMPLETE
	61780 61802	61782 61803	O F	OPB 1 OFB 1	(5) (4)	617 618	UKAFI	REP	ORT DR	AUINGS NDHENT ITS(DC)	(WAT)	CT-1 ST							CUMPI FTF
	51808	61814	õč	ops i	ÇĞ	618	ADJUS	ST AL	IGNMEN	ITS(DC)	2(11/1)	ŠŤ							CONSTETE
	61812	61820	o c	opb 1	C&	618	PREL	DESG	и снит	EZROCK	ANCRS	ST						•	COMPLETE
		61632 61024	0 0	UPB 1	C6	618 618	ADJUS	T AL	IGNMEN	ITS(DC)	DE/EC	FIN							COMPLETE
	31318	61822	δč	ore i	ĽŠ	618	PREL	DESG	N CONI	I PREED TRI STR	RD(DC)	ST							COURTETE
က္	61822	61828	0 0	OP8 1	C6	618	PREL	DESG	N CONT	RL STR	UCT(DC)	ČŤ−1	1						COMPTETE COMPTETE COMPTETE COMPTETE COMPTETE
ဘ		51826		OPB 1		418	OP1 4	AUAIN:	st dan	I FREED	RR(DC)	CT-1				•			COMPLETE
		61834 61850		OPB 1	63	618 618	CUNE	niaut	ONCEPT ONCEPT	i freed	RD(DC)	CT-2							COMPLETE
	61852	61954	0 C	OPB 1	C6	61B	LL RE	ELEAS	es ene	RGY DI	SIPATIN	ST							CONFLETE
	31862	61854	0 C	OPB 1	Çş	618	DRAF	r ref	ORT DI	IGS (DC)		ST							CONFLETE
	82010	61866 62020	0 0	OPB 1	C5	618 620	UKAP I	I KEMI DI TSU	1 04 DE	IGS (DC) ING SCH	ENILE	ST			• .				CONFLETE
	62010	62022	ŎČ	OPB 1		620	ESTAI	3 PERI	MANENT	OPERA	TING FO	RCE							COMPLETE
	62024	62034	0 C	OPB 1	C5	620	DETER	RHTHE	SERVI	CES-H2	O,ELEC,	SEWGE							COMPLETE
- -	62026 62029	52036 52029	O C	OPB 1	CS	620 620	DETER	MINE	HOUSI	NG REA REQUIRE	UIREMENT	ОТ	9.						CONFLETE
	32102	62104	ŏč	OPR 1	C5	621	CONFI	TRM CI	DNCEPT	ieantve	בואומה	ST							COMPLETE
	62105	62112	0 0	OPB 1	C5	621	MESTO	SN WA	TER PA	1994GF9	-WAT	ST	•						LUMPLEIE
	62108 62123	52114 62124	Q Ç	OPB 1 OFR 1	. ÇŞ	621 621	IJESI(GN CO	FFERDA	M HEIG AWINGS	HT	ST							COMPLETE
	62124	32126	3 6	OPB 1	C5	621	DRAFT	r REP	ORT DE	AWINGS	CUAT	ST CT-1	•						COMPLETE COMPLETE
	62202	A2204	Ŏ Ĉ	OPB 1	ČŠ	622	CONFI	IRM C	ONCEPT	(DC)		W ()							COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	62206 62226	62212 62228 62230	0 0	OPB 1 OPB 1	CS	622 622	DESG	Y WAT	er pas	SAGES (IGS (DC)	DC)	ST							COMPLETE
	62228	62230	0 0	OFB 1	63	522	DRAF	I REF	ORT DI	igs (DC)		CT-1							CUMPLETE PONDI ETE
	62302	52303	0 C	OPB 1	C4	623	DEV E	ENGRG	SKCHS	i/LAYDT	S(WAT)	ŠŤ							COMPLETE
	62303 62304	62304	ÕĈ	OPR 1	C4	623	DEV !	ENURG	SKCHS	/LAYOT	S(WAT)	CT-1							COMPLETE
	62305	62305 62305		OFB 1		623 623	DEV B	:NUKU :NGPG	SKCHE	JLAYUI JLAYDT	S(WAL)	CI-2							COMPLETE
	62308 62310	32310	ěč	OPB 1	Č4	623	DEV I	DWGS/	cost c	OMPRIS	N(WAT)	ST							COMPLETE
	52310	62311	0 C	of a 1	C4	623 623	DEU 1	DWGS/	cosi c	COMPRIS	N(WAT)	CT-2	•						COMPLETE
		62312 62314		OPB 1		623	TIFA 1	IW65/	CUST (:OMFR19	N(WAT)	FIN			an San 👣				COMPLETE
	62315	62316	ŏč	OPR 1	C5	623 623	TAKFI	IFF F	DR AIT	COMPRIS	THUTYAL	ST							COMPLETE COMPLETE
	62316	6231B		OPR 1		623					LAYOUT	Fin		•					COMPLETE
																*			TO THE THE THE STATE OF THE STA

TIKE NOW: 2NOV81

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	62320 62323 62323 62328 62330 62331 62334 62337 62350 62350	62324 62324 62332 62331 62331 62337 62338 62341	000000000000000000000000000000000000000	OPB 1 CC OPB 1 CC OPB 1 CC OPB 1 CC OPB 1 CC OPB 1 CC OPB 1 CC OPB 1 CC	4	623 623 623	REVIE LAYOT REVIE LAYOT	W ALIC U/G f W ALIC SURF	GNMENT P/H & GNHENT ACE P/	S-WAT TAILR S-WAT	E 800	ST				CL COMPLETE
	5240468248906024250011802466277712468244182489062255601180246527770016	622337246800468046892448144664211241142929880392248656666666666666666666666666666666666	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44444444444444444444444444445555555555666666	333333444444444444444444455556666666666	REFERENCE DE LA GRANTIA DE LA CREMANTA DEL CREMANTA DEL CREMANTA DE LA CREMANTA DEL CREMANTA DEL CREMANTA DEL CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DEL CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DE LA CREMANTA DEL CREMANTA DE LA CREMA	W ALIGN DESIGN DESIGN DESIGN NGRG/CC NGRG NGRG/CC NGRG NGRG/CC NGRG NGRG/CC NGRG NGRG/CC NGRG NGRG/CC NGRG NGRG/CC NGRG NGRG/CC NGRG NGRG/CC NGRG NGRG NGRG/CC NGRG NGRG NGRG NGRG NGRG NGRG NGRG NG	SMENTAL MENTAL M	B-WAT B-WAT KE PAGS KE PAGS KE PAGS KE PAGS WINGS W	RUCTURI GAGES (WAT) (WAT) G(DC	E ST -1 E ST -1 ST -1 ST -1 ST -1 ST -1 ST -1 ST -1 ST -1 YY ST -1 YY ST -1 YY ST -1				TETTETTETTETTETTETTETTETTETTETTETTTETT
6	62720 62722 52742	62721 62723 62744	0 0 0 0 0 0	C OPB 1 C	26	627 627 627	REVIE	W INT	AKE WA RT DWG	TER PA	ASSAGE	SST				COMPLETE COMPLETE COMPLETE

TIME NOW: PAGE 2N/00/81

						سن عنم نيد بيد سه ند	رے بیرے میں طاقہ مات شاہ										
	I-HODE	J-NUDE	DUR	SELEC	T CODES					0 N							CL
	52744 62902 62904 63002	62746 62904 62906 63004	0000	OPB 1 OPB 1 OPB 1	C6 C5 C5 C4	627 629 629 630	DRAF DRAF DRAF DRAF	T REPORT	I IWG DWG DWG DRA	s(DC) s(DC) s(DC) wings(DC)	CT-1 ST CT-1 ST	•			-		COMPLETE COMPLETE COMPLETE COMPLETE
	6A500	64700	0 C	OFB 1	C2 C2	632 632	THER	MAL GENI	RATI								CUMPI FTF
	6A700	68100 68100	O C	OPB 1	C2	632 633	THEF	MAL GEN O GENER	ERATI ATION	ON RESOURCES	FIN	•					COMPLETE COMPLETE COMPLETE
	68100 68200 68500	66200 66300 66400	O C	OFB 1 OFB 1 OFB 1	CS CS	633	HYDE	O GENER	4TTNN	RESOURCES RESOURCES	CT-1 FIN ST						COMPLETE
	ār300 ar700	38700 60300	3 O	OPB 1	CB CB	6341 6341 6341	FNUT	RONMENT RONMENT RONMENT	ASSE	SSMENT	CT1 FTN						COWNTELE COWNTELE COMETELE
	00835 \$0800	4C700 4C900	0 C	OPB 1 OPB 1	C8	6342 635	ENVI LOAT	RONMENT MANAGE	ASSE & CO	SSMENT-FINA NSERVE PARAMATERS			•				COMPLETE
	60100 60300 60300	&B200 &D3A0 &B400	0 0	nlr I	C2 C2	6361	(3P (3P	***	3 (1)(1)		- 1	1					COMPLETE COMPLETE COMPLETE
'n	60400 60500	50500 60600	0 0	OFB 1	C2 C2	6362 6362 6362	GENE	RAT FLA	ANA P ANA P ANA P	LY & REPORT LY & REPORT LY & REPORT RNATIVE SITE	CT-2						COMPLETE
0	71200 70800	71400 71000	0 C	OFB 1	C8	701 7011	STUR	Y COORD- Y COORD	ALTE	RNATIVE SIT RNATIVE SIT	E CT-2 E ST				N		COMPLETE COMPLETE COMPLETE COMPLETE
	71000 71300 72000	71200 71800 72100	- 0 C	OPB 1	C8	7011 7012	STUI	Y COURT	-ALTE	RNATIVE SIT RNATIVE SIT IM ALTERNAT	E CT-1 V ST		•				COMPLETE COMPLETE
	79200 71000	79300 71100	0 0	OPB 1 OPB 1 OFB 1	C8	7013 702 7041	MON	TOR FIEL	-UPIII -D AC	MIZED DESIG TIVITIES	ST						CO級 LETE CO級 LETE
	71600 73000	70000 73100	0 0	OPB 1	C8 C8	7042 705	WTR	RES-PRE DECONOM	WATS IC AN	TIVITIES LT SITES DEVL CAN AL ALYSIS ALYSIS	T ST	1		**************************************		•	CONFLETE CONFLETE CONFLETE
	73100 78600	73700 78800	0 C	OFB 1	CB CB	705 7041	LULI	UNAL AL	LKNA	HVE SIJES	51	•					COMPLETE COMPLETE
	78700 78800 78900	79000 78700 79000	0 0		C8 C8	7061 7061 7062	CIII.7	URAL AL	(FRNA	TIVE SITES	FIN CT-1			* 	, A.		CONFLETE
	75200 75400	75400 75300	CCC	OPB 1	CB CB	7071 7071	LANI	USE AL	TERNA TERNA	ALTERNATIVE TIVE SITES TIVE SITES	S ST ST CT-1						COMPLETE COMPLETE
	72400 72500	72500 72700	0 C	OFB 1	CB	708 708					ST						LUMBI ELE
	71200 735A0 736A0	73500 73500 73900	0 0	OFR 1 OFR 1 OFR 1	C8 C8	7091 7092 7101	TRAN	ECOLOGI S TINE I	ASSES ASSES Y &I T	S RTE SELCT FRNATU SITE	N ST						COMPLETE
	74900 74960	749A0 750A0	0 C	OPB 1 OPB 1	C8 C8	7111 7111	WILI	LIFE EC	LOGY LOGY	ALTER SITE	S ST S CT-1						COMPLETE
	77100 77300 71000	77300	0 0	OPB 1	C8	7121 7121	PLAN PLAN	IT ECOLO	BY AL	ING ING S SCREENING S RTE SELCT ERNATV SITE ALTER SITE ALTER SITE TERNTV SITE TERNTV SITE	S ST S CT-1						COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE COMPLETE
	80000 80200	710A0 80200 86400	0 0	OPB 1 OPB 1 OPB 1	63	714 801 801	SFIF	CT TNYT	TAL C	neethnee	ST ST CT-1						COMPLETE
	80400 81600	80500 81800	0 C	OPB 1	C3	801 8021	SELE LDAI	ČT THIT FLOW A	TAL Č VALYS	ÖRRÍÐORS ORRÍÐORS IS	FIN						COMPLETE COMPLETE COMPLETE
	81800	82800	0.0	OPB 1	C3	8021	LOAI	FLOW A	VALYS	IS	FIN						COMPLETE COMPLETE

ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT

TIME NOW: 2MDV81

	1 NODE	DUR	SELECT CODES		FSCRI	PII	D N		E.S.	E	.F.	L.S.	L.F.	T.F.	F.F.	CL	-
I-NODE	J_MORE		orren com					د د ندون می مین د. د د						. منه هم صد بيد نب بنب <u>ن</u>		COMPLETE	
82400	82400	0 C	OPB 1 C3	80221	PRELIMINA	Y ELEC	SYSTEM	ST								COMPLETE	
82400	82800	0 0	OPR 1 C3	80221	PRELIMINAR	Y ELEC	SYSIEM	CT-1 ST								COMPLETE	
80800	80800	οç	OPR 1 C3	803	FINAL ROUT	F SELEP	DUCTR STUDI	ršt							• . •	COMPLETE	
83200	83400		OFB 1 C3	804	VOCEMPLE L	MILECUIT	EDULE DATA	ST	•							COMPLETE	
70100	90400		OP 1 C7 OPB 1 C7	901 901	ASSEMBLE C	100 - CON	FRILLE TIATA	FIN	1							COMPLETE	
90400 90200	90600 90202	V C	OPB 1 C7 OFB 1 C7	902	PREP PREI	M CST E	STIMATES	ST								COMPLETE	• .
A2000	A1600	ŏč	FLC CI10	10021	ESTABLISH	REGULATI	DRY REQUIRE									COMPLETE	
COOCC	C0200		UPB 1 C810	12021	CONDUCT FL	iblic me	ETING #1	A	1							COMPLETE	
D0206	D0400	0 0	rsb 2 C310	13011			NUAL-DRAFT	ST CT-1	÷							COMPLETE	•
D0400	00600	0 0	PSB 2 C310	13011	PROJECT PROJECT PR	CULER NO	NUAL-DRAFT	FIN								COMPLETE	
D0500	00800	0.0	PSB 2 C310	13011	PRUJEST FI	OCED NA	NUAL-FINAL	7 415								COMPLETE	
DOBOO	D1000		PSB 2 C310	13012	FRUDEUT FI	CONTROL	PROCEDURE	3	-1						•	COMPLETE	
D0000	10600		PSB 2 C310 PSB 2 C310	1302 1303	PROJECT M	ASTER SC	HEDULE	•	1							COMPLETE	
D1400 D2000	D1500 D2200	7 %	FSB 2 C310	13041	SCHERULE (ONTROL	SYSTEH-DEV	• •	i							COMPLETE	
D2600	D2800		PSB 2 C310	13051	COST CONTI	OL SYST	EM-DEV		•						• •	COMPLETE	
n3200	D3400		PSB 2 C310	13061	HANPOUFR I	DADNG S	CHEULE-DEV	•	2 .							COMPLETE	
P1600	D0400	0 (PSP 2 C410	1307	DEVELOP A	CCOUNTIN	G POLICIES		1			•				COMPLETE	
11800		0.0	PSB 2 C310	1308	DOCUMENTA	LTON CON	IIKUL									Annual Caraca Services S. Services	

```
FIELD CAMP OPERATIONS
RESUPPLY & EMERGENCY SERVICE
                                                                          203
           EXHIBIT F MATERIAL COMPLETE RIGHT OF ENTRY
204XX
                                                                  FIN XXXXXXXXXXXXXXX
                                                                  CT-2XX
FIN , XXXXXXX
            ACCESS ROAD
ACCESS ROAD
210
210
                                                                  3022
            FIELD DATA INDEX OPERATION
                                                                 FIELD DATA COLLECTION 81-82
           FIELD DATA COLLECTION 81-82 FIN .

WATER RSRCS-FLOW EXTENSION FIN XX

WATER RSRCS-FREQ ANALYSIS FIN XX

WATER RSRCS-RESERVOIR STUDY C1-3CC

WATER RSRCS-RESERVOIR STUDY FIN .

WATER RSRCS-PRESPOST PROJECT ST .
3033
3041
                                                                   FIN XXXX L
3042
                                                                  CT-3CCCCCL
3043
3043
                                                                                     CCCL
           3044
3044
3046
304XX
3053
3053
3041
3063
3071
 3072
                                                                 Fin XXXXXX L
3072
             ACCESS RUADS HYDROLOGY XXXXXX L
LWR SUSITNA STUDIES-FOLLOWUP FIN . X
LWR SUSITNA STUDIES-FOLLOWUP C1-1XXXXXXXXL
DAM STABILITY FIN XXXXXXX
                                                                                           XXXXXX L
 3102
 3102
          DAN STABILITY
LONG TERM MONITORING PROGRAM
RESERVOIR INDUCED SEISMICITY
SEISMIC GEOLOGY-FIELD STUDY
EVALUATION & REPORT DRAFT
EVALUATION & REPORT DRAFT
GROUND MOTION STUDIES
DAN STABILITY CONSULTING
SOIL SUSCEPTBTY-SEISMIC FAIL FIN XXXXXXXX

SOIL SUSCEPTBTY-SEISMIC FAIL FIN XXXXXXX

1982-1984 PROGRAM DESIGN
DATA ASSEMBLY FINAL-DRAFT
DATA ASSEMBLY FINAL-DRAFT
FIN XX

PRELIM DEVIL CANYON DAW ALT
UPDATE DESIGN CRITERIA (DC)
ESTAB WATANA DESIGN CRITERIA
UPDATE CRIT&ASSUMPTIONS(WAT) FIN XXXXXXX
 408
                                                                           409
                                                                           410
 411
                                                                   ST XXXXXXXXL
 412
                                                                 413
 415
 507
 5082
 5083
                                                                   5083
 808
 808
809
           UPDATE CRIT&ASSIMPTIONS(WAT) FIN XXXXXXXX
ESTAB DEVIL CANYON DESIGN CRITERIAXXXXXXXX
UPDATE CRIT&ASSUMPTIONS(DC) FIN XXXXXXXX
PRELIM DESIGN WATANA DAM CCCCCCCCC
INCORP GENL AMENDHENTS (WAT) ST-1XXXXX
 609
 310
 610
                                                                           CCCCCCCCCCL
 611
 611
```

NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 0012301220112001200122011201123012201120012301220112 0123012 01230

```
INCORP GENL AMENDMENTS (WAT) FIN . X L
OPTIMIZE DAN HEIGHT XX
ADJUST ALIGNMENT(WAT) FIN XXXXXXXXL
DAN FOUNDATION TREATMENT-WAT FIN XXXXXXXX L
DRAFT REPORT DRAWINGS(WAT) CT-2CCCCCL
DRAFT REPORT DRAWINGS(WAT) CT-3. CCCCL
611
511
611
611
611
                  DRAFT REPORT DRAWINGS (WAT)
                                                                                                CT-4.
611
                DRAFT REPORT DRAWINGS(HAT) F
PRELIM DESIGN DEVIL CANYON DAM
INCORP GENL AMENDMENTS(DC) F
                                                                                                FIN CCCCCCCCCL
FIN X L
612
612
                   DESIGN DAM(DC)
DESIGN DAM(DC)
FOUNDATION TREATMENT(DC)
DRAFT REPORT DUGS(DC)
                                                                                                 CT-3X L
 612
                                                                                                FIN XXXXXXXXL
FIN XXXXXXXX L
CT-2CCCCL
                                                                                                                            CCCCL
                                                                                                 CT-3.
                   DRAFT REPORT DWGS(DC)
                 DRAFT REPORT DWGS(DC)
DRAFT REPORT DWGS(DC)
DAM SELECTION REPORT
                                                                                                  CT-4.
 612
                                                                                                 FIN .
                                                                                                                        XXXXXXXXXXL
                                                                                                                    XX F
XX F
                   DAM SELECTION REPORT
 613
                   DAM SELECTION REPORT DAM SELECTION REPORT
                                                                                                  CT-1.
 513
                                                                                                 CT-2.
CT-3.
 613
                DAM SELECTION REPORT
DAM SELECTION REPORT
SPILLWAY DESIGN CRITERIA
UPDATE CRIT&ASSUMPTIONS(SPWY)CT-1XXXXXX L
UPDATE CRIT&ASSUMPTIONS(SPWY)FIN . XX L
PRELIM DESIGN WATANA SPILLWAY CCCCCCCCCL
INCORP GENL AMENDMENTS (WAT) CT-1XXXXX L
INCORP GENL AMENDMENTS (WAT) FIN . X L
OFT AGAINST DAM FREEBRD ST XX L
PREL DESGN CHUTE/ROCK ANCRS CT-1XXX L
PREL DESGN CONTRL STRUCTURES FIN .XXXXXX L
PREL DESGN CHUTE/ROCK ANCRS FIN . XXXXXX L
DESGN GROUTING/DRAINAGE-WAT XXXX L
                                                                                                FIN XXXXXXXXX L
 613
 614
  614
  617
  617
617
617
  317
  617
617
   317
                    DESGN GROUTING/DRAINAGE-WAT
DESIGN CLOSURE/CONTRL STRUCT ST XX L
DESIGN WATER PASSAGES FIN XXXX L
DESIGN CLOSURE/CONTRL STRUCT FIN . XXXX L
DESIGN ENERGY DISSIPATION FIN XX L
DESIGN ENERGY DISSIPATION FIN XX L
  617
  617
617
617
  617
617
617
617
618
618
                     DRAFT REPORT DRAWINGS(WAT)
DRAFT REPORT DRAWINGS(WAT)
DRAFT REPORT DRAWINGS(WAT)
                                                                                                   CT-2CCCCCL
CT-3.
                   DRAFT REPORT DRAWINGS (WAT) FIN .
PRELIM DESIGN DEVIL CAN SPILLWAY CCCCCCCCL
INCORP GENL AMENDMENTS (DC) CT-1XXL
INCORP GENL AMENDMENTS (DC) FIN . XL
    618
                       SPILLWAYS ENERGY DISIPATINS
   618
                      PREL DESON CONTRL STRUCT(DC) FIN XXXX
    618
                      OPT AGAINST DAM FREEBRD(DC) - FIN XXX
PREL DESGN CHUTE/ROCK ANCRS - FIN XXXX
                      PREL DESGN GROUTING/DRAINAGE
```

FACE 3
TIME NOW 2NOV81

DESCRIPTION

```
LL RELEASES ENERGY DISIFATIN FIN XX
DRAFT REPORT DWGS(DC) CT-2CCCCCL
DRAFT REPORT DWGS(DC) CT-3. C
DRAFT REPORT DWGS(DC) CT-4.
DRAFT REPORT DWGS(DC) FIN .
SPILLWAY SELECTION REPORT XXXXXXX
610
618
£18
                                                                                         CCCL
618
                                                              ST AA
CT-1. XX L
CT-2. XXXX L
CT-3. XXX
                                                             619
620
620
620
620
620
620
620
621
621
621
            WATANA DIVERSION SCHEMES
621
621
            DESIGN COFFERDAM HEIGHT
DRAFT REPORT DRAWINGS(WAT)
                                                               FIN XXXXXXX
                                                               CT-2CCCCCL
DRAFT REPORT DRAWINGS(WAT)
DRAFT REPORT DRAWINGS(WAT)
                                                               CT-3.
                                                               ČŤ-4.
           DRAFT REPORT DRAWINGS(NAT)
DEVIL CANYON DIVERSTON SCHEMES
                                                               FIN .
                                                               DESGN COFFERDAM HEIGHT(DC)
CLOSURE CONTROL STRUCTURE(DC)
            DESGN WATER PASSAGES (DC)
DESGN COFFERDAH HEIGHT (DC)
DRAFT REPORT DWGS (DC)
DRAFT REPORT DWGS (DC)
                                                               FIN XXXXXXXX L
                                                               CT-2CCCCCL
CT-3. CCCCL
          DRAFT REPORT DWGS(DC)
DRAFT REPORT DWGS(DC)
OFT WATANA POWER DEVELOPMENT
REVIEW ALIGNMENTS-WAT
                                                               CT-4.
                                                                                         CCCL
                                                               FIN .
                                                                                                CCCL
                                                                      CCCCCCCCCL
                                                               FIN XX
            REVIEW INTAKE WATER PASSAGES OPTIMIZE POWER FACILITIES
                                                                      XXX L
            PREL DESIGN INTAKE STRUCTURE FIN .XXXXXX L
          PREI DESIGN OF POWERHOUSE
DRAFT REPORT DRAWINGS(WAT) C
DRAFT REPORT DRAWINGS(WAT) C
DRAFT REPORT DRAWINGS(WAT) C
DRAFT REPORT DRAWINGS(WAT) F
OPT DEVL CAN POWER DEVELOPMENT
REVIEW ALIGNMENTS(DC) F
REVIEW INTAKE WATER PASSAGES
OPTIMIZE FOWER FACILITIES
                                                               CT-2CCCCCL
CT-3.
                                                                                CCCCL
                                                               ČŤ-4.
                                                               FIN.
                                                                      CCCCCCCCCCL
                                                              FIN XXX
XX
XX
524
            PREL DESIGN OF INTAKE
                                                                       . XXXX
```

NOV DEC JAN FEB HAR APR HAY JUN JUL AUG SEP DCT NOV DEC JAN FEB HAR APR HAY JUN JUL 001230122011200122012201120012301220112001230122011200123012201120012301220112001230122011200123012201120012301220112001230122011200123012201120012301220112001230122011200123012201123012201120012301220112

```
PREL DESIGN WATER PASSSAGES
                                                                                                                                                                                                                           . XXXXXXX L
                                   PREL DESIGN POWERHOUSE
                                                                                                                                                                                                           CT-2CCCCCL
CT-3. CCCCL
                                   DRAFT REPORT DUGS(DC)
DRAFT REPORT DUGS(DC)
DRAFT REPORT DUGS(DC)
DRAFT REPORT DUGS(DC)
                                                                                                                                                                                                             CT-4.
                           DRAFT REPORT DUGS (DC)

PREL DESGN WATANA FOWER DEVEL

INCORP GENL AMENDMENTS (WAT) CT-1XXXXXX L

INCORP GENL AMENDMENTS (WAT) FIN . X L

LAYOUT SURFACE P/H T/R CHANNEL XXX L

COST LAYOUT SURFACE U/G STRU ST X L

COST LAYOUT SURFACE U/G STRU C1-1.XX L

SELECT TYPE OF POWERHOUSE
COST LAYOUT SURFACE U/G STRU FIN . X L

REVIEW ALIGNMENTS FIN CL

REVIEW ALIGNMENTS FIN CL

OPTIMIZE POWER FACTLITIES . XXX L

PREL DESIGN INTAKE STRUCTURE ST . CCCCL

PREL DESIGN INTAKE STRUCTURE FIN . CCCCL

PREL DESIGN OF POWERHOUSE(WAT) . CCCCCCCL

DRAFT REPORT DRAWINGS(DC) CT-2CCCCCL

DRAFT REPORT DRAWINGS(DC) CT-3. CCCCL

DRAFT REPORT DRAWINGS(DC) CT-4.
                                                                                                                                                                                                            FIN .
DRAFT REPORT DRAWINGS(DC)

DRAFT REPORT DRAWINGS(DC)

PREL DESGN DEVL CAN POWER DEVEL CCCCCCCCCL

INCORP GENL AMENDMENTS(DC)

INCORP GENL AMENDMENTS(DC)

INCORP GENL AMENDMENTS(DC)

FIN .X L

REVIEW ALIGNMENTS(DC)

OFTIMIZE WATER FACILITIES

PREL DESIGN OF INTAKE

REPEL DESIGN WATER FASSAGES

XX L
                                          PREL DESIGN WATER FASSAGES
                                                                                                                                                                                                                                          * XXXXXXXXX
                                           PREL DESGN POWERHOUSE
DRAFT REPORT DUGS(DC)
DRAFT REPORT DWGS(DC)
                                                                                                                                                                                                                  CT-2CCCCCL
CT-3. CCCCL
                                     DRAFT REPORT DWGS(DC)

DRAFT REPORT DWGS(DC)

POWER DEVELOPMENT REPORT—DRAFT

POWER DEVELOPMENT REPORT

POWER DEVELOPMENT 
                                                                                                                                                                                                                                                                                               CCCCCCCCL
                                                                                                                                                                                                                    KATANA GENERAL ARRANGEMENT
       629
629
629
629
                                             DRAFT REPORT DWGS(DC)
                                                                                                                                                                                                                                                                                                        XXXX
                                             DRAFT REPORT DWGS(DC)
DRAFT REPORT DWGS(DC)
DRAFT REPORT DWGS(DC)
                                                                                                                                                                                                                      CT-4.
                                                                                                                                                                                                                       FIN .
                                             EXHIBIT J MATERIAL COMPLETE
                                          630
                                                                                                                                                                                                                     CT-1XXXL
CT-2. XXXXXXXL
                                              DRAFT REPORT DRAWINGS (DC)
        630
                                               DRAFT REPORT DRAWINGS(DC)
         630
```

Ģ

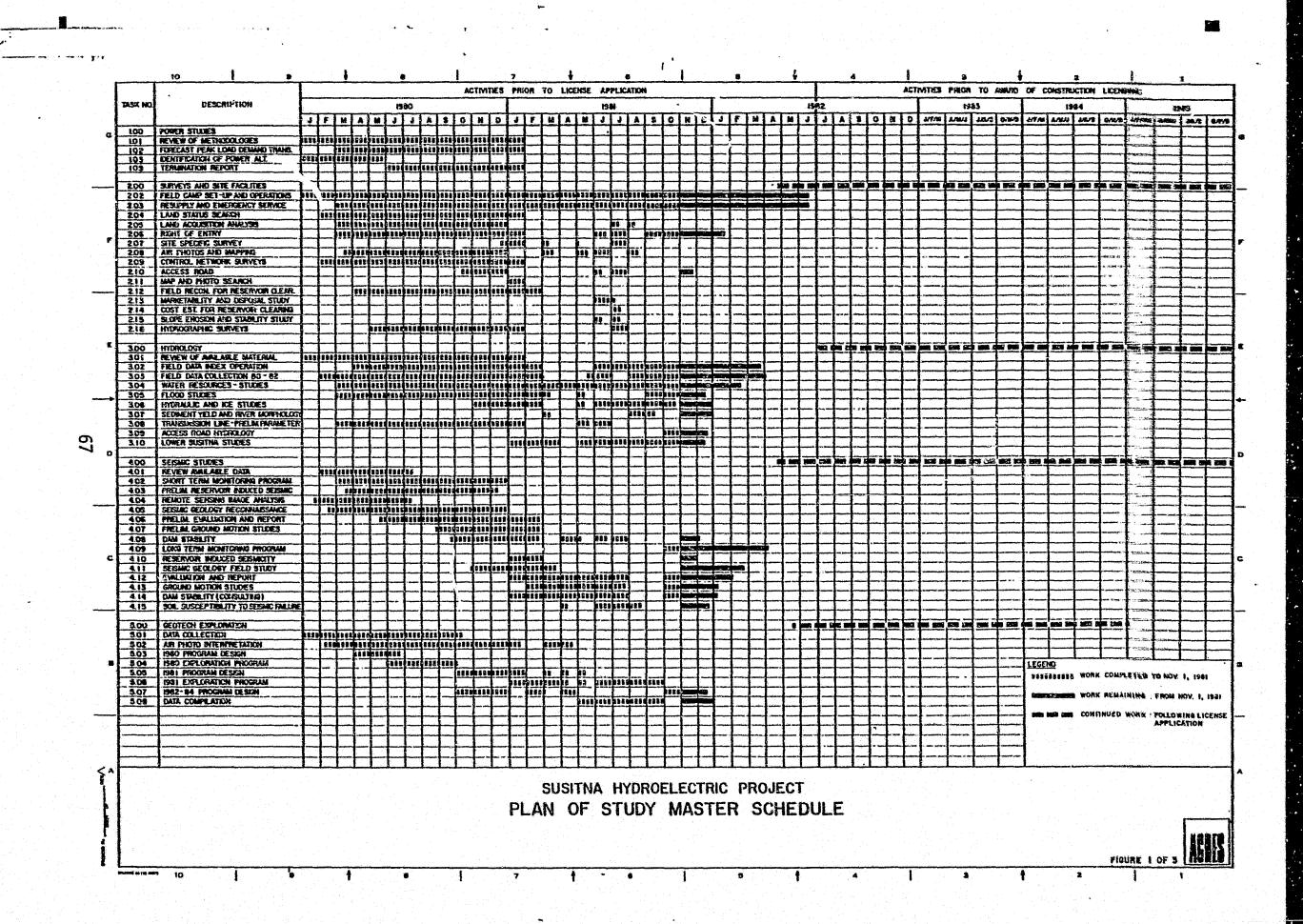
```
DRAFT REPORT DRAWINGS(DC)
DRAFT REPORT DRAWINGS(DC)
630
                                                                       XXXXL
053
                                              CT-4,
         DRAFT REPORT DRAWINGS(DC)
                                              FIN .
530
        EXHIBIT M MATERIAL COMPLETE
XX0E6
       EXHIBIT K MATERIAL COMPLETE PROJ FEASIBILITY REPORT
                                              FIN .
                                                                  CCCCCCCL
        PROJ FEASIBILITY REPORT
                                              ST .
        PROJ FEASIBILITY REFORT
FROJ FEASIBILITY REFORT
PROJ FEASIBILITY REPORT
                                              CT-1.
CT-2.
631
                                              CT-3.
         PROJ FEASIBILITY REPORT
                                              FIN .
631
        EXHIBIT L MATERIAL COMPLETE UPDATE GENERATION PLAN LIATSON POWER ALTS CONSULTANT
631XX
637
638
                                                    7013
         STUDY COORD-OPTIMIZED DESIGN FIN XXXXXXXXXXXXXXXXXX L
702
         MONITOR FIELD ACTIVITIES
                                              MONITOR FIELD ACTIVITIES UTR RES-OPT WATEDEVL CAN DES
70?
7043
         SOCIOECONOMIC ANALYSIS
                                                                       CCCCCCCCL
705
         SOCTOECONOMIC ANALYSIS
                                               CT-2CCCCCCCCCCCCCCL
705
         CULTURAL PRELIM ALTERNATIVES CT-1CCCCCL
CULTURAL FRELIM ALTERNATIVES FIN . L
7062
7062
         CULTURAL-OPTIMIZED DESIGN
CULTURAL-OPTIMIZED DESIGN
7063
                                              ST XXXXXL
                                                           CCCCCCCCCCCCCCCL
7063
                                              CT-1.
        CULTURAL-OPTIMIZED DESIGN
EXHIBIT V NATERIAL COMPLETE
7043
                                              FIN .
706XX
         LAND USE ALTERNATIVE SITES FIN CCCL
LAND USE PRELIM ALTERNATIVES ST CCCL
7671
7072
         LAND USE PRELIM ALTERNATIVES CT-1.
7072
7072
         LAND USE FRELIH ALTERNATIVES FIN .
        LAND USE OPTIMIZED DESIGN
LAND USE OPTIMIZED DESIGN
LAND USE OPTIMIZED DESIGN
7073
                                               ST XXXXXXXXXX
7073
7073
                                                                      CT-1.
                                              FIN .
         RECREATION PLANNING
708
                                              FIN .
        708
7092
7101
7102
7102
7102
7103
         FISH ECOLOGY OPTIMIZED DESGN CT-1.
FISH ECOLOGY OPTIMIZED DESGN FIN .
WILDLIFE ECOLOGY ALTER SITES FIN . XXXXXXXXXXX
7103
7103
7111
                                                                         XXXXXXXXXXXXXXXXXXXXX
         WILDLIFE ECOLOGY ALTER SITES CT-2XXXL
7111
         WILDLIFE ECOLOGY PRELM ALTER ST XXXL
WILDLIFE ECOLOGY PRELM ALTER CT-1. XXXXXXXXXXL
WILDLIFE ECOLOGY PRELM ALTER FIN. L
7112
7112
         WILDLIFE ECOLOGY OPTIM DESGN ST XXXXXXXXXXXXXXX
```

Ç

NOV DEC JAN FEB HAR APR HAY JUN JUL AUG SEP OCT NOV DEC JAN FEB HAR APR HAY JUN JUL 00123012201120012201220112001230122011200123012201120012301220112001230122011200123012201120012301220112

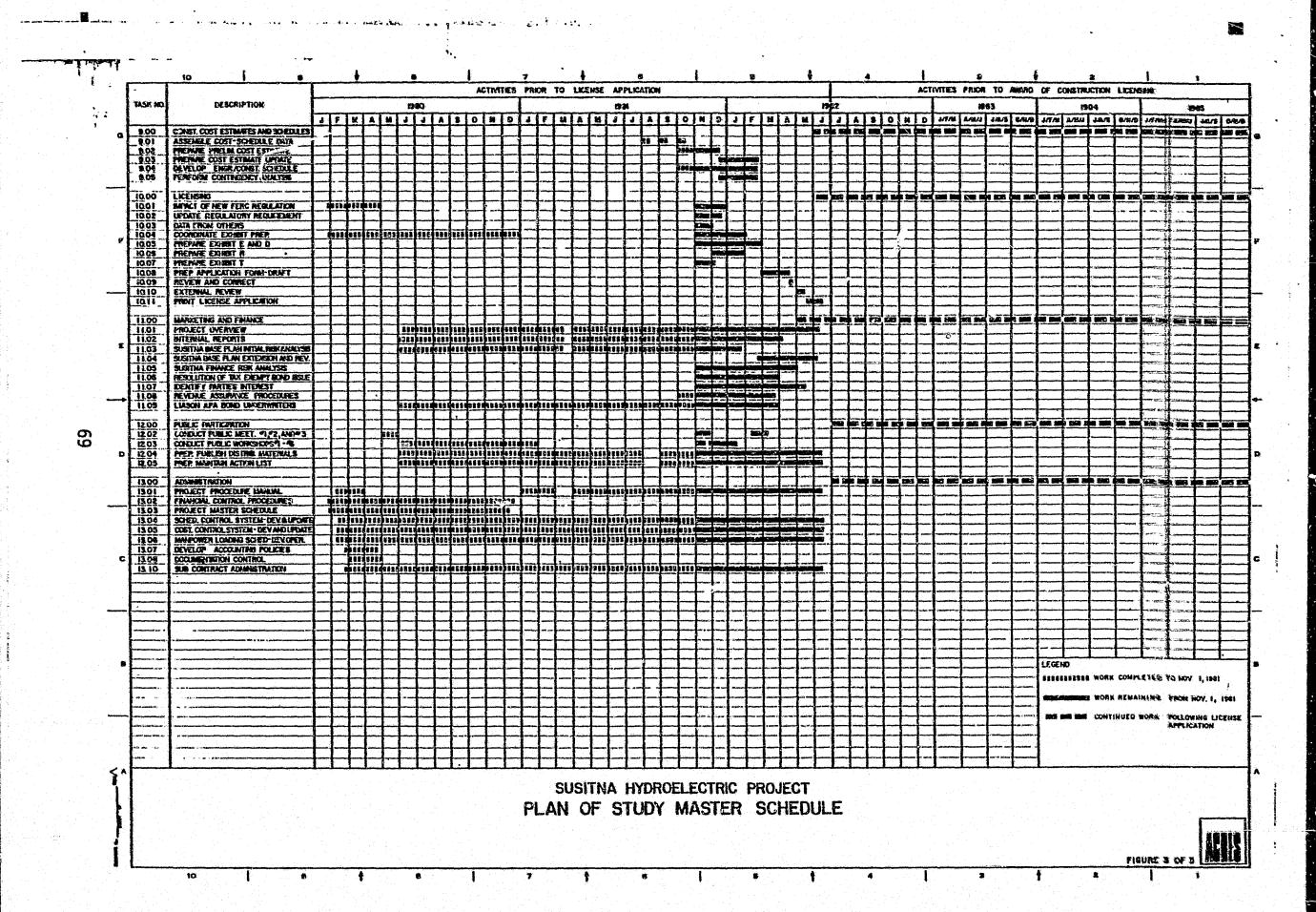
```
WILDLIFE ECOLOGY OPTIM DESGN CT-1. WILDLIFE ECOLOGY OPTIM DESGN FIN .
7113
                 PLANT ECOLOGY ALTERNTU SITES FIN CCCL
PLANT ECOLOGY FRELM ALTERNAT ST CCCL
PLANT ECOLOGY FRELM ALTERNAT CT-1. CCCCCCCCCL
PLANT ECOLOGY FRELM ALTERNAT FIN . L
7121
7122
7122
7122
7122
                 PLANT ECOLOGY OPTIMIZD DESGN ST XXXXXXXXXXXXXXX PLANT ECOLOGY OPTIMIZD DESGN CT-1. COPLANT ECOLOGY OPTIMIZD DESGN FIN.

ACCESS RD ENVIRONMENT ANALY CT-1XXXXXXXXXXXXX ACCESS RD ENVIRONMENT ANALY FIN. XX PREP FOR FERC EXHIBIT-DRAFT ST XXXXXXXXX FREP FOR FERC EXHIBIT-DRAFT CT-1.


PREP FOR FERC EXHIBIT-DRAFT FIN.

FYHTRIT II MATERIAL COMPLETE
7123
7123
7123
7123
                                                                                                                   XXXXXXXXXXL
                                                                                                                                                        CCCCCL
                EXHIBIT W MATERIAL COMPLETE
EXHIBIT S MATERIAL COMPLETE
RECOMMEND ELEC SYS
RECOMMEND ELEC SYS
FINAL ROUTE SELECTION 1981 CT-1X L
FINAL ROUTE SELECTION 1981 CT-2.XXXX L
FINAL ROUTE SELECTION 1981 FIN . L
TOWER HARDWREICONDUCTR STUDY CT-1XXXXXXXXXXL
715XX
715XX
                                                                                         ST CCCCCCCCCCCCCCCCCC
FIN CT-1X L
CT-2.XXXX L
80222
80222
803
803
804
                  TOWER HARDWRE&CONDUCTR STUDY FIN .
ST XXXXL
805
806
                   SUBSTATIONS
                                                                                                FIN .
                                                                                                                   XXXXXXXXL
                 DISPATCH CTR & COMMUNICATINS
DISPATCH CTR & COMMUNICATINS
DISPATCH CTR & COMMUNICATINS
TRANS LINE COST ESTIMATES
FREP PRELIM CST ESTIMATES
FREP PRELIM CST ESTIMATES
PREP PRELIM CST ESTIMATES
PREP PRELIM CST ESTIMATES
PREP PRELIM CST ESTIMATES
COST ESTIMATE UPDATES
COST ESTIMATE UPDATES
                                                                                               ST XXXXL
505
807
807
902
                                                                                              FIN .
                                                                                                                    XXXXXXXXL
                                                                                                ST X
                                                                                                FIN .
                                                                                                                                          XXXXXXL
                                                                                                CT-1L
902
902
903
                                                                                               CT-2.CL
CT-3. CL
                                                                                               FIN .
                                                                                               ST.
                 COST ESTIMATE UPDATES
COST ESTIMATE UPDATES
COST ESTIMATE UPDATES
COST ESTIMATE UPDATES
903
                                                                                               CT-1.
903
                                                                                                CI-2.
                                                                                               CT-3.
FIN.
                 EXHIBIT N MATERIAL COMPLETE ENDR/CONST SCHEDULE FRELIN ENGR/CONST SCHEDULE FINAL ENGR/CONST SCHEDULE FINAL
903XX
9041
                                                                                                          CCCCCCL
9042
9042
                                                                                                CT-1.
                 ENGRACONST SCHEDULE FINAL ENGRACONST SCHEDULE FINAL ENGRACONST SCHEDULE FINAL EXHIBIT D MATERIAL COMPLETE
                                                                                               CT-2.
CT-3.
9042
9042
                                                                                                FIN .
904XX
                  CONTINGENCY ANALYSIS
IMPACT OF NEW FERC REGULATIONS
905
                                                                                                                            CCCCCCCCL
1001
                                                                                                          XXXXXXXX L
                  1ST UPDATE-REGULATORY REQ
2ND UPDATE-REGULATORY REQ
10022
                                                                                                           XXXX
10023
1003
                  DATA FROM OTHERS
```

```
1003XX EXHIBIT A B & C MATERIAL COMPLETE.
1004 COORD EXHIBIT PREPARATION ST X
                                                     ST XXXXXXXXX L
CT-1. X
CT-2. XX
CT-3. XX
                                                                              L
          COORD EXHIBIT PREPARATION
          COORD EXHIBIT FREFARATION COORD EXHIBIT PREPARATION COORD EXHIBIT PREPARATION
1004
                                                                              XXX
                                                      CT-4.
1004
                                                      CT-5.
          COORD EXHIBIT PREPARATION
1004
                                                      FIN
          COORD EXHIBIT PREPARATION
1004
         PREPARE EXHIBIT E
PREPARE EXHIBIT E
PREPARE EXHIBIT E
PREPARE EXHIBIT E
PREPARE EXHIBIT T
PREPARE EXHIBIT T
PREPARE EXHIBIT T
PREPARE EXHIBIT T
PREPARE EXHIBIT T
PREPARE EXHIBIT T
PREPARE EXHIBIT T
                                                            10051
10052
                                                                  XXXXXXXXX
1006
                                                      ST XXXX
                                                          XXXX
1007
                                                                                XXXXXX
                                                       ST
1008
                                                       FIN .
          PREF APPLICATN FORM-DRAFT
1008
          REVIEW AND CORRECT
EXTERNAL REVIEW
PRINT LICENSE APPLICATION
PROJECT OVERVIEW
1009
1010
                                                                                                       CCCCCL
10XXX
                                                            1101
          INTERNAL REPORTS


EXHIBIT U MATERIAL COMPLETE
SUSITNA BASE PLAN RISK ANALY ST XX
SUSITNA BASE PLAN RISK ANALY FIN .
SUSITNA BASE PLAN EXTEN/REVIS
1102
                                                            XXXXXXXXXXXXXX
1103
1103
                                                                                      XXXXXXXXXXX
1104
                                                             SUSITNA FINANCE RISK ANALYSIS
RESOLUTION TAX ISSUE
1105
1104
          IDENTIFY PARTIES INTEREST
REVENUE ASSURANCE
LIAISON APA BOND UNDERWRITER
EXHIBIT G MATERIAL COMPLETE
                                                             1107
                                                             XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX L
 1108
                                                             1109
 1109XX
                                                                 XXXXL.
12022
12023
12031
           CONDUCT PUBLIC MEETING $2
           CONDUCT PUBLIC MEETING 43
CONDUCT WORKSHOPS 1,2,3
CONDUCT WORKSHOPS 4,5,4
                                                                                          XXXXL
                                                             12032
           PREF PUBLISH DISTRIB HATERIAL
 1204
            FREE MAINTAIN ACTION LIST
 1205
           FROJECT PROCED MANUAL-UPDATE SCHEDULE CONTROL SYS UPDATE
 13013
 13042
           COST CONTROL SYSTEM-OP
 13052
            MANPOWER LUAUNG SCHED-UPDATE
 13062
           SUB CONTRACT ADMINISTRATION PROJECT COMPLETE XXX
 1310
 XXX
```

C

.

