

FISHERY DATA SERIES NO.2

ALASKA STATEWIDE SPORT FISHERIES HARVEST REPORT

WAES Larry Dugan By: Michael J. Mills

STATE OF ALASKA Steve Cowper, Governor ALASKA DEPARTMENT OF FISH AND GAME Don W. Collinsworth, Commissioner DIVISION OF SPORT FISH Norval Netsch, Director

P.O. Box 3-2000, Juneau, Alaska 99802

NOVEMBER 1987

Because of Alaska's vastness, meeting all these data requirements statewide by on-site creel censuses would be prohibitively expensive, thus an economical supplementary program has been developed. Described herein are results from the tenth year of that program, whose primary objective is to provide statewide estimates of effort and harvest for major Alaskan sport-caught species by area and fishery.

Species covered are listed in Table 2, Appendix A. Alaska sport fishing regulatory and management areas are delineated on the map in Figure 1, Appendix A.

METHODS

The Alaska statewide sport fish harvest program combines postal surveys and creel censuses to obtain estimates of effort and harvest by fishery and by species. The postal surveys consist of repeated mailings of questionnaires to random samples of Alaska sport fishing license holders. Creel censuses consist of on-site interviews of random samples of sport fishermen. The postal surveys provide estimates for all fisheries, while creel censuses of major selected fisheries provide validity correction and check.

The 1986 harvest survey consisted of a mailing of 13,545 questionnaires, followed by two reminders to nonrespondents. Table 3 provides a summary of mailings and responses. Examples of the questionnaire and reminders are in Appendix B. Additional details regarding methods are described in Mills (1979) and Mills et al. (1986).

RESULTS

The Alaska Sport Fish Harvest Survey indicated that 359,383 anglers took 1,650,299 household trips and fished 2,071,412 days to harvest 3,163,433 fish in 1986. These represent increases of 3% in anglers, 8% in trips, 7% in days and 1% in fish harvested compared to 1985, in which 348,767 anglers took 1,524,443 trips and fished 1,943,069 days to harvest 3,124,557 fish.

Of the 359,383 anglers who fished in 1986, 249,629 (69%) were Alaska residents while 109,754 (31%) were nonresidents. This represents a 4% increase in resident anglers and a 2% increase in nonresident anglers over 1985, in which 241,135 (69%) residents and 107,632 (31%) nonresidents fished. Since 1977, the first year of the survey, the annual increase in anglers has averaged 7%. The annual increase for resident anglers has averaged 6%. The annual increase in nonresident anglers has averaged 10%.

Of the 2,071,412 angler-days fished in 1986, 1,518,712 (73%) were expended in the Southcentral region of Alaska, 357,987 (17%) were expended in the Southeast region, and 194,713 (10%) were expended in the Arctic-Yukon-Kuskokwim region. The Cook Inlet area had 1,175,928 days (57%) of the State's total sport fishing. The Kenai Peninsula had 808,450

2

angler-days or 39% of the State total. The Kenai River alone had 335,051 angler-days, 16% of the State total. An estimated 637,794 days, 31% of all sport fishing, was in saltwater; 1,433,618 days, 69% of all sport fishing was in freshwater.

The 3,163,433 fish harvested in 1986 included 1,299,248 razor clams and 182,620 smelt. Of the remaining 1,681,565 harvested fish, 720,502 (43%) were sea-run salmon, 165,165 (10%) were Dolly Varden and Arctic char, 152,855 (9%) were rainbow trout, and 117,637 (7%) were Arctic grayling. Also harvested were 160,885 halibut, 101,258 rockfish, 46,182 landlocked salmon, 39,718 whitefish, 21,890 northern pike, 21,463 lake trout, 18,849 burbot, 16,230 cutthroat trout, 5,850 steelhead, 3,721 sheefish, and 526 brook trout. Chinook salmon, coho salmon, sockeye salmon, chum salmon, lake trout, northern pike, whitefish, halibut, rockfish and razor clam harvests were all-time record highs.

Except for razor clams, shell fisheries are not included in the 3,163,433 total fish harvest reported above. For the Kenai Peninsula, however, these fisheries were surveyed for king crab, dungeness crab, tanner crab, shrimp, and hardshell clams. Harvest and effort for these species are reported in Table 55.

The record 1986 total sea-run salmon harvest of 720,502 included 105,482 chinook, 255,887 coho, 186,448 sockeye, 145,960 pink, and 26,725 chum The marine salmon harvest total of 204,919 included 28,942 salmon. chinook, 88,309 coho, 6,711 sockeye, 71,942 pink, and 9,015 chum salmon. The freshwater total of 515,583 included 76,540 chinook, 167,578 coho, 179,737 sockeye, 74,018 pink, and 17,710 chum salmon. Regionally, 125,688 salmon were harvested in Southeast Alaska, 575,082 in sea-run Southcentral, and 19,732 in the Arctic-Yukon-Kuskokwim. The sport harvest of small chinook salmon state-wide totaled 17,186 and is included in the 105,482 reported above.

Harvest and effort for 1986 are tabulated by region, area, fishery, and species in Appendix A. Detailed tabulations for 1977 through 1985 may be found in Mills (1979, 1980, 1981a, 1981b, 1982, 1983, 1984, 1985, 1986).

DISCUSSION

Over the past ten years the statewide sport fish harvest program has proved effectual in economically meeting management needs for reliable estimates of effort for and harvest of Alaska's game fishes. The program has been well received by the angling public: overall response to initial delivery has averaged 65%. In addition, results have been consistent with creel censuses, and sport fish biologists report that harvest program estimates for areas not creel censused are generally in accordance with their own knowledge and observations.

Thus, in the interest of economic efficiency, the statewide harvest program has replaced on-site creel censuses in several cases where creel censuses were not required for protective in-season management or ensuring Table 1. List of Alaska Sport Fishing Regions and Areas.

Regions

- I Southeast Alaska
- II Southcentral Alaska
- III Arctic-Yukon-Kuskokwim

Areas

Southeast Alaska

- A Ketchikan
- **B** Prince of Wales
- C Petersburg-Wrangell
- D Sitka
- E Juneau
- F Haines-Skagway
- G Glacier Bay
- H Yakutat

Southcentral Alaska

- I Glennallen
- J Prince William Sound
- K Knik Arm Drainage
- L Anchorage
- M East Susitna Drainage
- N West Cook Inlet-

West Susitna Drainages

- P Kenai Peninsula
- Q Kodiak
- R Naknek River Drainage-Alaska Peninsula
- S Kvichak River Drainage
- T Nushagak

Arctic-Yukon-Kuskokwim

- U Tanana River Drainage
- V Interior Alaska
- W Seward Peninsula-Norton Sound
- X Northwest Alaska
- Y South Slope Brooks Range
- Z North Slope Brooks Range

Table 2. List of Common Names, Scientific Names and Abbreviations.

.

.

٠

.

٠

	Scientific Name	
Chinook salmon	Oncorhynchus tshawytscha (Walbaum)	KS
Small chinook salmon	Oncorhynchus tshawytscha (Walbaum)	KI
Coho salmon	Oncorhynchu kisutch (Walbaum)	SS
Landlocked salmon coho chinook	<u>Oncorhynchus</u> <u>kisutch</u> (Walbaum) Oncorhynchus <u>tshawytscha</u> (Walbaum)	LL.
Sockeye salmon	<u>Oncorhynchus</u> <u>nerka</u> (Walbaum)	RS
Kokanee salmon	<u>Oncorhynchus</u> <u>nerka</u> (Walbaum)	ко
Pink salmon	Oncorhynchus gorbuscha (Walbaum)	PS
Chum salmon	Oncorhynchus keta (Walbaum)	. CS
Steelhead	Salmo gairdneri Richardson	SH
Rainbow trout	Salmo gairdneri Richardson	RT
Cutthroat trout	<u>Salmo</u> <u>clarki</u> Richardson	CT
Brook trout	Salvelinus fontinalis (Mitchell)	BT
Lake trout	Salvelinus namaycush (Walbaum)	LT
Dolly Varden	Salvelinus malma (Walbaum)	DV
Arctic char	<u>Salvelinus</u> alpinus (Linnaeus)	AC
Arctic grayling	Thymallus arcticus (Pallas)	GR
Northern pike	Esox lucius Linnaeus	NP
Whitefish	Coregonus spp. and Prosopium spp.	WF
Burbot	Lota lota (Linnaeus)	BB .

-

Common Name	Scientific Name	Abbreviation
	Stenodus leucichthys (Guldenstadt)	SF
Halibut	Hyppoglossus stenclepis Schmidt	HA
Rockfish	Sebastes spp.	RF
Smelt	Osmeridae	SM
Capelin	<u>Mallotus</u> <u>villosus</u> (Muller)	SM
King crab	<u>Paralithodes</u> <u>camtschatica</u> (Tilesius)	KC
Dungeness crab	Cancer magister Dana	DC
Tanner crab	Chionoecetes bairdi Rathbun	TC
Shrimp	Pandalidae	SHR
Razor clam	<u>Siliqua patula</u> Dixon	RCL
Hardshell clams Butter clam Littleneck clam Cockle Gaper clam Eastern softshell clam Truncated mya Alaska surf clam	<u>Saxidomus giganteus</u> Deshayes <u>Venerupis staminea</u> (Conrad) <u>Clinocardium nuttallii</u> (Conrad) <u>Tresus capax</u> (Gould) <u>Mya arenaria</u> (Linne) <u>Mya truncata</u> (Linne) <u>Spisula polynyma</u> Stimpson	HCL

Table 2. (cont.) List of Common Names, Scientific Names and Abbreviations.

Species	1977	1978	1979	1980	1981	1982	1983	1984	1985	198
Chinook Salmon	25,112	26,415	34,009	24,155	35,822	46,266	57,094	61,141	63,173	80,071
Sea-Run Coho										
Salmon	67,866	81,990	93,234	127,958	95,376	136,153	87,935	166,688	137,671	188,872
Landlocked Coho/										
Chinook Salmon	31,152	26,503	17,907	43,14?	39,930	24,102	33,482	20,124	19,684	19,44
Sockeye Salmon	97,629	118,299	77,655	105,914	76,533	128,015	170,799	119,098	168,211	179,709
Kokanee Salmon	2,068	1,702	3,218	2,351	5,540	3,419	1,899	786	3,329	2,363
Pink Salmon	85,543	143,483	63,366	153,794	64,163	105,961	47,264	100,932	67,838	109,073
Chum Salmon	5,044	23,755	8,126	8,660	7,810	13,497	11,043	15,806	7,895	17,35
Steelhead	1,949	2,720	1,554	2,063	1,727	1,305	1,895	2,379	1,635	1,120
Rainbow Trout	80,354	107,243	129,815	126,686	149,460	142,579	141,663	140,868	153,352	114,83
Cutthroat Trout	1,912	957	1,491	939	886	654	1,824	2,542	915	1,620
Brook Trout	0	0	0	0	· 0	0	0	. 0	0	(
Lake Trout	15,200	10,910	13.876	15,752	15,495	15,423	16,210	13,301	13,119	18,21
Dolly Varden/		·	- •	- •	•	•			·	
Arctic Char	79,405	102,107	160.029	130.009	149,543	115,832	151,503	133,089	108,822	93,65
Arctic Grayling	45,748	47,866	70,316	69,462	63,695	60,972	56,896	47,825	57,720	51,46
Northern Pike	321	767	762	1,358	1,411	1,707	2,642	4,424	2,240	2,89
Whitefish	2,594	4,231	3,534	3,221	3,802	2,558	3,784	4,806		7,91
Burbot	6,652	8,099	5,207	11,585	9,536	9,662	8,870	13,231	22,015	13,23
Sheefish	. 0	0	0	0	0	0	0	0	0	
Smelt	335,657	209,011	198.197	313.271	293.029	210,998	298,148	370,653	314,615	173,20
Halibut	17,412	30,954	34,603	39,796	52,370	55,198	75,047	78,045	81,458	115,85
Rockfish	22,092	29,361	39,887	37,625	41,374	35,283	32, 528	43,825	33,571	59,69
Razor Clams	951,386	971,535	1.045.576	860,461	907,874	1,070,953	1,177,960	1,194,932	•	1,290,82
Other Fish	54,311	44,224	42,451	40,341	37,343	41,817	31,390	17,519	36,919	67,87
Total	1,929,407	1,992,212	2.044.813	2,118,543	2.052.719	2,222,354	2.409.876	2,552,014	2,498,349	2,609,304

Table 12. Southcentral Alaska Sport Fish Harvests by Species, 1977-1986.

			Days							DV								_		
	Anglers	Trips	Fished	KS	SS	RS	PS	CS	LT	AC	SH	RT	CT	GR	WF	SM	HA	RF	RCL	OTHE
SALTWATER:																				
Valdez Bay	7,592	11,558	19,449	123	5,749	260	12,858	1,116	0	31	0	0	61	0	0	0	3,241	5,864	0	93
Passage Canal																				
(Whittier)	4,438	6,510	9,556	11	1,437	1,193	1,437	596	0	291	0	0	0	0	0	0	1,040	1,620	0	2,27
Orca Inlet	1,081	2,232	2,721	11	.474	153	29 0	15	0	138	0	0	15	0	0	0	596	145	489	87
Boat - Other	2,421	6,082	5,888	234	703	626	168	367	0	245	0	0	0	0	0	0.	2,996	1,832	0	32
Valdez Bay -																				
Shoreline	7,183	6,563	9,419	45		153	9,312	749	0	0	0	0	0	0	0	15	153	67	306	
Shoreline - Other	2,536	4,061	4,648	11	2,476	61	718	15	0	31	15	0	61	0	0	0	305	234	6,254	70
ALTWATER TOTAL	22,718**	37,006	51,681	435	11,879	2,446	24,783	2,858	0	736	15	0	137	0	0	15	8,331	9,762	7,049	21,31
TRESHWATER:																				
Syak River	1,285	4,411	4,755	0	2,767	92	107	0	0	642	O	15	214	0	0	0	0	0	0	
Ishamy Creek											•									
and Lagoon	1,022	558	1,022	e	76	612	260	0	0	61	Ū	0	0	0	0	0	0	0	0	
oghill River	847	479	847	0	0	321	Ð	0	Ð	61	0	0	0	Ð	0	0	0	0	0	
lobe River	818	1,674	1,712	0	. 0	0	0	0	0	4,449	0	0	0	0	0	0	0	0	Û	
Other Streams	1,574	2,069	2,351	0	1,116	1,178	122	0	- 0	733	0	0	337	31	15	0	0	0	0	
akes	1,722	1,538	1,912	67	260	229	0	0	259	613	0	92	932	321	0	0	0	0	0	
RESHWATER TOTAL	5,869**	10,729	12,599	67	4,219	2,432	489	0	259	6,559	0	107	1,483	352	15	0	0	0	0	
								2,858												

Table 48. Prince William Sound* Sport Fish Harvest and Effort by Fisherles and Species, 1986.

*Prince William Sound (Area J): All Alaskan waters, including drainages, from and including Cape Suckling through Prince William Sound to Cape Puget, including all waters emptying into Port Bainbridge; and, that portion of the Copper River drainage downstream of a line between the south bank of Haley Creek and the south bank of Canyon Creek in Wood Canyon.

**Angler totals may not equal sum of sites due to some anglers fishing at more than one site.

	Anglers	Trips	Days Fished	KI**	KS	SS	RS	PS	CS	LT	DV AC	RT	GR	WF	NP	SM	OTE
*****************			* 15000									~~	·····	***			
nai River -																	
Cook Inlet to																	
Soldotna Bridge)	44,719	122,149	157,079	1,269	7,966	28,063	19,348	13,578	229	0	1,151	525	0	76	0	31,620	
al River -																	
Soldotna Bridge																	
o Moose River)	19,023	37,525	58,433	275	1,407	7,217	13,578	2,752	107	0	771	168	0	0	0	1,147	
ai River - Moose River to																	
kilak Outlet)	16,543	44,475	48,969	61	535	8,287	11,391	2,018	138	659	1,798	770	0	489	o	0	
al River -						-,	,	-,			-,		•		•	•	
Skilak Inlet																	
o Kenai Lake)	16,772	36,513	35,843	46	0	2,660	22,950	505	0	313	1,631	603	31	46	0	0	
L	73,352***	240,562	300.324	1,651	9,908	46,227	67.267	18.853	474	972	5,351	2,066	31	611	0	32,767	

Table 53. Kenai River* Sport Fish Freshwater Non-Guided Harvest and Effort by Fisheries and Species, 1986.

*Kenai River (Area P): All main channel waters of the Kenai River downstream of Kenai Lake to Cook Inlet. Does not include Kenai Lake, Skilak Lake or any saltwater.

**King Salmon less than 20 inches.

***Angler totals may not equal sum of sites due to some anglers fishing at more than one site.

	Anglers	Trip s	Days Fished	KI**	KS	SS	RS	PS	cs	LT	DV AC	RT	GR	WP	NP	SM	OTHE
Kenai River -																	
(Cook Inlet to			•														
Soldotna Bridge)	17,675	18,533	23,956	669	6,515	10,275	1,829	848	0	0	· 98	98	0	268	0	268	
(enai River -																	
(Soldotna Bridge																	
to Moose River)	5,443	4,953	5,443	0	1,562	3,119	268	0	89	0	0	· 0	89	0	0	89	
(enai River - (Moose River to																	
Skilak Outlet)	2,202	2,115	2,202	0	134	61	2,142	223	0	0	130	131	0	45	0	0	(
Cenai River - (Skilak Inlet	-	-					-										
to Kenai Lake)	1,774	1,391	3,126	0	0	428	892	0	0	0	196	130	0	0	0	0	(
OTAL	24,953***	26,992	34,727	669	8,211	13,883	5,131	1,071	89	0	424	359	89	313	o	357	. (

Table 54. Kenai River* Sport Fish Freshwater Guided Harvest and Effort by Fisheries and Species, 1986.

*Kensi River (Area P): All main channel waters of the Kensi River downstream of Kensi Lake to Cook Inlet. Does not include Kensi Lake, Skilak Lake or any saltwater.

**King Salmon less than 20 inches.

***Angler totals may not equal sum of sites due to some anglers fishing at more than one site.

FISHERY DATA SERIES NO.2

ALASKA STATEWIDE SPORT FISHERIES HARVEST REPORT

WAES Larry Dugan By: Michael J. Mills

STATE OF ALASKA Steve Cowper, Governor ALASKA DEPARTMENT OF FISH AND GAME Don W. Collinsworth, Commissioner DIVISION OF SPORT FISH Norval Netsch, Director

P.O. Box 3-2000, Juneau, Alaska 99802 NOVEMBER 1987 Because of Alaska's vastness, meeting all these data requirements statewide by on-site creel censuses would be prohibitively expensive, thus an economical supplementary program has been developed. Described herein are results from the tenth year of that program, whose primary objective is to provide statewide estimates of effort and harvest for major Alaskan sport-caught species by area and fishery.

Species covered are listed in Table 2, Appendix A. Alaska sport fishing regulatory and management areas are delineated on the map in Figure 1, Appendix A.

METHODS

The Alaska statewide sport fish harvest program combines postal surveys and creel censuses to obtain estimates of effort and harvest by fishery and by species. The postal surveys consist of repeated mailings of questionnaires to random samples of Alaska sport fishing license holders. Creel censuses consist of on-site interviews of random samples of sport fishermen. The postal surveys provide estimates for all fisheries, while creel censuses of major selected fisheries provide validity correction and check.

The 1986 harvest survey consisted of a mailing of 13,545 questionnaires, followed by two reminders to nonrespondents. Table 3 provides a summary of mailings and responses. Examples of the questionnaire and reminders are in Appendix B. Additional details regarding methods are described in Mills (1979) and Mills et al. (1986).

RESULTS

The Alaska Sport Fish Harvest Survey indicated that 359,383 anglers took 1,650,299 household trips and fished 2,071,412 days to harvest 3,163,433 fish in 1986. These represent increases of 3% in anglers, 8% in trips, 7% in days and 1% in fish harvested compared to 1985, in which 348,767 anglers took 1,524,443 trips and fished 1,943,069 days to harvest 3,124,557 fish.

Of the 359,383 anglers who fished in 1986, 249,629 (69%) were Alaska residents while 109,754 (31%) were nonresidents. This represents a 4% increase in resident anglers and a 2% increase in nonresident anglers over 1985, in which 241,135 (69%) residents and 107,632 (31%) nonresidents fished. Since 1977, the first year of the survey, the annual increase in anglers has averaged 7%. The annual increase for resident anglers has averaged 6%. The annual increase in nonresident anglers has averaged 10%.

Of the 2,071,412 angler-days fished in 1986, 1,518,712 (73%) were expended in the Southcentral region of Alaska, 357,987 (17%) were expended in the Southeast region, and 194,713 (10%) were expended in the Arctic-Yukon-Kuskokwim region. The Cook Inlet area had 1,175,928 days (57%) of the State's total sport fishing. The Kenai Peninsula had 808,450

2

angler-days or 39% of the State total. The Kenai River alone had 335,051 angler-days, 16% of the State total. An estimated 637,794 days, 31% of all sport fishing, was in saltwater; 1,433,618 days, 69% of all sport fishing was in freshwater.

The 3,163,433 fish harvested in 1986 included 1,299,248 razor clams and 182,620 smelt. Of the remaining 1,681,565 harvested fish, 720,502 (43%) were sea-run salmon, 165,165 (10%) were Dolly Varden and Arctic char, 152,855 (9%) were rainbow trout, and 117,637 (7%) were Arctic grayling. Also harvested were 160,885 halibut, 101,258 rockfish, 46,182 landlocked salmon, 39,718 whitefish, 21,890 northern pike, 21,463 lake trout, 18,849 burbot, 16,230 cutthroat trout, 5,850 steelhead, 3,721 sheefish, and 526 brook trout. Chinook salmon, coho salmon, sockeye salmon, chum salmon, lake trout, northern pike, whitefish, halibut, rockfish and razor clam harvests were all-time record highs.

Except for razor clams, shell fisheries are not included in the 3,163,433 total fish harvest reported above. For the Kenai Peninsula, however, these fisheries were surveyed for king crab, dungeness crab, tanner crab, shrimp, and hardshell clams. Harvest and effort for these species are reported in Table 55.

The record 1986 total sea-run salmon harvest of 720,502 included 105,482 chinook, 255,887 coho, 186,448 sockeye, 145,960 pink, and 26,725 chum salmon. The marine salmon harvest total of 204,919 included 28,942 chinook, 88,309 coho, 6,711 sockeye, 71,942 pink, and 9,015 chum salmon. The freshwater total of 515,583 included 76,540 chinook, 167,578 coho, 179,737 sockeye, 74,018 pink, and 17,710 chum salmon. Regionally, 125,688 sea-run salmon were harvested in Southeast Alaska, 575,082 in Southcentral, and 19,732 in the Arctic-Yukon-Kuskokwim. The sport harvest of small chinook salmon state-wide totaled 17,186 and is included in the 105,482 reported above.

Harvest and effort for 1986 are tabulated by region, area, fishery, and species in Appendix A. Detailed tabulations for 1977 through 1985 may be found in Mills (1979, 1980, 1981a, 1981b, 1982, 1983, 1984, 1985, 1986).

DISCUSSION

Over the past ten years the statewide sport fish harvest program has proved effectual in economically meeting management needs for reliable estimates of effort for and harvest of Alaska's game fishes. The program has been well received by the angling public: overall response to initial delivery has averaged 65%. In addition, results have been consistent with creel censuses, and sport fish biologists report that harvest program estimates for areas not creel censused are generally in accordance with their own knowledge and observations.

Thus, in the interest of economic efficiency, the statewide harvest program has replaced on-site creel censuses in several cases where creel censuses were not required for protective in-season management or ensuring

Table 1. List of Alaska Sport Fishing Regions and Areas.

Regions

- I Southeast Alaska
- II Southcentral Alaska
- III Arctic-Yukon-Kuskokwim

Areas

Southeast Alaska

- A Ketchikan
- B Prince of Wales
- C Petersburg-Wrangell
- D Sitka
- E Juneau
- F Haines-Skagway
- G Glacier Bay
- H Yakutat

Southcentral Alaska

- I Glennallen
- J Prince William Sound
- K Knik Arm Drainage
- L Anchorage
- M East Susitna Drainage
- N West Cook Inlet-West Susitna Drainages
- P Kenai Peninsula
- Q Kodiak
- R Naknek River Drainage-Alaska Peninsula
- S Kvichak River Drainage
- T Nushagak

Arctic-Yukon-Kuskokwim

- U Tanana River Drainage
- V Interior Alaska
- W Seward Peninsula-Norton Sound
- X Northwest Alaska
- Y South Slope Brooks Range
- Z North Slope Brooks Range

Table 2. List of Common Names, Scientific Names and Abbreviations.

,

*

Common Name		Abbrowietion
Chinook salmon	Oncorhynchus tshawytscha (Walbaum)	KS
Small chinook salmon	<u>Oncorhynchus</u> <u>tshawytscha</u> (Walbaum)	KI
Coho salmon	Oncorhynchu kisutch (Walbaum)	SS
Landlocked salmon coho chinook	<u>Oncorhynchus</u> <u>kisutch</u> (Walbaum) <u>Oncorhynchus</u> tshawytscha (Walbaum)	LL
Sockeye salmon	Oncorhynchus nerka (Walbaum)	RS
Kokanee salmon	Oncorhynchus nerka (Walbaum)	KO
Pink salmon	Oncorhynchus gorbuscha (Walbaum)	PS
Chum salmon	<u>Oncorhynchus</u> <u>keta</u> (Walbaum)	CS
Steelhead	<u>Salmo</u> gairdneri Richardson	SH
Rainbow trout	<u>Salmo</u> gairdneri Richardson	RT
Cutthroat trout	<u>Salmo</u> <u>clarki</u> Richardson	CT
Brook trout	<u>Salvelinus</u> <u>fontinalis</u> (Mitchell)	BT
Lake trout	Salvelinus namaycush (Walbaum)	LT
Dolly Varden	<u>Salvelinus malma</u> (Walbaum)	DV
Arctic char	<u>Salvelinus</u> alpinus (Linnaeus)	AC
Arctic grayling	Thymallus arcticus (Pallas)	GR
Northern pike	Esox lucius Linnaeus	NP
Whitefish	Coregonus spp. and Prosopium spp.	WF
Burbot	Lota lota (Linnaeus)	BB

9

	Scientific Name	Abbreviation
Inconnu (Sheefish)	<u>Stenodus</u> <u>leucichthys</u> (Guldenstadt)	SF
Halibut	Hyppoglossus stenolepis Schmidt	HA
Rockfish	Sebastes spp.	RF
Smelt	Osmeridae	SM
Capelin	<u>Mallotus</u> <u>villosus</u> (Muller)	SM
King crab	<u>Paralithodes</u> <u>camtschatica</u> (Tilesius)	KC
Dungeness crab	Cancer magister Dana	DC
Tanner crab	Chionoecetes bairdi Rathbun	TC
Shrimp	Pandalidae	SHR
Razor clam	<u>Siliqua patula</u> Dixon	RCL
Hardshell clams Butter clam Littleneck clam Cockle Gaper clam Eastern softshell clam	Saxidomus giganteus Deshayes Venerupis staminea (Conrad) Clinocardium nuttallii (Conrad) Tresus capax (Gould) Mya arenaria (Linne)	HCL
Truncated mya Alaska surf clam	<u>Mya truncata</u> (Linne) <u>Spisula polynyma</u> Stimpson	

Table 2. (cont.) List of Common Names, Scientific Names and Abbreviations.

Species	1977	1978	1979	1980	1981	1982	1983	1984	1985	198
Chinook Salmon	25,112	26,415	34,009	24,155	35,822	46,266	57,094	61,141	63,173	80,07
Sea-Run Coho										
Salmon	67,866	81,990	93,234	127,958	95,376	136,1 <u>5</u> 3	87,935	166,688	137,671	188,87
Landlocked Coho/										
Chinook Salmon	31,152	26,583	17,907	43,142	39,930	24,102	33,482	•	19,684	19,44
Sockeye Salmon	97,629	118,299	77,655	105,914	76,533	128,015	170,799	119,098	168,211	179,70
Kokanee Salmon	2,068	1,702	3,218	2,351	5,540	3,419	1,899	786	3,329	2,36
Pink Salmon	85,543	143,483	63,366	153,794	64,163	105,961	47,264	100,932	67,83 8	109,07
Chum Salmon	5,044	23,755	8,126	8,660	7,810	13,497	11,043	15,806	7,895	17,35
Steelhead	1,949	2,720	1,554	2,063	1,727	1,305	1,895	2,379	1,635	1,12
Rainbow Trout	80,354	107,243	129,815	126,686	149,460	142,579	141,663	140,868	153,352	114,83
Cutthroat Trout	1,912	957	1,491	939	886	654	1,824	2,542	915	1,62
Brook Trout	0	0	0	0	0	0	0	. 0	0	
Lake Trout	15,200	10,910	13,876	15,752	15,495	15,423	16,210	13,301	13,119	18,21
Dolly Varden/										
Arctic Char	79,405	102,107	160,029	130,009	149,543	115,832	151,503	133,089	108,822	93,65
Arctic Grayling	45,748	47,866	70,316	69,462	63,695	60,972	56,896	47,825	57,720	51,40
Northern Pike	321	767	762	1,358	1,411	1,707	2,642	4,424	2,240	2,89
Whitefish	2,594	4,231	3,534	3,221	3,802	2,558	3,784	4,806	9,337	7,91
Burbot	6,652	8,099	5,207	11,585	9,536	9,662	8,870	13,231	22,015	13,23
Sheefish	0	0	0	. 0	0	0	0	.0	Ő	
Smelt	335,657	209,011	198,197	313,271	293,029	210,998	298,148	370,653	314,615	173,20
Halibut	17,412	30,954	34,603	39,796	52,370	55,198	75,047	78,045	81,458	115,85
Rockfish	22,092	29,361	39,887	37,625	41,374	35,283	32, 528	43,825	33,571	59,69
Razor Clams	951, 386	971,535	1,045,576	860,461	907,874	1,070,953	1,177,960	1,194,932	1,194,830	1,290,82
Other Fish	54,311	44,224	42,451	40,341	37,343	41,817	31,390	17,519	36,919	67,8
Total	1,929,407	1,992,212	2.044 813	2 118 543	2 052 719	2.222.354	2.409.876	2 552 014	2,498,349	2,609,30

Table 12. Southcentral Alaska Sport Fish Harvests by Species, 1977-1986.

			Days							DV										
	Anglers	Trips	Fished	KS	\$S	RS	PS	cs	LT	A C	SH	RT	СТ	GR	WF	SM	HA	RF	RCL	OTHE
SALTWATER:																				
Valdez Bay	7,592	11,558	19,449	123	5,749	260	12,858	1,116	0	31	0	0	61	0	0	0	3,241	5,864	0	93
Passage Canal																				
(Whittler)	4,438	6,510	9,556	11			1,437	596	0	291	0	0	0	0	0	0	1,040	1,620	0	2,27
Orca Inlet	1,081	2,232	2,721	11	474	153	290	15	0	138	0	0	15	0	0	0	596	145	489	87
Boat - Other	2,421	6,082	5,888	234	703	626	168	367	0	245	0	0	0	0	0	0 '	2,996	1,832	0	32
Valdez Bay -												-		_						
Shoreline	7,183	6,563	9,419	45		153	9,312	749	0	0	0	0	0	0	0	15	153	67	306	16,20
Shoreline - Other	2,536	4,061	4,648	11	2,476	61	718	15	0	31	15	0	61	0	U	0	305	234	6,254	/0
ALTWATER TOTAL	22,718**	37,006	51,681	435	11,879	2.446	24,783	2.858	0	736	15	0	137	o	o	15	8,331	9,762	7.049	21,31
Eyak River	1,285	4,411	4,755	0	2,767	92	107	0	0	642	0	15	214	0	0	0	0	0	0	
Sshamy Creek	1,205	4,411	4,755	Ŭ	2,707	72	107	v	v	042	v	13	214	U	v	Ŭ	U	Ŭ	v	
and Lagoon	1,022	558	1,022	0	76	612	260	0	0	61	0	n	0	0	0	0	0	0	0	
Coghill River	847	479	847	0	0	321	0	ŏ	ō	61	ō	ō	Ō	ŏ	ō	ŏ	Ū	0	ē	
lobe River	818	1,674	1,712	0	Ō	0	Ó	Ō	Ō	4,449	Ō	Ō	0	Ō	Ö	0	Ū.	Ō	Ō	
Other Streams	1,574	2,069	2,351	Ō	1,116	1,178	122	Ō	Ō	733	ō	Ō	337	31	15	Ō	Ō	Ō	Ō	
akes	1,722	1,538	1,912	67	260	229	0	0	259	613	0	92	932	321	0	0	0	0	0	
RESHWATER TOTAL	5,869**	10,729	12,599	67	4,219	2,432	489	0	259	6,559	0	107	1,483	352	15	0	0	0	0	
RAND TOTAL	26,689**	47 735	64 280	502	16,098	4 878	25 272	2 858	259	7,295	15	107	1,620	352	15	15	8,331	9,762	7.049	21 3

4

Table 48. Prince William Sound* Sport Fish Harvest and Effort by Fisherles and Species, 1986.

*Prince William Sound (Area J): All Alaskan waters, including drainages, from and including Cape Suckling through Prince William Sound to Cape Puget, including all waters emptying into Port Bainbridge; and, that portion of the Copper River drainage downstream of a line between the south bank of Haley Creek and the south bank of Canyon Creek in Wood Canyon.

**Angler totals may not equal sum of sites due to some anglers fishing at more than one site.

			Days								DV						
	Anglers	Trips	Fished	KI**	KS	SS	RS	PS	CS	LT	AC	RT	GR	WF	NP	SM	OTH
ai River -																	
Cook Inlet to																	
oldotna Bridge)	44,719	122,149	157,079	1,269	7,966	28,063	19,348	13,578	229	0	1,151	525	0	76	0	31,620	
ai River -	•	• - ·	•		•		•	•									
Soldotna Bridge																	
o Moose River)	19,023	37,525	58,433	275	1,407	7,217	13,578	2,752	107	0	771	168	0	0	0	1,147	
mi River - Moose River to						•											
kilak Outlet)	16,543	44,475	48,969	61	535	8,287	11,391	2,018	138	659	1,798	770	0	489	0	0	
i River -		•		_				-•									
Skilak Inlet																	
<pre>> Kenai Lake)</pre>	16,772	36,513	35,843	46	0	2,660	22,950	505	0	313	1,631	603	31	46	0	0	
L	73.352***	240,662	300,324	1,651	9,908	46,227	67,267	18,853	474	972	5,351	2,066	31	511	0	32,767	

Table 53. Kenai River* Sport Fish Freshwater Non-Guided Harvest and Effort by Fisheries and Species, 1986.

*Kensi River (Area P): All main channel waters of the Kensi River downstream of Kensi Lake to Cook Inlet. Does not include Kensi Lake, Skilak Lake or any saltwater.

**King Salmon less than 20 inches.

***Angler totals may not equal sum of sites due to some anglers fishing at more than one site.

.

			Days				,				DV						
	Anglers	Trips	Fished	KI**	KS	SS	RS	PS	C\$	LT	AC	RT	GR	WP	NP	SM	OTH
nai River ~ (Cook Inlet to								·									
Soldetna Bridge)	17,675	18,533	23,956	669	6,515	10,275	1,829	848	0	O	. 98	98	0	268	0	268	
nai River - (Soldotna Bridge																	
to Moose River) nai River -	5,443	4,953	5,443	0	1,562	3,119	268	0	89	0	0	0	89	0	0	89	
Moose River to																	
kllak Outlet) ai River -	2,202	2,115	2,202	0	134	61	2,142	223	0	0	130	131	0	45	0	0	
Skilak Inlet																	
o Kenai Lake)	1,774	1,391	3,126	0	0	428	892	0	0	0	196	130	0	0	0	0	
AL.	24,953***	26,992	34,727	669	8,211	13,883	5,131	1,071	89	0	424	359	89	313	0	357	

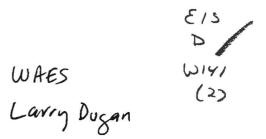

s,

Table 54. Kenai River* Sport Fish Freshwater Guided Harvest and Effort by Fisheries and Species, 1986.

*Kenai River (Area P): All main channel waters of the Kenai River downstream of Kenai Lake to Cook Inlet. Does not include Kenai Lake, Skilak Lake or any saltwater.

**King Salmon less than 20 inches.

***Angler totals may not equal sum of sites due to some anglers fishing at more than one site.

SOUTHCENTRAL ALASKA SPORT FISHING ECONOMIC STUDY

JONES & STOKES ASSOCIATES, INC. (987 1725 - 23rd STREET, SUITE 100 / SACRAMENTO, CA 95816

;

]

A VILLE

Table 4-1. Angler Expenditures and Net Willingness to Pay (WTP) Associated with Sport Fishing in Southcentral Alaska, by Activity and Fishery (Thousands of Dollars)

i.

1

F

[

ſ

Γ

Γ

Ľ

ſ

[

	Resident Anglers		Nonresident Anglers		Total	
Đ	quenditures .	Net WIP	Expenditures	Net WIP	Expenditures	Net WII
LL SOUTHCENTRAL SPORT FISHING	\$74,163	\$246,391	\$52,892	\$30,385	\$127,055	\$276,776
ing salmon - all sites	16,606	17,862	21,451	8,812	38,057	26,674
alibut - all sites azor clams - all sites	12,615 1,025	21,626 1,757	6,031 945	3,526	18,646 1,970	25,152 2,025
y Fishery:	-					
enai River_						
All sport fishing	18,932	15,241	19,029	8,011	37,961	23,252
King salmon fishing (early run)	4,186	4,038	6,148	2,916	10,334	6,954
King salmon fishing (late run)	3,184	2,477	5,142	2,444	8,326	4,923
Silver salmon fishing (early run)	2,848	2,541	1,068	466	3,916	3,007
Silver salmon fishing (late run)	2,020	1,645	2,619	1,139	4,639	2,784
Red salmon fishing	1,613	1,711	2,571	418	4,184	2,129
Rainbow trout fishing	1,989	688	486	125	2,475	813
ussian River	~ ~ ~ *					
Red salmon fishing (early run)	2,804	2,130	1,361	640	4,165	2,770
Red salmon fishing (late run)	480	211	566	267	1,046	471
ower Streams in the Kenai Peninsula ¹	2 551	1 070	2 262	105	E 014	2 46
All fishing	3,551	1,970	2,363	496 207	5,914	2,46
King salmon fishing	1,338	503	797	207	2,135	710
eep Creek Marine	1,427	1,253	929	404	2,356	1,65
King salmon fishing Halibut fishing	1,840	2,357		269	4,032	2,62
RALIDUC LISHING		2,331	2,192		4,032	2,02
achemak Bay - Halibut fishing	5,818	5,364	2,902	2,709	8,720	8,07
esurrection Bay - Silver salmon fishing	1,118	902	775	450	1,893	1,35
ittle Susitna River						
King salmon fishing	794	1,323	666	360	1,460	1,68
Silver salmon fishing	312	583	397	90	709	67:
est Side Cook Inlet/West Side Susitna Streams ²	4					
King salmon fishing	2,480	1,180	2,569	585	5,049	1,76
Silver salmon fishing	278	458	363	269	641	72
ast Side Susitna Roadside Streams ³						
King salmon fishing	435	576	507	134	942	71
Silver salmon fishing	161	726	195	45	356	77
ulkana River						
All fishing	1,102	1,834	412	107	1,514	1,94
Grayling fishing	370	346	81	5		35
ake Creek - all fishing	541	852	322	N/A	863	85
epler Lake Complex - Rainbow trout fishing	162	1,700	2	N/A	164	1,70
ake Louise, Susitna, Tyone - Lake trout						
	66	186	N/A	N/A	66	18
and burbot winter fishing						
and burbot winter fishing nchorage Area Stocked Lakes - Rainbow trout and land-locked salmon fishing	1,395	2,335	316	9 0	1,711	2,42

1 2

Includes Ninilchik River, Anchor River, and Deep Creek. Includes Deshka River/Kroto Creek, Alexander Creek, Talachulitna River, Chuitna River, and Theodore, Lewis, and Ivan Rivers. 3

Includes Montana Creek, Caswell Creek, Willow and Little Willow Creeks.

N/A = No data available.

,

Industry	Resident Anglers	Nonresident Anglers	Total Angler Spending
Fish Packing/Processing	\$ 327,000	\$ NA	\$ 327,000
Boat Building/Repair	6,707,000	NA	6,707,000
Passenger Transportation	2,403,000	1,445,000	3,848,000
Retail Trade	25,266,000	3,829,000	29,095,000
Hotel/Lodging Places	326,000	1,247,000	1,573,000
Eating/Drinking Establishments	1,595,000	911,000	2,506,000
Guide Services	218,000	125,000	343,000
TOTAL	\$36,842,000	\$7,557,000	\$44,3 99 ,000

Table 4-2. Angler Spending in the Anchorage Area Associated with Sport Fishing in Southcentral Alaska (1986 \$)

NA = No data available but considered minor.

estimated at \$44.4 million in 1986. More than 65 percent of all angler expenditures were made in the retail trade sector.

Total angler spending translates into direct employment of 781 people (equivalent to 376 full-time jobs) in the Anchorage area, as shown in Table 4-3. As would be expected, based on the relative amount of spending on retail goods, the majority of this employment is in the retail trade sector. A large amount of passenger transportation jobs is also supported by angler spending. This industry has more than double the employment of the boat building/repair industry, yet angler spending for passenger transportation is only 56 percent of the spending for boat building and repair. This indicates that the output per worker is greater in the boat building/repair industry than in the passenger transportation industry. (In fact, output per worker in the boat building/repair industry is almost four times greater than output per worker in the passenger transportation industry; see Chapter 8, Table 8-32).

Direct earnings attributed to the 781 direct jobs are equal to \$7.5 million. Approximately 53 percent of this income, or \$4 million, is earned by workers in the Anchorage retail trade sector.

Total production of goods and services (output), employment, and earnings in the Anchorage area from angler spending is shown in Table 4-4. More than \$117.2 million in output is generated by angler expenditures. This output supports the equivalent of more than 1,400 full-time jobs in various industrial sectors. The majority of the output which is generated and jobs that are supported are in the trade sector (which includes both wholesale and retail trade).

Kenai Peninsula

Angler spending in the <u>Kenai</u> Peninsula associated with sport fishing in southcentral Alaska is shown by industry in Table 4-5. This spending includes expenditures by both resident (\$22.7 million) and nonresident (\$9.1 million) anglers and is estimated at \$31.8 million in 1986. In the Kenai Peninsula, more than 45 percent of all angler expenditures are made in the retail trade sector.

Total angler spending translates into direct employment of 886 people (equivalent to 375 full-time jobs) in the Kenai Peninsula, as shown in Table 4-6. The majority of this employment is in the guide services sector. Although there is a large amount of guide service employment, many of these jobs are seasonal and short in duration. (The average job length for guides in the Kenai Peninsula is less than 3 months; see Chapter 3, Table 3-20.) A large number of retail trade, hotel and lodging, and eating and drinking sector jobs is also generated by angler spending.

Industry	Direct Employment (No. of Jobs)	Full-Time Equivalent Employment	Direct Earnings (1986 \$)
Fish Packing/Processing	20	9	\$ 172,000
Boat Building/Repair	66	28	706,000
Passenger Transportation	144	47	1,454,000
Retail Trade	385	202	3,991,000
Hotel/Lodging Places	81	30	545,000
Eating/Drinking Establishments	62	54	537,000
Guide Services		6	91,000
TOTAL	781	376	\$7,496,000

Table 4-3. Direct Jobs and Income in the Anchorage Area Supported by Angler Spending Associated with Sport Fishing in Southcentral Alaska

•

Industrial Sector	Total Output (1986 \$)	Total Employment (full-time equivalents)	Total Earnings (1986 \$)
Agricultural Services, Forestry, & Other	\$ 773,000	12	\$ 61,000
Mining	1,612,000	5	295,000
Construction	1,269,000	13	587,000
Manufacturing	11,185,000	96	2,586,000
Trans., Comm., & Utilities	7,891,000	65	2,418,000
Trade	35,707,000	884	18,172,000
Finance, Insurance & Real Estate	10,581,000	70	1,877,000
Services	14,341,000	308	7,172,000
Government	425,000	10	309,000
Households	33,478,000	NA	NA
TOTAL	\$117,262,000	1,463	\$33,477,000

Table 4-4. Total Output, Employment and Income in the Anchorage Area Generated by Angler Spending Associated with Sport Fishing in Southcentral Alaska

NA = Not applicable.

Industry	Resident Anglers	Nonresident Anglers	Total Angler Spending
Fish Packing/Processing	256,000	\$NA	\$ 256,000
Boat Building/Repair	3,373,000	NA	3,373,000
Passenger Transportation	463,000	700,000	1,163,000
Retail Trade	11,693,000	2,830,000	14,523,000
Hotel/Lodging Places	1,407,000	1,616,000	3,023,000
Eating/Drinking Establishments	3,651,000	1,034,000	4,685,000
Guide Services	1,813,000	2,971,000	4,784,000
TOTAL	\$22,656,000	\$9,151,000	\$31,807,000

Table 4-5. Angler Spending on the Kenai Peninsula Associated with Sport Fishing in Southcentral Alaska (1986\$)

NA = No data available but considered minor.

ł

1

Industry	Direct Employment (No. of Jobs)	Full-Time Equivalent Employment	Direct Earnings (1986 \$)
Fish Packing/Processing	16	7	\$ 132,000
Boat Building/Repair	33	14	353,000
Passenger Transportation	43	14	431,000
Retail Trade	190	100	1,975,000
Hotel/Lodging Places	156	58	1,058,000
Eating/Drinking Establishments	117	102	1,009,000
Guide Services	<u>331</u>	80	1,286,000
TOTAL	886	375	\$6,244,000

Table 4-6. Direct Jobs and Income in the Kenai Peninsula Supported by Angler Spending Associated with Sport Fishing in Southcentral Alaska

-

L_

Southcentral Alaska Nonresident Angler Spending Profile Kenai River - lower (P-1)

٦

]

-

.

Expenses Category	Dollars Spent per Household Fishing Day
Package fishing tour	\$ 55.26
Guiding fees	38.15
Transportation within Alaska	25.61
Fishing-related clothing	8.37
Tackle/fishing gear/equipment rental	12.57
Food and beverages	45.41
Lodging/camping fees	19.06
Fish processing/packaging/bait	7.19
Other fishing-related expenses	11.95
Total	\$223.57

* Sample size: 28 Note: Estimates calculated for each category using all reported values (including zeros) from the sample.

Expenses Category	Dollars Spent per Household Fishing Day
Package fishing tour	\$ 46.79
Guiding fees	12.00
Transportation within Alaska	25.15
Fishing-related clothing	4.48
Tackle/fishing gear/equipment rental	8.09
Food and beverages	35.68
Lodging/camping fees	9.62
Fish processing/packaging/bait	8.87
Other fishing-related expenses	12.49
Total	\$163.17

L

L...

٤. .

.

Γ.

٤.

£_

Ц.,

B.....

а.

Southcentral Alaska Nonresident Angler Spending Profile Kenai River - other (P-2, P-3, P-4)

* Sample size: 41

Note: Estimates calculated for each category using all reported values (including zeros) from the sample.

٦		
]		Dollars Spent per Household Fishing Day
]	Package fishing tour	0
7	Guiding fees	\$ 7.18
1	Transportation within Alaska	16.84
7	Fishing-related clothing	3.19
7	Tackle/fishing gear/equipment rental	2.80
]	Food and beverages	7.99
7	Lodging/camping fees	2.82
٦	Fish processing/packaging/bait	0.09
]	Other fishing-related expenses	0
]	Total	\$40.91
]	* Sample size: 6	
]	Note: Estimates calculated for each category usin ed values (including zeros) from the sample	g all report- •

-

7

J

]

]

Southcentral Alaska Nonresident Angler Spending Profile Russian River (P-7)

B-53

Expenses Category	Dollars Spent per Household Fishing Day
Package fishing tour	\$117.30
Guiding fees	0
Transportation within Alaska	23.61
Fishing-related clothing	12.71
Tackle/fishing gear/equipment rental	24.28
Food and beverages	19.17
Lodging/camping fees	13.85
Fish processing/packaging/bait	3.84
Other fishing-related expenses	2.99
Total	\$217.75

Southcentral Alaska Nonresident Angler Spending Profile Kenai Peninsula - other freshwater (P-5, P-6, P-8, P-12)

* Sample size: 12

Note: Estimates calculated for each category using all reported values (including zeros) from the sample.

Expenses Category	Dollars Spent per Household Fishing Day
Dechange fiching tour	6 2 40
Package fishing tour	\$ 2.49
Guiding fees	2.09
Transportation within Alaska	26.72
Fishing-related clothing	8.30
Tackle/fishing gear/equipment rental	12.66
Food and beverages	18.04
Lodging/camping fees	14.08
Fish processing/packaging/bait	5.02
Other fishing-related expenses	0.65
Total	\$90.05

Southcentral Alaska Nonresident Angler Spending Profile Lower Kenai Peninsula Streams (P-9, P-10, P-11)

Total

\$90.05

* Sample size: 17

Note: Estimates calculated for each category using all reported values (including zeros) from the sample.

Expenses Category	Dollars Spent per Household Fishing Day
Package fishing tour	\$ 37.94
Guiding fees	15.04
Transportation within Alaska	10.71
Fishing-related clothing	5.33
Tackle/fishing gear/equipment rental	13.69
Food and beverages	31.98
Lodging/camping fees	10.00
Fish processing/packaging/bait	10.49
Other fishing-related expenses	0.34
Total	\$135.52

Southcentral Alaska Nonresident Angler Spending Profile Deep Creek Marine (P-13)

* Sample size: 9

Note: Estimates calculated for each category using all reported values (including zeros) from the sample. ----

·],	
.]	
]	
]	
]	
]	
]	
]	
[,	

Southcentral Alaska Nonresident Angler Spending Profile Kachemak Bay (P-14)

Expenses Category	Dollars Spent per Household Fishing Day
Package fishing tour	\$ 49.74
Guiding fees	10.35
Transportation within Alaska	32.29
Fishing-related clothing	6.71
Tackle/fishing gear/equipment rental	10.05
Food and beverages	28.96
Lodging/camping fees	21.08
Fish processing/packaging/bait	9.60
Other fishing-related expenses	2.28
m - 1 - 1	6171 06

Total

\$171.06

* Sample size: 34

Note: Estimates calculated for each category using all reported values (including zeros) from the sample.

Expenses Category	Dollars Spent per Household Fishing Day
Package fishing tour	\$172.98
Guiding fees	6.15
Transportation within Alaska	12.72
Fishing-related clothing	20.85
Tackle/fishing gear/equipment rental	10.85
Food and beverages	60.08
Lodging/camping fees	30.99
Fish processing/packaging/bait	2.67
Other fishing-related expenses	12.82
Total	\$330.11

£

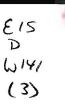
L

ε.

τ.:

<u>a</u>.

د


ц.

· д .

Southcentral Alaska Nonresident Angler Spending Profile Resurrection Bay and other saltwater (P-15, P-18)

* Sample size: 13

Note: Estimates calculated for each category using all reported values (including zeros) from the sample.

NOAA Technical Memorandum NMFS F/NWC-191

Survey of Subsistence Fish and Shellfish for Exposure to Oil Spilled from the Exxon Valdez First Year: 1989

ALASKA RETOURCER LINGARY Durbau of Land Manadomeni

FEB 2 8 1901

Usha Varanasi, Sin-Lam Chan, William D. MacLeod, John E. Stein, Donald W. Brown, Douglas G. Burrows, Karen L. Tilbury, John T. Landahl, Catherine A. Wigren, Tom Hom, Susan M. Pierce

December 1990

SH 11 A2 N6 n0.191

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information, and has not received complete formal review, editorial control, or detailed editing.

Survey of Subsistence Fish and Shellfish for Exposure to Oil Spilled from the EXXON VALDEZ

First Year: 1989

Usha Varanasi, Sin-Lam Chan, William D. MacLeod, John E. Stein, Donald W. Brown, Douglas G. Burrows, Karen L. Tilbury John T. Landahl, Catherine A. Wigren, Tom Hom, Susan M. Pierce

Environmental Conservation Division Northwest Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

December 1990

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

511

1

-

· address

ţ

:

.

and the same same

ź

The same of

10

r .

ABSTRACT

More than 500 fish and shellfish samples collected from native Alaskan fishing grounds were analyzed for aromatic contaminants (ACs) from petroleum (alkylated and unsubstituted aromatic hydrocarbons with 2-7 benzenoid rings and dibenzothiophenes). Intertidal molluscs (mussels, clams, chitons, and snails) from Windy Bay, Kodiak (City), Chenega Bay, and Old Harbor consistently had more than 100 parts-per-billion (ppb) ACs, with levels in mussels from Windy Bay and Kodiak as high as 12,000 to 18,000 ppb. Levels of ACs in molluscs, crabs, and sea urchins from other villages were less than 10 ppb, a level comparable to that measured in shellfish from the designated reference area in Southeast Alaska near Angoon. Nonparametric statistics on 147 samples of molluscs showed that levels of ACs in molluscs from Windy Bay, Kodiak, and Chenega Bay were significantly higher ($p \le 0.05$) than those in the Angoon molluscs sampled.

Of the 210 samples of edible flesh of fish analyzed in 1989, only two samples of pink salmon (Onchorhynchus gorbuscha) from Kodiak had AC levels that neared or exceeded 100 ppb. Another 11 samples of pink and coho salmon (O. kisutch) from Kodiak, Chenega Bay, Tatitlek, and Larsen Bay exceeded 10 ppb of total ACs. The levels in the edible flesh of salmon from other subsistence fishing areas and in bottomfish from all areas were generally comparable (less than 10 ppb) to the levels detected in the same or related species from the reference site, near Angoon. Two samples of smoked salmon, one from Old Harbor and one from Tatitlek, contained 8,200 and 22,000 ppb of ACs, respectively.

In an unofficial advisory opinion, the Food and Drug Administration has indicated that little risk is involved in the consumption of the nonsmoked subsistence foods studied. The results to date provide important information on the level of contamination of subsistence fish and shellfish from fishing areas of native Alaskan villages in and near Prince William Sound and a reference database against which future temporal changes of petroleum derived ACs in the edible flesh of fish and shellfish can be evaluated.

CONTENTS

Abstract iii
Preface ix
Introduction 1
Experimental Methods 4
Field Sample Collection 4
Bile Analyses 4
Fluorescent Aromatic Contaminant Determinations 4
Quality Assurance
Edible Flesh Analyses9
Extraction of Aromatic Contaminants10
Cleanup of Aromatic Contaminants10
Aromatic Contaminant Determinations by GC/MS 11
Quality Assurance11
Statistical Methods12
Results and Discussion
Fluorescent Aromatic Contaminants in Bile of Fish13
Aromatic Contaminants in Edible Flesh of Fish and Shellfish18
Fish
Molluscs

Statis	stical Results 2	4
	Fish 2	8
	Molluscs 2	8
	ytical Chemical Analysis Results According to Fishing llage (Site)	8
	Windy Bay 2	8
	Kodiak Village 2	9
	Chenega Bay 3	0
	Old Harbor	1
	Tatitlek 3	1
	Larsen Bay 3	2
	Ouzinkie	3
	Chiniak 3	3
	Akhiok 3	4
	Port Lions 3	4
	Port Graham and English Bay 3	5
	Karluk 3	5
	Kasitsna 3	6
Summary		6
Acknowledg	gments	9
Citations		1

Appendices

Α.	Summary of Concentrations: LACs/HACs, Plus Field and Laboratory Sample Numbers	45
B.	Concentrations of Individual Aromatic Contaminants in Fish	113
C.	Concentrations of Individual Aromatic Contaminants in Shellfish	131
D.	Quality Assurance for Individual Aromatic Contaminants in Fish and Shellfish	145

PREFACE

The Environmental Conservation (EC) Division of the Northwest Fisheries Center conducts investigations on the fate and effects of organic contaminants in the marine environment. Because we usually are dealing with trace levels of toxic chemicals, and because the chemical makeup of marine environments can be externely complex, we need sensitive, reliable analytical methods to produce data with an appropriate level of confidence. Our analytical chemistry facility for trace organics was originally established in the mid-1970s to provide NOAA with advanced analytical capabilities that were not otherwise readily available. This resulted in the development of state-of-the-art analytical techniques to measure trace organics and their metabolites. Much of the analytical methodology needed for NOAA's environmental projects was developed over the past decade by the Division's researchers, with funding support coming from not only the National Marine Fisheries Service but also other NOAA elements such as the Outer Continental Shelf Environmental Assessment Program and the Marine Ecosystems Analysis Program.

During the last decade, the EC Division conducted thousands of sophisticated analyses of marine samples for trace levels of petroleum hydrocarbons and other organic chemical contaminants. Early success in studies conducted in Puget Sound and in the New York Bight laid the foundations for the Division's present prominent role in NOAA's longterm National Status and Trends Program in analyzing sediments and benthic fish from U.S. coastal waters for organic contaminants. At the same time, we have conducted interlaboratory comparisons for analyses of marine samples. Until 1980, comparisons of analytical results among experienced laboratories differed by as much as tenfold. We were asked to investigate ways to improve the intercomparability among such laboratories. Over the years, precision among experienced laboratories improved substantially to a range of 14-81% relative standard deviation. Moreover, in response to the need to analyze large numbers of environmental samples with greater speed, we replaced two lengthy manual cleanup procedures with a single high performance liquid chromatography cutting cleanup time by 75% and solvent consumption by 50%. Division scientists also developed a method to test for petroleum exposure by rapidly screening fish bile for metabolites of aromatic compounds. These coordinated efforts have placed the EC Division in an excellent position to provide timely and quality analyses on subsistence samples related to the oi spilled from the *Exxon Valdez* in Prince William Sound.

х

INTRODUCTION

The spreading of oil spilled from the *Exxon Valdez* on 24 March 1989 raised concerns among native Alaskans that their subsistence seafood could have been contaminated by petroleum hydrocarbons. In response, NOAA entered into a memorandum of understanding (MOU) with Exxon to analyze subsistence fish and shellfish from native Alaskan villages for aromatic contaminants (ACs) found in spilled oil. The ACs consist of the aromatic hydrocarbons and dibenzothiophenes listed in Table 1. This report discusses the levels of these chemicals found in fish and shellfish collected in July, August, and September 1989 (Cycles I, II, and III, respectively). Statistical interpretations are included. The subsistence fishing grounds sampled in this study appear in Figure 1.

Previous laboratory studies have shown that fish efficiently biotransform aromatic hydrocarbons to derivatives (metabolites) that are concentrated in bile for excretion (Statham et al. 1976, Varanasi and Gmur 1981, Stein et al. 1984, Varanasi et al. 1989a). This means that aromatic hydrocarbons may not readily accumulate in the edible flesh of fish. Thus, to monitor the exposure of fish to ACs, we developed a rapid, sensitive method to screen fish bile for presence of metabolites characteristic of petroleum ACs. This procedure utilizes high performance liquid chromatography (HPLC) with fluorescence detection (Krahn et al. 1984, 1986a). It has been employed previously in an oil spill on the Columbia River (Krahn et al. 1986b) to determine exposure of fish to ACs from petroleum.

The more specific analyses for individual ACs in tissues, which involve combined gas chromatography/mass spectrometry (GC/MS), are more costly than the screening of bile for ACs and their metabolites. Nevertheless, recent important improvements and automation of the extract cleanup procedure enable us now to provide high quality analytical data for AC levels in the edible flesh of fish and shellfish more quickly than before and with less labor (Krahn et al. 1988). These methods can also be used to detect sulfur-containing ACs, such as the dibenzothiophenes.

Statistical differences of AC levels in edible flesh or bile among sites were assessed using both parametric and nonparametric tests.

Table 1. Aromatic contaminants (ACs: aromatic hydrocarbons and dibenzothiophenes) determined in edible tissue in the Exxon/NOAA Subsistence Fish and Shellfish Study. Lower molecular weight ACs = LACs; higher molecular weight ACs = HACs.

to 7-Ring Aromatic Compounds ACs)
oranthene ene fluoranthenes/pyrenes iz[a]anthracene ysene -chrysenes/benz[a]anthracenes -chrysenes/benz[a]anthracenes -chrysenes/benz[a]anthracenes -chrysenes/benz[a]anthracenes -chrysenes/benz[a]anthracenes -chrysenes/benz[a]anthracenes izo[b]fluoranthene izo[k]fluoranthene izo[a]pyrene eno[1,2,3-cd]pyrene enz[a,h]anthracene izo[ghi]perylene

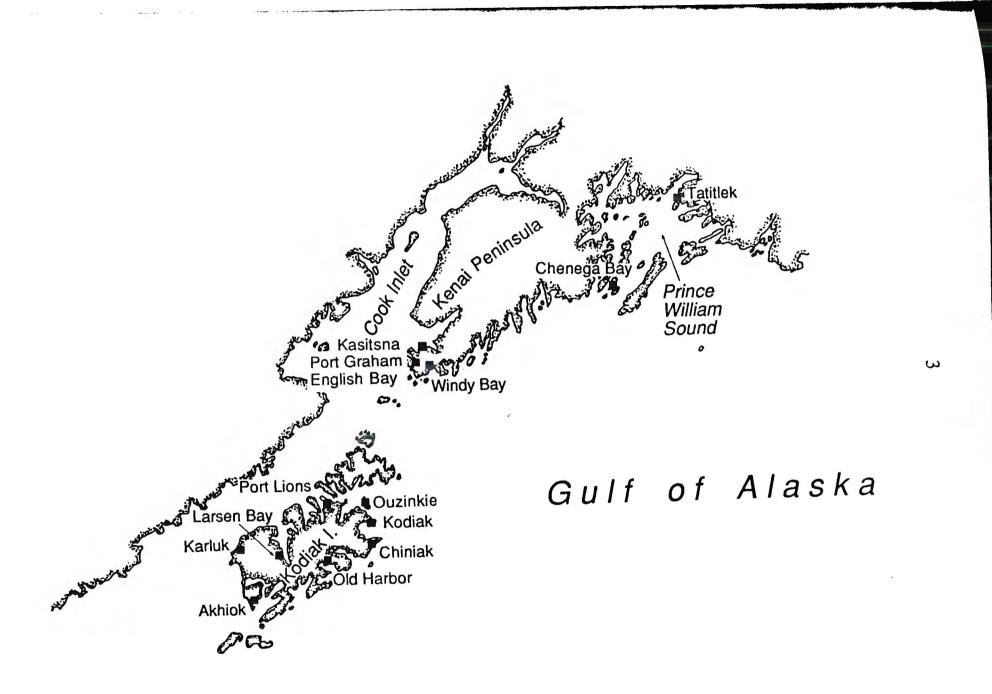


Figure 1. Native Alaskan fishing sites.

EXPERIMENTAL METHODS

Details of protocols for the field sampling, chemical analyses, and statisti evaluation are outlined below. These protocols have also been briefly describe in the periodic reports (Varanasi et al. 1989b-e) issued throughout the study.

Field Sample Collection

Under contract with Exxon, Dames and Moore biologists collected samples of fish (Table 2) and shellfish (Table 3) from subsistence fishing areas near native Alaskan villages (Fig. 1). Generally, at least two sites were sampled per village with assistance of NOAA or State of Alaska field biologists. Bile samples from these fish were usually screened for metabolites of ACs (see below) to indicate the priority by which samples of edible fish flesh should be subjected to a more detailed analysis; however, Cycle I sampling was completed before this protocol could be fully implemented. Otherwise, samples of bile and flesh were chilled in the field, frozen before shipment, and stored frozen in the laboratory until analyzed. Shellfish samples were composites of whole individual animals, while fish were sampled as individuals for shipment.

Bile Analyses

Fish bile samples were analyzed for fluorescent ACs (FACs) by the metho of Krahn et al. (1986a) outlined below. Bile collected from the fish was stored ithe laboratory at -80° C until analyzed.

Fluorescent Aromatic Contaminant Determinations

The FACs in bile were analyzed on a Waters¹ high performance liquid chromatograph equipped with a Perkin-Elmer HC-ODS/ PAH column (0.26 X 25 cm), an automatic injector, and Perkin-Elmer model 40 fluorescence detector connected in series.

¹ Reference to trade name does not imply endorsement by the National Marine Fisheries Service, NOAA.

	T	Species												
Village,		Pink	Coho	Sockeye	Chum	Chinook	the second se	Smoked		Yellowfin	Pacific		Irish	
Sampling site	Code	salmon	salmon	salmon	salmon	salmon	Varden	salmon	Halibut	sole	cod	Rockfish	lord	
Windy Bay 1	WNB 1													
Windy Bay 1 Windy Bay 2	WNB 2											+		
Kodiak (city) 1	KOD 1											2		
Kodiak (city) 2	KOD 1								2					
Kodiak (city) 2	KOD 2			├ ───- ├		<u>}</u>	-		2					
Kodiak (city) 4	KOD 4						· · · · ·							
Kodiak (city) 5	KOD 5	16				╂────┤	2							
Kodiak (city) 6	KOD 6								3				. <u> </u>	
Chenega Bay 1	CHE 1											+		
Chenega Bay 2	CHE 2								9		6	4		
Chenega Bay 3	CHE 3	8												
Chenega Bay 4	CHE 4	18				<u>├</u>								
Old Harbor 1	OHA 1								5		2			
Old Harbor 2	OHA 2	25					1				1			
Old Harbor 3	OHA 3						· · · · ·							
Old Harbor 4	OHA 4													
Old Harbor (smo. salm								1						
Tatitlek 1	TAT 1					<u> </u>								
Tatitlek 2	TAT 2	3					<u></u>							
Tatitlek 3	TAT 3	6										1		
Tatitlek 4	TAT 4								2		2	1 1		
Tatitlek 5	TAT 5													
Tatitlek 6	TAT 6						** ** *		2					
Tatitlek 7	TAT 7		18											
Fatitlek (smo. salm.)	TATSS							1						
arsen Bay 1	LAB 1													
arsen Bay 2	LAB 2													
arsen Bay 3	LAB 3													
arsen Bay 4	LAB4													
Larsen Bay 5	LAB 5								1					
Larsen Bay 6	LAB 6	3		14	1				4		3			
arsen Bay 7	LAB7	2												
arsen Bay 8	LAB 8	15							4					

Table 2	Fish:	Species sampling log for subsistence studies, cycles I - III, 1989	
Taule 2.	1.1211	Species sampling log for subsistence studies, cycles 1 - 11, 1909	

×.

Village,		Pink	Coho	Sockeye	Chum	Chinook	Species Dolly	Smoked		Yellowfin	Pacific	1 1	Irish
Sampling site	Code	salmon	salmon	salmon	salmon	salmon	Varden	salmon	Halibut	sole	cod	Rockfish	
Stanlpring Ditte		Dunion	Junion	Junnon	Julinon	Sumon	V MI Gen	Samon	Additud	3010	cou	Rockinsh	1010
Ouzinkie 1	OUZ 1	2							2				
Ouzinkie 2	OUZ 2											1	
Ouzinkie 3	OUZ 3					1			8				
Ouzinkie 4	OUZ 4											1	-
Ouzinkie 5	OUZ 5	20											
Ouzinkie 6	OUZ 6		16										
Chiniak 1	CHI 1								1. Jac - 14.			1	
Chiniak 2	CHI 2												
Chiniak 3	CHI 3												
Chiniak 4	CHI 4						1					2	
Chiniak 5	CHI 5	12		1	6								
Chiniak 6	CHI 6								3			1	
Chiniak 7	CHI7	12			2								
Akhiok 1	AKH 1			2									
Akhiok 2	AKH 2												
Akhiok 3	AKH 3												and the state of the state
Akhiok 4	AKH 4	4	3										
Port Lions 1	PTL 1												
Port Lions 2	PTL 2												
Port Lions 3	PTL 3	3	13					•	3				
Port Lions 4	PTL 4												
Port Lions 5	PTL 5												
Port Lions 6	PTL 6								2	1			
Port Lions 7	PTL 7	18											
Port Lions 8	PTL 8								4				
Port Gra./Eng. Bay 1	PTG 1												
Port Gra./Eng. Bay 2	PTG 2				· · ·				1				2
Port Gra./Eng. Bay 3	PTG 3	13	4										
Port Gra./Eng. Bay 4	PTG 4												
Port Gra./Eng. Bay 5	PTG 5								1				
Karluk 1	KAR I	2	5	4			2						
Karluk 2	KAR 2												
Kasitsna 1	KAS 1												
Angoon 1	AGN 1												
Angoon 2	AGN 2												
Angoon 3	AGN 3	6	8			3			3		2		

Table 2 (continued).	Fish:	Species sampling log for subsistence studies, cycles I - III, 1989.

.

		Species											
Village Sampling site	Code	Mussels	Butter clams	Horse clams	Littleneck clams	Cockles	Chitons	Snails	Limpets	Urchins	Dungeness crab	Tanner crab	King crab
Windy Bay 1	WNB 1	3					2	1					
Windy Bay 2	WNB 2				1								
Kodiak City 1	KOD 1												
Kodiak City 2	KOD 2												
Kodiak City 3	KOD 3	1	1		2		2						
Kodiak City 4	KOD 4				1						1		
Kodiak City 5	KOD 5		· · · · ·								1		
Kodiak City 6	KOD 6												
Chenega Bay 1	CHE 1	6	2								1		
Chenega Bay 2	CHE 2												
Chenega Bay 3	CHE 3												
Chenega Bay 4	CHE 4				1								
Old Harbor 1	OHA 1												
Old Harbor 2	OHA 2									19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		2	
Old Harbor 3	OHA 3		5		1		3			1			
Old Harbor 4	OHA 4		5		Ī								
Tatitlek 1	TAT 1	3											
Tatitlek 2	TAT 2									-	1		
Tatitlek 3	TAT 3				1								
Tatitlek 4	TAT 4												
Tatitlek 5	TAT 5	6					2						
Tatitlek 6	TAT 6												
Tatitlek 7	TAT 7		·										
Larsen Bay 1	LAB 1		3				2		1		1		
Larsen Bay 2	LAB 2		4				1						
Larsen Bay 3	LAB 3									1			
arsen Bay 4	LAB 4			· · · · ·				1	<u>├</u>		1	2	1
arsen Bay 5	LAB 5	├───- <u> </u>						<u> </u>			<u> </u>	~~~	<u> </u>
arşen Bay 6	LAB 6	├ ─── ┼											
arsen Bay 7	LAB 7												
arsen Bay 8	LAB 8	 							<u> </u>			· · · · · ·	

Table 3. Shellfish: Species sampling log for subsistence studies, cycles I - III, 1989.

Table 5 (continued).	. Snemns	n: Specie	Species sampling log for subsistence studies, cycles I - III, 1989. Species											
Village			Butter	Horse	Littleneck	r	species	-	T		Dungeness	Tanner	King	
Sampling site	Code	Mussels	clams	clams	clams		Chitons	Spaile	Limpets	Urchins	crab	crab	crab	
Samping site	Coue	IVIUSSCIS	Cialits	Clains	Clairts	CUCKICS	Chitons	Silalis	Limpers	Orcinits			CIAD	
Ouzinkie 1	OUZ 1													
Ouzinkie 2	OUZ 2	1	2		2		2							
Ouzinkie 3	OUZ 3		1		1									
Ouzinkie 4	OUZ 4		1		1									
Ouzinkie 5	OUZ 5													
Ouzinkie 6	OUZ 6													
Chiniak 1	CHI 1	1	3		2									
Chiniak 2	CHI 2	1	4		1	2	5	1						
Chiniak 3	CHI 3				1						1			
Chiniak 4	CHI4											•		
Chiniak 5	CHI 5													
Chiniak 6	CHI 6													
Chiniak 7	CHI7									····				
Akhiok 1	AKH 1				1									
Akhiok 2	AKH 2	1	3				1							
Akhiok 3	AKH 3	1			1									
Akhiok 4	AKH 4													
Port Lions 1	PTL 1		5		2		3	1						
Port Lions 2	PTL 2		2		1		2	1						
Port Lions 3	PTL 3													
Port Lions 4	PTL 4				1							3	1	
Port Lions 5	PTL 5										1			
Port Lions 6	PTL 6						· · · · · · · · · · · · · · · · · · ·							
Port Lions 7	PTL 7													
Port Lions 8	PTL 8													
Port Gra./Eng. Bay 1	PTG 1	7			1	1	3							
Port Gra./Eng. Bay 2	PTG 2													
Port Gra./Eng. Bay 3	PTG 3													
Port Gra./Eng. Bay 4	PTG 4	4			1			1			1			
Port Gra./Eng. Bay 5	PTG 5										1			
Karluk 1	KAR I	1					1							
Karluk 2	KAR 2	3	1				1							
Kasitsna 1	KAS 1	2	1		1		1		11		1			
Angoon 1	AGN 1	2					2							
Angoon 2	AGN 2		1	1										
Angoon 3	AGN 3				1						1			

Table 3 (continued). Shellfish: Species sampling log for subsistence studies, cycles I - III, 1989.

Thawed bile was injected directly into the HPLC and eluted through the column using a linear gradient from 100% solvent A (water containing 5 ppm acetic acid) to 100% solvent B (pure methanol) during 15 minutes. The flow rate was 1.0 mL/min and the column temperature was 50°C. All solvents were degassed with helium.

The fluorescence responses were recorded at the wavelength pairs for NPH and PHN, prominent aromatic constituents of Prudhoe Bay crude oil (see Table 1). Fluorescence of NPH metabolites was monitored using excitation and emission wavelength pairs of 290 and 335 nm, respectively. Fluorescence of PHN metabolites was monitored using excitation and emission wavelength pairs of 260 and 380 nm, respectively.

The total integrated area from each detector was then converted to corresponding units of either NPH or PHN that would give the same integrated response. Results for FACs in bile are reported on the basis of bile volume and biliary protein (Fig. 2). The levels of protein in bile (Table 4) were determined by the method of Lowry et al. (1951) that measures the complex formed with phenol at 660 nm.

Quality Assurance

Quality assurance procedures included use of NPH and PHN calibration standards, a "bile pool" reference material, blank analyses, and replicate analyses to evaluate HPLC/UV fluorescence performance.

Edible Flesh Analyses

Our laboratory procedures for the analysis of toxic organic contaminants (Krahn et al. 1988a, MacLeod et al. 1985) follow protocols established by the EC Division. A total of 365 analyses of edible flesh of fish and shellfish were performed for the ACs listed in Table 1. Summaries of the analytical protocols are given below (for further details, please consult the original publications). These protocols consist of four major steps: a) extraction; b) cleanup (by HPLC); c) analyte determination (by GC/MS); and d) quality assurance.

The results of the bile analyses were used to prioritize and composite fis, samples whose edible flesh was to be analyzed by the more quantitative and cos GC/MS technique. Edible flesh samples from the same fish species were analy, as individual samples or as composites according to the levels of FACs in bile. Thus, for a given species at a given site, flesh from fish showing relatively hig levels of bile FACs was analyzed either from individuals or composites of individuals with similarly high FACs levels. Samples of flesh from fish with relatively low levels of bile FACs were generally analyzed as composites.

Extraction of Aromatic Contaminants

Samples of edible flesh of fish or shellfish were extracted for ACs according to the procedures of Krahn et al. (1988a). A 3-g sample of flesh is added to a centrifuge tube containing sodium sulfate and methylene chloride. 'method internal standards (surrogates) for the ACs are added, and the mixture macerated with a Tekmar Tissumizer. The extract is filtered through a column of silica and alumina, and the extract concentrated to 1 mL for cleanup by HPI

Cleanup of Aromatic Contaminants

The ACs were isolated on a high performance liquid chromatograph. A Spectra-Physics (Mountain View, CA) model 8800 HPLC was employed, equipped with an ultraviolet detector (254 nm) and an automatic injector. Two 22.5 x 250-mm stainless-steel (preparatory size) columns containing Phenogel 100-Å size-exclusion packing (Phenomenex, Rancho Palos Verdes, CA) were used in series with a 2- μ M Rheodyne model 7302 filter and a 7.8 x 50-mm gua column containing the same Phenogel packing. The HPLC precolumn and column were connected to a six-port valve that allows the guard column to be backflushed to remove extraneous materials after cleanup of a set of samples (n ~ 10).

Methylene chloride was used as the solvent and was pumped at a flow ra of 7 mL/min for 20 minutes at ambient temperature. The HPLC solvent was degassed by bubbling helium through the solvent. The helium was delivered v regulator equipped with a stainless-steel diaphragm and passed through an in-lcharcoal filter (200-cc hydrocarbon trap, Alltech Assoc., Deerfield, IL) to eliminate inadvertent contaminants which could be transferred to the HPLC solvent by the helium.

A 250- μ L portion of a 1-mL extract was injected onto the HPLC column and the fraction containing the ACs was collected according to Krahn et al. (1988a). The solvent in the HPLC fraction was exchanged into hexane as the volume was reduced by evaporation to approximately 1 mL. Standards were then added for analysis by capillary column gas chromatography with mass spectrometric quantitation.

Aromatic Contaminant Determinations by GC/MS

The ACs were determined according to MacLeod et al. (1985) by GC/MS quantitation as outlined by Burrows et al. (1990). A 30-m x 0.25-mm DB-5 capilliary column (J & W Scientific) was used in a Hewlett-Packard model 5880 or 5890 gas chromatograph. The GC sample (3 μ L) was injected splitless, and the split valve was opened after 18 seconds (split ratio of 20:1). The oven temperature of 50°C was held for 1 minute and then programmed to increase at 4°C/min to 170°C, then at 1°C/min to 210°C, and finally at 4°C/min. to 300°C, where the temperature was held for 10 minutes.

Quality Assurance

Quality assurance measures included analyses of method blanks, spiked blanks, and matrix spikes. Analyte recoveries were normalized through the use of internal standards. The recoveries of the following surrogates are reported as QA information: Naphthalene-d8, acenaphthene-d10, and benzo[a]pyrene-d12. Analyte concentrations are reported on the basis of the internal standards ("surrogates") added at the beginning of the sample extraction. The HPLC internal standard (used to determine the fraction of total sample extract that was used in the analysis for aromatic hydrocarbons) was phenanthrene-d10. Hexamethylbenzene was used as the GC internal standard to calculate the recoveries of the surrogates. The recovery for each surrogate standard was greater than 50%, but less than 130%, and the relative standard deviations (RSDs) for surrogate recoveries in a set of samples was less than 25%. When the recovery of any surrogate was outside these guidelines, corrective action was taken, including instrument repair, inlet cleaning, column replacement, and/or reanalysis.

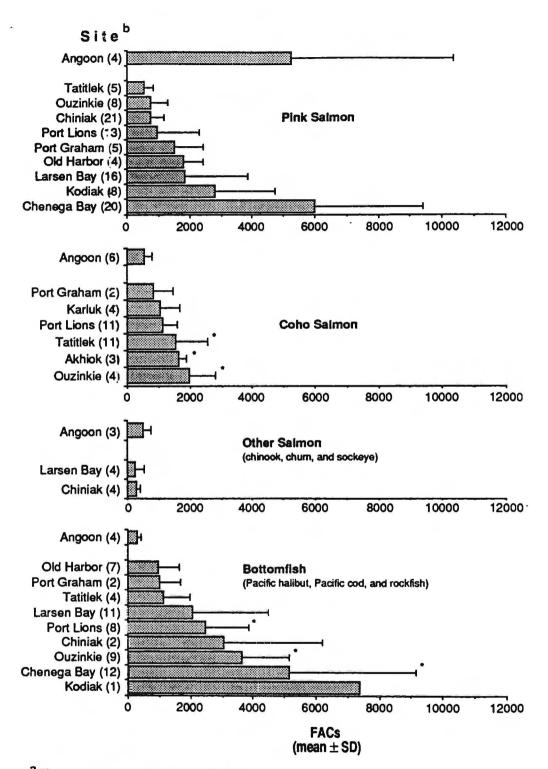
The GC calibration standards generally included all surrogates and analy of interest, except for some classes of alkylated aromatic hydrocarbons and dibenzothiophenes the corresponding unsubstituted compound was used to calculate the response factor. Graduated concentrations of GC-calibration-chec standards were used for multilevel response-factor determinations. A GC calibration standard was analyzed after every six samples to demonstrate the stability of the calibration. The GC/MS was considered "under control" when t response for each analyte or surrogate in a GC calibration standard was reproducible within $\pm 10\%$ from analysis to analysis.

The detection limits generally were less than 1 ng/g (wet weight basis). *A* hyphen (-) is used in the data tables to indicate that the analyte was not detected. The range of detection limits is included in the explanatory notes for each appendix.

One method blank was analyzed with each sample set of approximately 10 samples. The aromatic hydrocarbons (except naphthalene) and dibenzothiophene in the blanks should not be present above the limit of detection. A matrix spike (containing 50-80 ng/g of each analyte) or a spiked blank (containing 40-70 ng/g of each analyte) was analyzed with each set of approximately 10 samples. The recoveries of analytes should be no less than 50%.

Statistical Methods

The Kruskal-Wallis test nonparametric analysis of variance (Sokal and Rohlf 1981, Zar 1984) was used to test for differences among villages (sites). If the null hypothesis of no difference among villages (sites) was rejected at $\alpha = 0.05$, other nonparametric methods were used, specifically, to a) compare control results to other groups and b) ascertain differences among groups by multiple comparisons (Dunn 1964, Hollander and Wolfe 1973, and Zar 1984). The significance level was set at $\alpha = 0.05$.


Because in many cases the sample sizes for individual species were too small (especially at Angoon) to permit strong statistical conclusions to be drawn, samples were grouped by taxonomic affiliation and habitat (viz., beach, midwater, or benthic) for purposes of statistical analyses. For example, it was necessary to combine data for all intertidal molluscs at each village to obtain a sample size suitable for statistical analyses. Combining species or taxa with similar biology and habitat also permitted inclusion of villages that would otherwise have been omitted from the comparisons because only one sample was available for a particular species or group.

RESULTS AND DISCUSSION

Fluorescent Aromatic Contaminants in Bile of Fish

Our laboratory studies (Varanasi and Gmur 1981, Stein et al. 1984, Varanasi et al. 1989a) with benthic fish exposed to naphthalene and benzo[a]pyrene (BaP) have shown that levels of metabolites of these ACs in bile can be substantially greater than those in edible flesh. Thus, even though the values for FACs in bile of field sampled fish may indicate exposure of fish to petroleum, the levels of aromatic hydrocarbons from petroleum in edible flesh of fish, if detectable, could remain low. The utility of the bile method is in quickly identifying those fish that are relatively unexposed to ACs and therefore of less immediate interest.

The results of the HPLC fluorescence analyses for FACs in bile, at the PHN wavelengths, are summarized in Figure 2 and Table 4. Presentation of results at NPH wavelengths is not necessary because of the strong statistical correlation between $FACs_{PHN}$ and $FACs_{NPH}$ (r = 0.93, P \leq 0.0001). In Figure 2 the concentrations of $FACs_{PHN}$ are reported on the basis of bile protein. Previous laboratory studies (Collier and Varanasi 1987) have shown marked increases in concentrations of protein in bile of nonfeeding fish compared to feeding fish. It was shown that the variation between levels of FACs in feeding and nonfeeding fish were greatly reduced when the differences in bile protein were taken into account. Hence, the reporting of FACs_{PHN} levels on the basis of bile protein is appropriate in this study, because the salmon sampled were sexually mature and may not have been feeding.

^a Fluorescent aromatic compounds (FACs) are reported in units of ng phenanthrene (PHN) equivalents per mg bile protein.

b Values in () indicate number of samples analyzed.

* Significantly different from Angoon, the reference site, by nonparametric test (P \leq 0.05).

Figure 2. Results of HPLC analyses of bile of salmon and bottomfish for FACs PHN.

<u></u>	FACs	Biliary protein
Site	(ng PHN eq./g bile)	(mg protein/g bile)
Pink Salmon		
Angoon (4) b	$4,400 \pm 4,900$	2 ± 1
Tatitlek (5)	$44,000 \pm 40,000$	64 ± 50
Ouzinkie (6)	$7,800 \pm 4,200$	13 ± 7
Chiniak (21)	$35,000 \pm 28,000$	42 ± 26
Port Lions (16)	$23,000 \pm 6,600$	37 ± 15
Port Graham (5)	$27,000 \pm 19,000$	21 ± 17
Old Harbor (16)	$64,000 \pm 25,000$	40 ± 16
Larsen Bay (16)	$56,000 \pm 39,000$	35 ± 17
Kodiak (10)	$100,000 \pm 8,000$	30 ± 29
Chenega Bay (22)	$180,000 \pm 170,000$	30 ± 17
Coho Salmon		
Angoon (6)	$1,700 \pm 700$	4 ± 2
Port Graham (2)	$3,900 \pm 3,300$	4±1
Karluk (4)	$3,200 \pm 2,300$	4±3
Port Lions (11)	$5,900 \pm 2,900$	6 ± 4
Tatitlek (11)	$19,000 \pm 11,000$	14 ± 6
Akhiok (3)	$11,000 \pm 8,000$	7±4
Ouzinkie (4)	$22,000 \pm 12,000$	12 ± 6
Other Salmon	т.	
Angoon (3)	$1,400 \pm 400$	3 ± 2
Larsen Bay (7)	$2,400 \pm 1,300$	14 ± 7
Chiniak (4)	$6,300 \pm 5,200$	23 ± 24
Bottomfish	,	
Angoon (4)	$1,000 \pm 600$	3 ± 1
Old Harbor (7)	$4,800 \pm 6,100$	4 ± 4
Port Graham (2)	$2,800 \pm 2,400$	4 ± 5
Tatitlek (4)	$4,400 \pm 1,100$	5 ± 2
Larsen Bay (11)	$3,500 \pm 2,400$	3 ± 2
Port Lions (8)	$3,300 \pm 1,700$	2 ± 2
Chiniak (2)	$4,300 \pm 2,700$	2 ± 1
Ouzinkie (9)	$4,900 \pm 2,300$	2 ± 2
Chenega Bay (12)	$19,000 \pm 21,000$	4 ± 4
Kodiak (1)	6,000	1

Table 4. Mean levels \pm SD of fluorescent aromatic compounds (FACs) and protein in bile of salmon and bottomfish. The levels of FACs are reported as ng phenanthrene equivalents per gram bile.^a

^a Fluorescence response of bile is converted to an equivalent response of a phenanthrene standard. ^b Number in () indicate total samples analyzed.

The results from the present study showed that reporting the concentratio of FACs on the basis of bile protein appeared to account for large species differences in FACs_{PHN} levels for fish from a village. For example, calculation the FACs_{PHN} levels for pink salmon (*Oncorhynchus gorbuscha*) and bottomfish from Port Graham and English Bay on the basis of bile protein rather than on th basis of bile volume reduced the difference between the levels from about tenfol to about 80 % (Table 4). This does not imply that the exposure to oil is similar for the two species, just that the level of FACs in bile appear similar. Numerous factors can affect tissue and fluid levels of contaminants; hence, dose-response studies with each species are required to validate comparisons between species.

As summarized in Figure 2, the levels of FAC_{PHN} in bottomfish from Chenega Bay, Ouzinkie, and Port Lions were significantly different (higher) from the levels in bile of bottomfish from Angoon, the reference site. The levels of $FACs_{PHN}$ in coho salmon (*O. kisutch*) from Ouzinkie, Akhiok, and Tatitlek were significantly higher than those in coho salmon from Angoon. For pink salmon, however, no significant differences were observed when compared to Angoon. The lack of statistically significant differences with respect to Angoon was due to a single pink salmon having a bile level of $FACs_{PHN}$ that was four- to twentyfold greater than the bile levels in the other three pink salmon from Angoon. What the finding of a high level of $FACs_{PHN}$ in the one pink salmon from Angoon Figure 2 means is not known. A larger sample size from the designated reference site or samples from another reference site will be needed for proper statistical evaluation of salmon exposure to ACs.

The results with bile suggest that a number of fish species from some sites were exposed to ACs. However, in subsequent analyses of the edible flesh, levels of total ACs in bottomfish never exceeded 1 ppb and were comparable to those from Angoon (Fig. 3), while in bile, mean levels of FACs_{PHN} were up to 25 times greater than those from Angoon (Fig. 2). The results for pink and coho salmon (Fig. 3) also show low levels of total ACs in muscle (generally less than 7 ppb), while the level of FACs_{PHN} (Fig. 2) ranged widely, from 80 to 17,000 ng PHN equivalents/mg bile protein. These results are consistent with the interpretation, based on laboratory studies, that efficient metabolizing of petroleum-derived ACs by the liver of fish greatly limits the accumulation of ACs in other tissues such as muscle (Varanasi et al., 1989a).

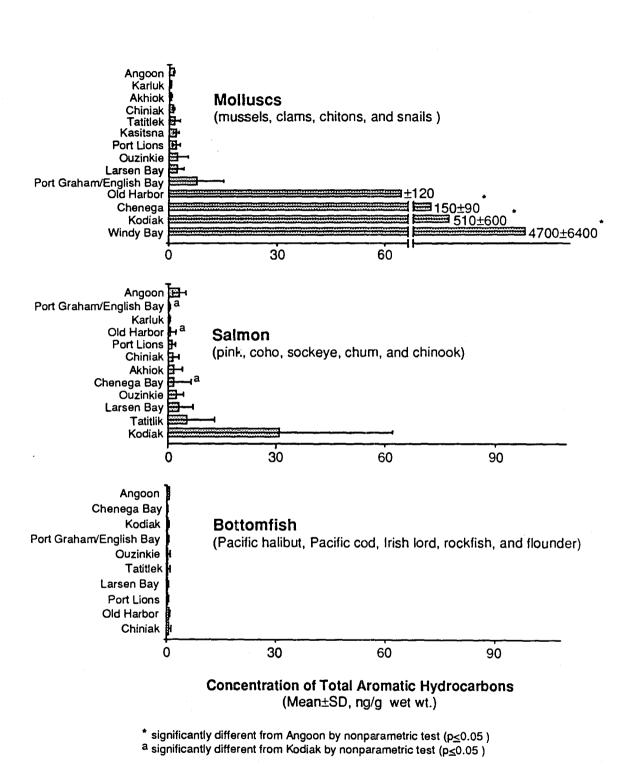


Figure 3. Results of GC/MS analyses of organic-solvent extracts of edible flesh of molluscs, salmon, and bottomfish for total aromatic hydrocarbons.

It should also be noted that when the levels of FACs_{PHN} in bile of individus salmon were less than 1,000 ng PHN equivalents/mg bile protein, no pink or colsalmon showed levels of total ACs exceeding 5 ppb. A few pink and coho salmhad AC levels greater than 7 ppb; however, in these fish the levels of ACs in muscle were not directly related to levels of FACs_{PHN} in bile, suggesting that a factor other than exposure was also affecting the tissue distribution of ACs in these few fish. Most of the salmon sampled in this study were near spawning. Previous studies (Varanasi et al. 1982; Reichert and Varanasi 1982) have shown that in marine bottomfish near spawning, aromatic hydrocarbons are not as effectively metabolized by the liver and that this can lead to some retention of unaltered aromatic hydrocarbons by tissues such as muscle.

Aromatic Contaminants in Edible Flesh of Fish and Shellfish

All 548 samples of edible flesh from fish and shellfish received in 1989 ar included in the 365 analyses for the ACs reported herein. Summary results are presented for fish in Table 5 and for shellfish in Table 6. Included are results from comparison samples collected at Angoon, a designated reference site in Southeast Alaska. Results are also presented for a sample of smoked salmon each from Tatitlek and Old Harbor.

The data in Tables 5 and 6 have been summarized according to the lowmolecular-weight ACs (LACs) and the high-molecular-weight ACs (HACs) listed in Table 1, following a practice we have established (Varanasi et al. 1988, 1989f) in the Benthic Surveillance Project of NOAA's National Status and Trends Program. This has the convenience of dividing the ACs approximately into (a) the more water-soluble and acutely toxic compounds, LACs, and (b) the less water-soluble and more chronically toxic compounds, HACs. The LACs are more prone to dissolution, evaporation, and bacterial degradation and, hence, their levels in the environment generally would decline as the spilled oil weathers. Moreover, LACs are more rapidly excreted from the body than are HACs, and LACs are known for their acute toxicity in experimental animals. The HACs, on the other hand, are more resistant to dissolution, evaporation and bacterial degradation and, hence, tend to persist in the environment. Carcinogens generally appear among the HACs.

Village:	Windy Bay	Kodiak Village	Chenega Bay	Old Harbor	Tatitlek	Larsen Bay	Ouzinkie	Chiniak	Akhiok	Port Lions	Port Graham/ English Bay	Karluk	Kasitsna	Алдооп
Salmon: pink		$\begin{bmatrix} 110/12\\72/8 \end{bmatrix}$	0.9 / nd	nd	0.05 / nd	2 / nd	nd	2/nd [0.4/nd]	4 / 0.4	nd	nd	nd		2 / nd
		54/5	20 / nd	1 / nd	$\begin{bmatrix} nd \\ nd \end{bmatrix}$	$\begin{bmatrix} 13 / 0.7 \\ 12 / 0.2 \end{bmatrix}$	1 / nd	3/0.2	1/0.1	3/0.2	1 / nd			2 / nd
		22/2	nd	2/0.1	nd	1/nd	3 / nd	1 / nd		0.4 / nd	nd			
		6/0.2	0.3 / nd	1 / nd	nd	0.3 / nd	5/0.5	2/nd		0.5 / nd	nd			
		$\begin{bmatrix} 84/10\\22/3 \end{bmatrix}$	$\begin{bmatrix} 2/nd\\ 2/nd \end{bmatrix}$	1 / nd	nd	0.8 / nd	1 / nd	4/0.2		nd	nd			
		4/0.2	1/nd	4/0.3		0.8 / nd	1 / nd	4/0.2		1 / nd	nd			
		32/5	0.2 / nd	nd		0.5 / nd	1 / nd	0.3 / nd		0.3 / nd	nd			
		[0.7/nd] [0.5/nd]	nd	nd		nd	1 / nd	0.3 / nd		0.2 / nd				
		$\begin{bmatrix} 1/nd \\ 1/nd \end{bmatrix}$	0.4 / nd	nd		0.2 / nd	0.9 / nd	0.3 / nd		0.9 / nd				
		[0.9/nd] [3/nd]	nd	nd		0.3 / nd	1 / nd	0.3 / nd		0.8 / nd				
		⊾ 3 / na ⊣	nd	nd		1/0.1		nd						
			nd	nd		0.2 / nd		0.3 / nd						
			nd	nd		0.7 / nd								
			0.6 / nd	nd		0.7 / nd								
	i		nd	nd										
-			3 / nd	nd										
			1 / nd	0.2 / nd								ļ		
			0.3 / nd	0.2 / nd										
			0.8 / nd											
			0.7 / nd						i					

Table 5. Fish: Sums of LACs / HACs (listed in Table 1) in edible flesh in ng/g (ppb) wet weight by GC/MS of extract; nd = not detected. Brackets indicate analyses of split samples. Reference values are listed under Angoon.

Village:	Windy Bay	Kodiak Village	Chenega Bay	Old Harbor	Tatitlek	Larsen Bay	Ouzinkie	Chiniak	Akhiok	Port Lions	Port Graham/ English Bay	Karluk	Kasitsna	Angoor
Salmon:					14/1		6/0.6		nd	2 / nd	1 / nd	0.5 / nd		2/nd
coho					15/1		0.8 / nd			0.6 / nd	nd	0.5 / nd		4 / nd
					19/2		2/nd			0.2 / nd				2/nd
					3/0.1		0.6/nd			0.3 / nd	l l			
					5/0.2		0.6 / nd			3/0.1				
					3 / nd		4/0.2			2/nd				
					3 / nd		2/nd							
							5/0.4							
sockeye		11/0.5		1		6/0.2		1/nd	nd		1	0.2 / no		
						3/nd						0.7 / no	1	
						2/nd								
						6/0.1								
						3 / nd					-			
chum						1 / nd		5/0.2						
								0.8 / nd						
								0.4 / nd						
chinook														5/0.
smoked salmon				7100 / 650 7800 / 700	20000 3000 21000 - 1800									

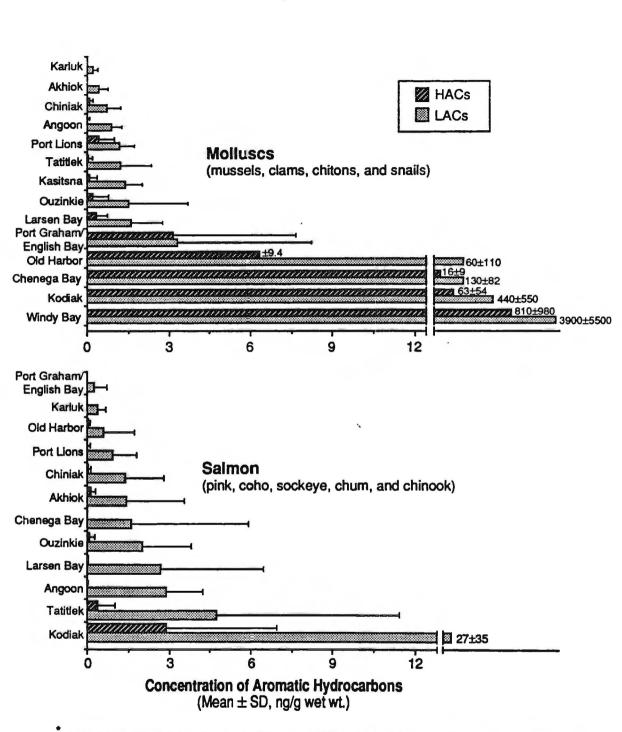
Table 5 (continued). Fish: sums of LACs / HACs (listed in Table 1) in edible flesh in ng/g (ppb) wet weight by GC/MS of extract; nd = not detected. Brackets indicate analyses of split samples. Reference values are listed under Angoon.

Village:	Windy Bay	Kodiak Village	Chenega Bay	Old Harbor	Tatitlek	Larsen Bay	Ouzinkie	Chiniak	Akhiok	Port Lions	Port Graham/ English Bay	Karluk	Kasitsna	Angoon
Dolly Varden		1 / nd		1 / nd								0.6 / nd		
Halibut		nd	nd	nd	nd	nd	nd	0.8 / nd		0.3 / nd	nd			0.4 / nd
		0.3 / nd	nd	1 / nd	nd	0.3 / nd	0.2 / nd	1 / nd		nd	0.2 / nd			
		0.9 / nd	nd	0.8 / nd		0.7 / nd	1 / 0.1		i i	0.4 / nd				
			0.5 / nd			0.5 / nd	nd			0.6 / nd				
						0.6 / nd	0.3 / nd							
Yellowfin Sole										0.8 / nd	}			
Pacific Cod			nd	nd	nd	0.5 / nd								0.6 / nd
			nd	0.7 / nd		0.3 / nd								
			nd											
			0.3 / nd											
Rockfish		nd	nd		1 / nd			nd			ſ			
			nd		0.6 / nd									
			nd											
Irish Lord											0.6 / nd			
											0.4 / nd			

Table 5 (continued). Fish: Sums of LACs / HACs (listed in Table 1) in edible flesh in ng/g (ppb) wet weight by GC/MS of extract; nd = not detected. Reference values are listed under Angoon.

The tables in the Appendices contain more detailed information. Appendi A tabulates the summary results (LACs/HACs) according to village, sites, and species, including our laboratory sample numbers and composite sample information. Appendix B presents the complete set of analytical data for ACs from the edible flesh of all samples of fish (including the data for smoked salmc and the field collector's sample numbers). Appendix C contains analogous information for shellfish.

Fish


As there are significant differences in the rates of uptake, metabolism, excretion, and types of toxic effects exerted by various ACs, the fish data are alpresented in Figure 4 to show the levels of LACs and HACs separately. The HACs are metabolized by fish to a greater extent than are the LACs and some HACs exert chronic toxic effects (e.g., carcinogenicity, tetratogenicity, and reproductive dysfunction) in experimental animals. To our knowledge, there a presently no established guidelines for acceptable levels of LACs or HACs in fo products.

Of the 208 samples of edible flesh of unsmoked fish analyzed in this first year, only two samples of pink salmon from the village of Kodiak had levels of ACs nearing or slightly exceeding 100 ppb. Eleven samples of pink, coho, and sockeye salmon (O. nerka) from Kodiak, Chenega Bay, Tatitlek, and Larsen Ba exceeded 10 ppb of ACs. The levels of ACs in the edible flesh of salmon from other subsistence fishing areas and bottomfish from all fishing areas were generally comparable (less than 10 ppb) to the levels detected in the same or related species from the reference site, Angoon.

Two samples of smoked salmon from Old Harbor and Tatitlek were analyzed in this study; they contained 7,500 and 20,000 ppb of LACs and 670 to 2,400 ppb HACs, respectively. The concentrations of benzo[a]pyrene, a carcinogenic HAC, in these samples were 6 ppb (Old Harbor) and 20 ppb (Tatitlek). More samples of smoked fish must be analyzed before proper comparisons can be drawn.

Molluscs

Analyses of molluscs (mussels, clams, chitons, and snails) from Windy B Kodiak (village), Chenega Bay, and Old Harbor showed consistent evidence of

A chart for bottomfish is not presented because HACs in flesh of these species were not detected.

Figure 4. Results of GC/MS analyses of organic-solvent extracts of edible flesh of molluscs and salmon for HACs and LACs.*

exposures to ACs (tissue levels above 100 ppb). Mussels from Windy 1 Kodiak had AC levels as high as 12,000 to 18,000 ppb (Table 6). Othe levels of ACs in molluscs, crabs, and urchins from the other collection less than 10 ppb, a level comparable to that measured in shellfish collec the village of Angoon, a designated reference area in southeast Alaska.

Benzo[a]pyrene was detected in molluscs from Windy Bay and C. Bay at levels of 0.1 to 7 ppb, but was not detected in fish.

Statistical Results

In addition to these qualitative interpretations of the AC data, stat analyses of the AC data were also conducted. The results of these analy revealed, however, that the sample sizes for individual species were ger small to draw strong statistical conclusions. This was especially eviden reference site, near Angoon, where the sample size was only 1 to 3 for species.

To increase our ability to draw statistical inferences from the data were grouped according to type (e.g., salmonids or bottomfish) or habi intertidal or benthic) as shown in Table 7. For example, combining dat intertidal molluscs increased the sample size (n = 147) to a reasonable v: allowed inclusion of most villages in the statistical analyses. While grou different species and samples from different sampling stations is not ide: an approach did enable certain general conclusions to be drawn, as is dis below.

Of the taxonomic groupings of species, the sample size was larger Pacific salmon, n = 164; this includes 6 samples from Angoon and 11 vi with 2 or more samples. Next in sampling size were the intertidal mollu n = 147, which includes 7 samples from Angoon and 13 villages with 2 samples. The statistical results have the greatest validity for these two g

Although it is often convenient to consider the LACs and the HAC separately, in this study the statistical conclusions for each of these categ were not different from those for all the ACs together. Hence, the conc

a sector of the sector of the

Village:	Windy Bay	Kodiak Villago	Chenega Bay	Old Harbor	Tatitlek	Bay	Ouzinkie	Chiniak	Akhiok	Port, Lions	Fort Crebern/ English Bay	Kartuk	Katinga	Angoon
Molluscs: mussels	3300/440	1500 / 160	220/20	nd	[nd]	1/0.3	0.9 / nd	nd	0.3 / nd		nd	nd	1/nd	0.6/nd
	16000 / 2500		160/22		L nd J 3/0.2			nd	0.4 / nd		4/0.4	0.4 / nd	0.7 / nd	1/0.1
	2400 / 550		200/22		3/0.1						1 / nd	0.3 / nd		
			190/26		3/0.3						1 / nd	0.3 / nd		
			96/15		0.8 / nd						2/nd			
					1/nd						1/nd			
					0.9 / nd			2			2/0.2			
	2										5/12			
										1	4/9			
											2/3			
clams butter		410/50	37/5	2/0.6		3/1	nd	1/0.1	nd.	0.9 / 0.4		0.3 / nd	2/0.4	0.5 / nd
			15/3	2/0.8		0.5 / nd	0.9 / nd	0.2 / nd	0.4 / nd	1/0.2				
1				0.7 / 0.3		1 / nd	7/2	0.6/0.3	0.3 / nd	1/1				
				1/1		2/0.1	3/0.5	0.3 / nd		1/1				
1				0.3 / nd	·	4/0.8		0.5 / nd		1/1				
				6/5		1/0.2		0.3 / nd		2/0.1				
				4/7		4/0.8		0.9 / nd		2/1	¢			
				4/3										
				230/21 330/29 210/20										
horse														10.5 / nd 10.8 / nd

.

Village:	Windy Bay	Kodiak Village	Chenega Bay	Old Harbor	Tatitlek	Larsen Bay	Ouzinkie	Chiniak	Akhiok	Port Lions	Port Graham, English Bay	Karluk	Kasitsna	Angoon
Molluscs: clams														
littleneck	830/130	270/87		2/0.7			1/nd	0.6/0.3	[0.3 / nd] [0.7 / nd]	2/1	20/9			
		120/24		200/19			0.6 / nd	2/0.4	,	1/1				
								1/0.1						
cockles								0.8/0.1			3/10			
								[0.7/nd] [0.5/nd]						
chitons	13/3	230/27		2/0.1	nd	0.6 / 0.06	0.1 / nd	1/0.1	1 / nd	0.6 / nd	0.7 / nd	0.2 / nd	2/nd	1 / nd
	4000 / 1800	90/30		0.9 / nd	1 / nd	0.9/0.6	0.5 / nd	1/0.1		2/nd	0.2 / nd	nd		1 / nd
				0.5 / nd		0.4 / nd		1/0.1		1 / nd	0.7 / nd			
								0.5 / nd		[0.3/nd 0.4/nd				
								0.1 / nd		1/nd	1			
snails	620/160					1 / nd		1 / nd		0.8 / nd	3/0.9	A 14		
										0.9 / nd				
limpets						2/0.1								
Urchins				5/2		2/1								
Crabs dungeness		0.2 / nd				0.1 / nd		0.1 / nd		0.1 / nd				
		0.6 / nd										·	2	
tanner				0.1 / nd		0.2 / nd				0.1 / nd				
										0.7 / nd				
king						2/nd				3/nd				

Table 6 (continued). Shellfish: Sums of LACs / HACs (listed in Table 1) in edible flesh in ng/g (ppb) wet weight by GC/MS of extract; nd = not detected. Brackets indicate duplicate samples. Reference values are listed under Angoon.

1

.

26

Table 7. Taxonomic/habitat groupings of samples for statistical analyses.

Bottomfish (benthic) --51 samples (2 from Angoon); villages with 2 or more samples

Pacific cod Pacific halibut Irish lord rockfish sole

Salmon (midwater) --164 samples (6 from Angoon); villages with 2 or more samples

Chinook salmon Chum salmon Coho salmon Pink salmon Sockeye salmon

Intertidal molluscs (beach)--147 samples (7 from Angoon); villages with 2 or more samples

Clams Mussel Limpets Chiton Snails are presented for total ACs. Thus, Figure 3 shows that the highest mean level ACs in molluscs (4,700 ppb) was substantially greater than the highest mean levin salmon (30 ppb) and bottomfish (0.7 ppb).

Fish. The levels of total ACs in edible flesh of salmon and bottomfish an results of statistical analyses are shown in Figure 3. In salmon and bottomfish, the levels of ACs in this study were not significantly different from the levels in fish from Angoon. However, the levels of ACs in salmon from the village of Kodiak were significantly different (higher) from those in salmon from Cheneg Bay, Old Harbor, and Port Graham and English Bay. The very low levels of ACs in the edible flesh of bottomfish did not warrant further statistical investigation. To date, only two samples of smoked salmon from Old Harbor an Tatitlek were analyzed in this study (see above). More samples of smoked fish must be analyzed before proper statistical comparisons can be drawn.

Molluscs. The levels of total ACs in edible flesh of intertidal molluscs and results of statistical analyses are also shown in Figure 3. The AC levels in molluscs from Windy Bay, Kodiak, and Chenega Bay were significantly higher than in those from Angoon. No other villages had significantly higher levels tha Angoon, not even Old Harbor, despite the three samples which had greater than 200 ppb of total ACs.

Analytical Chemical Results According to Fishing Village (Site)

Summary results for each subsistence fishing area are discussed with the sums of the LACs preceding those of the HACs.

Windy Bay --

Fish. None were collected at Windy Bay.

Mussels. In Cycles I and III, three samples from this area at the tip of the Kenai Peninsula showed the highest levels of ACs of any mussels evaluated in this study. The 2,400-16,000 ppb of LACS and 440-2,500 ppb of HACs are three to four orders of magnitude higher than the levels found in two samples from the designated reference site near Angoon in Southeast Alaska. The Angoon reference data showed only 0.6-1 ppb of LACs and up to 0.1 ppb of HACs.

Chitons. In Cycle III, 4,000 ppb of LACs and 1,800 ppb of HACs were found in a composite sample, compared to the 1 ppb and none detected, respectively, found at Angoon (n = 2). In Cycle I, a sample showed 13 ppb of LACs and 3 ppb of HACs, respectively.

Littleneck Clams (Protothaca staminea). In Cycle I, 830 ppb of LACs and 130 ppb of HACs were found in a sample of littleneck clams. No littleneck clams were sampled at Angoon, but a sample of butter clams from there showed LAC and HAC levels of 0.5 ppb and none detected, respectively.

Snails. In Cycle I, 620 ppb of LACs and 160 ppb of HACs were found in a sample of snails. No snails were sampled at Angoon, but other molluscs there (n = 6) showed LAC and HAC levels of 0.5-1 ppb and up to 0.1 ppb, respectively.

Kodiak Village --

Pink Salmon. In seven samples, 4-110 ppb of LACs and 0.2-12 ppb of HACs were found in Cycle II. In Cycle III, the LAC and HAC levels found in three samples were 0.5-3 ppb and none detected, respectively, comparable to the LAC and HAC levels of 2 ppb and none detected, respectively, in pink salmon from Angoon (n = 2).

Sockeye Salmon. A sample showed 11 ppb of LACs, slightly higher than the 2-5 ppb of LACs (n = 6) in other species of salmon from Angoon. No sockeye salmon were collected at Angoon.

Dolly Varden (Salvelinus malma). A trace (1 ppb) of LACs was found in one sample. No Dolly Varden were collected at Angoon.

Halibut (Hippoglossus stenolepis). Trace levels of LACs (up to 0.9 ppb) in three samples, comparable to the 0.4 ppb found in halibut from Angoon.

Rockfish. No ACs were found in rockfish. No rockfish were collected at Angoon.

Mussels. In Cycle I, a sample contained 1,500 ppb of LACs and 160 ppb of HACs as compared to the two samples from Angoon, which had 0.6-1 ppb of LACs and up to 0.1 ppb of HACs.

Butter Clams (Saxidomus giganteus). In Cycle II, a sample containe 410 ppb of LACs and 50 ppb of HACs compared to the sample from Angoon, which had LAC and HAC levels of 0.5 ppb and none detected, respectively.

Littleneck Clams. In Cycle III, two samples contained 120-270 ppb of LACs and 24-87 ppb of HACs as compared to the other bivalves (mussels and butter clams, n = 3) from Angoon, which had 0.5-1 ppb of LACs and up to 0.1 ppb of HACs. No littleneck clams were collected at Angoon.

Chitons. In Cycle II, a sample contained 230 ppb of LACs and 27 ppb of HACs, whereas in Cycle III, another sample contained LAC and HAC levels of 90 ppb and 30 ppb, respectively. The two samples from Angoon contained 1 ppb LACs and no detectable HACs.

Dungeness Crabs (Cancer magister). Traces of LACs (0.2-0.6 ppb) were found in two samples. No reference samples were available from Angoon.

Chenega Bay --

Pink Salmon. A sample showed 20 ppb of LACs in Cycle II. The 19 other samples (Cycles II and III) showed only up to 3 ppb of LACs, which is quite comparable to the 2 ppb of LACs found in two samples from Angoon.

Halibut, Pacific Cod (Gadus macrocephalus) and Rockfish. Traces of LACs were detected, which were comparable to those from the Angoon reference area (0.4-0.6 ppb).

Mussels. Levels of ACs were fairly similar in five samples collected throughout all cycles (96-220 ppb of LACs and 15-26 ppb of HACs). Two

samples from Angoon contained LAC and HAC levels of 0.6-1 ppb and up to 0.1 ppb, respectively.

Butter Clams. In two samples, 15-37 ppb of LACs and 3-5 ppb of HACs were found, as compared to a sample from Angoon, which had LAC and HAC levels of 0.5 ppb and none detected, respectively.

Old Harbor --

Pink Salmon. Up to 4 ppb of LACs in 18 samples were comparable to two samples from Angoon (2 ppb).

Smoked Salmon. A sample of smoked salmon showed 7,100-7,800 ppb of LACs and 650-700 ppb of HACs, approximately three orders of magnitude greater than the unsmoked salmon.

Halibut and Pacific Cod. The levels of LACs found in halibut (up to 1 ppb, n = 3) and a Pacific cod (0.7 ppb) were similar to levels found in the same species from Angoon (LAC and HAC levels of 0.4 and 0.6 ppb, respectively).

Butter Clams and Littleneck Clams. Two samples from Cycle I had 2-4 ppb of LACs and 0.6-7 ppb of HACs, as compared to 0.5 ppb and none detected, respectively, from an Angoon sample. Four samples from Cycle II showed LAC and HAC levels of 2-6 ppb and 0.3-5 ppb, respectively. In Cycle III three samples from site 4 showed 210-280 ppb of LACs and 20-25 ppb of HACs, while one sample from site 3 had levels comparable to those from Angoon.

Chitons. A sample from Cycle I had 2 ppb of LACs and 0.1 ppb of HACs, whereas in Cycles II and III these LAC and HAC levels of were 0.5-0.9 ppb and none detected, respectively, (n = 2), which is comparable to Angoon (LAC and HAC levels of 1 ppb and none detected, respectively, n = 2).

Tatitlek ---

Pink Salmon. In Cycles I and II, levels of ACs in pink salmon from Tatitlek were below the 2 ppb of LACs found in pink salmon from Angoon.

Coho Salmon. In Cycle III, seven samples showed 3-19 ppb of LAC and up to 2 ppb of HACs. Three of these samples had 14 ppb or more of ACs, compared to three samples from Angoon that had LAC and HAC levels of 2-4 ppb and none detected, respectively.

Smoked Salmon. A sample of smoked salmon showed 20,000-21,000 ppb of LACs and 1,800-3,000 ppb of HACs, some four orders of magnitude greater than the levels in unsmoked salmon.

Mussels. In Cycle II, the 3 ppb of LACs in three samples was slightly higher than the 0.6-1 ppb in two samples from Angoon. In Cycle III, the 0.8-1 ppb of LACs in three samples were comparable to those of the Angoon samples.

Chitons. Low levels of ACs in two samples (up to 1 ppb) were indistinguishable from those in Angoon samples.

Larsen Bay --

Pink Salmon. In Cycle I, 1-12 ppb of LACs and up to 0.4 ppb of HACs were found in two samples, compared to LAC and HAC levels of 2 ppb and none detected, respectively, in two samples from Angoon. In a Cycle II sample, values were comparable to those from Angoon (2 ppb, n = 2), while in Cycle III, levels of LACs (up to 1 ppb) in 11 samples were below those of Angoon.

Sockeye Salmon. In Cycle II, 1-6 ppb of LACs and up to 0.2 ppb of HACs were found in six samples, quite similar to the LAC and HAC levels of 2-5 ppb and up to 0.1, respectively, in other species of salmon from Angoon (n = 2). No sockeye salmon were collected at Angoon.

Halibut and Pacific Cod. The very low levels of ACs found were similar to those found in the same species from Angoon (up to 1 ppb).

Butter Clams. Levels of LACs (0.5-4 ppb) in seven samples of butter clams were comparable to those in a sample of butter clams from Angoon (0.5 ppb).

Chitons, Snails, Limpets, Sea Urchins, and Crabs. The low levels of ACs found were similar to, or slightly higher than, those found in some of these species at Angoon (up to 1 ppb).

Ouzinkie ---

Pink Salmon. The 0.9-5 ppb of LACs in nine samples in Cycle II were comparable to, or slightly higher than, those in Angoon samples (2 ppb, n = 2).

Coho Salmon. In Cycle III, the 0.6-6 ppb of LACs in eight samples were comparable to the 2-4 ppb in Angoon samples (n = 3). Traces of HACs (0.2-0.6 ppb) were also detected in three samples, as compared to none detected in the Angoon samples (n = 3).

Halibut. Up to 1 ppb of ACs found in five samples were comparable to those in Angoon halibut (0.4-1 ppb).

Butter Clams. In four samples, the 0.9-7 ppb of LACs and up to 2 ppb of HACs were comparable to, or slightly higher than, those in Angoon samples (LAC and HAC levels of 0.5 ppb and none detected, respectively, n = 1).

Mussels and Chitons. Levels of ACs found in a sample each of mussels (0.9 ppb) and chitons (0.5 ppb) were comparable to those for Angoon (0.4-1 ppb).

Chiniak --

Pink Salmon, Sockeye Salmon, Chum Salmon (O. keta), and Halibut. The levels of LACs (0.4-4 ppb) in six samples of pink salmon and two of halibut (0.8-1 ppb) from Chiniak were comparable to those from the same species sampled at Angoon (2 ppb, n = 2 and 0.4 ppb, n = 1, respectively). Additionally, samples of sockeye salmon and chum salmon contained 0.8-5 ppb of the LACs, similar to the levels for pink salmon from Angoon (2 ppb, n = 2). Butter Clams, Littleneck Clams, Cockles, and Chitons. The levels LACs (0.1-2 ppb) in 14 samples of such molluscs were comparable to those in similar mollusc samples from Angoon (0.5-1 ppb, n = 5). In addition, samples butter clams and littleneck clams had traces of HACs (0.3-0.4 ppb, n = 3), compared to none detected for Angoon.

Akhiok --

Pink Salmon. The 1-4 ppb of LACs and 0.1-0.4 ppb of HACs we comparable to those in samples from Angoon (LAC and HAC levels of 2 ppb a none detected, respectively, n = 2).

Coho Salmon and Sockeye Salmon. No ACs were found in sample of either of these species at this site.

Mussels, Butter Clams, Littleneck Clams, and Chitons. Up to 1 pp of LACs in seven samples were comparable to the levels in such molluscs from Angoon (0.5-1 ppb, n = 5).

Port Lions --

Pink Salmon. In 10 samples from Port Lions, up to 3 ppb of LA(and up to 0.2 ppb of HACs were comparable to those in samples from Angoon (LAC and HAC levels of 2 ppb and none detected, respectively, n = 2).

Coho Salmon, Halibut, and Sole. The 0.2-3 ppb of LACs in six samples of coho salmon, four samples of halibut and one sample of sole from Port Lions were comparable to the levels in these species from Angoon (0.4-4 ppb, n = 4).

Crab, Butter Clams, Littleneck Clams, Chitons, and Snails. The 0.4-3 ppb of ACs in these samples were comparable to those for samples from Angoon (0.5-1 ppb, n = 5).

Port Graham and English Bay --

Pink Salmon. Up to 1 ppb of ACs in seven samples were comparable to those in samples from Angeon (2 ppb, n = 2).

Halibut. The level of ACs in a sample was similar to that from Angoon (0.4 ppb; n = 1).

Irish Lord. The levels of ACs in two samples were not much different from those of other fish from Angoon. No Irish Lords were collected from Angoon.

Mussels. The 1-5 ppb of LACs in 10 samples were slightly elevated compared to Angoon (0.6-1 ppb, n = 2). The HACs (up to 12 ppb) were sometimes moderately elevated compared to Angoon mussels (up to 0.1 ppb, n = 2).

Littleneck Clams and Cockles. One sample of each showed moderately elevated levels of LACs (3-20 ppb) and HACs (9-10 ppb) compared to similar molluscs from Angoon (LAC and HAC levels of 0.5-1 ppb and up to 0.1 ppb, respectively, n = 6).

Chitons. Three samples showed 0.2-0.7 ppb of LACs, which is comparable to the LAC levels in samples from Angoon (1 ppb, n = 2).

Snails. A sample showed 3 ppb of LACs and 0.9 ppb of HACs, slightly elevated compared to other molluscs from Angoon (LAC and HAC levels of 0.5-1 ppb and up to 0.1 ppb, respectively, n = 6).

Karluk --

Pink Salmon, Coho Salmon, Sockeye Salmon, Mussels, Butter Clams, and Chitons. Very low levels of LACs (up to 0.7 ppb) were found, which were comparable to, or lower than the levels in these species from Angoon (up to 4 ppb, n = 10). Kasitsna ---

Mussels. Two samples from Kasitsna showed 0.7-1 ppb of 2-3 rin ACs, comparable to the 0.6-1 ppb found in Angoon mussels (n = 2).

Butter Clams. The level of LACs (2 ppb) in a sample was similar that in a sample from Angoon (0.5 ppb, n = 1).

Chitons. Levels of LACs (2 ppb) in a sample were similar to that i a sample from Angoon (1 ppb, n = 2).

SUMMARY

After the *Exxon Valdez* oil spill in Prince William Sound, native Alaskan were concerned that their seafood could be contaminated by the oil. NOAA, wi funding from Exxon, analyzed edible flesh of fish and shellfish collected from 1 native subsistence fishing grounds. Flesh samples were subjected to extraction and GC/MS analysis for aromatic contaminants from petroleum, including alkylated and unsubstituted aromatic hydrocarbons with 2-7 benzenoid rings and related dibenzothiophenes (Table 1). The hundreds of analyses reported via memo in August, October, and November, 1989 are summarized herein.

Molluscs, mainly mussels, clams, chitons, and snails from Windy Bay, Kodiak, Chenega Bay, and Old Harbor showed consistent GC/MS evidence of exposure to ACs (tissue levels exceeded 100 ppb). Mussels from Windy Bay and Kodiak had the highest levels (1,700-18,000 ppb). Otherwise, levels of aromatic contaminants in molluscs, crabs, and urchins from other areas were generally les than 10 ppb. This is comparable to the levels found in shellfish collected near the village of Angoon, a designated reference area in southeast Alaska.

Generally, the edible flesh of fish analyzed contained relatively low levels of ACs. Three samples of pink salmon from the village of Kodiak averaged 60-100 ppb of ACs, while another eight samples of pink and coho salmon from Kodiak, Chenega Bay, Tatitlek, and Larsen Bay had 12-59 ppb of ACs. Otherwise, the AC levels in the flesh of salmon from other subsistence fishing areas and the bottomfish from all fishing areas were generally less than 7 ppb, comparable to the levels detected in the same or related species from the reference site.

Statistical analyses of the data revealed that the sample sizes (n) for individual species were often too small to draw statistical distinctions with respect to the reference site, where n = 1-3 for any single species. To broaden the statistical base, samples were grouped by taxonomic affiliation (e.g., salmon or bottomfish) and habitat (e.g., intertidal or benthic). The combining of data for all intertidal molluscs increased the sample size to a reasonable value (n = 147)and had the added advantage of including most of the villages in the statistical analyses. The AC levels in edible flesh of molluscs from Windy Bay, Kodiak, and Chenega Bay were then found to be significantly different from those in molluscs from the reference site near Angoon. However, the AC levels in salmon and bottomfish were not significantly different from those in fish from Angoon. With greater sample numbers available, the AC levels in salmon from Kodiak were found to be significantly different (higher) from those in salmon from Chenega Bay, Old Harbor, and Port Graham and English Bay. The very low levels of ACs in the edible flesh of bottomfish did not warrant further statistical analysis.

As there are significant differences in the rates of uptake, metabolism, excretion, and types of toxic effects exerted by the various ACs measured, the data are also presented to show the levels of 2-3 ring aromatic hydrocarbons and dibenzothiophenes (LACs) separately from the levels of 4-7 ring aromatic hydrocarbons (HACs). The LACs are more prone to dissolution, evaporation, and bacterial degradation and hence, their levels in the environment generally would decline as the spilled oil weathers. The LACs, known for their acute toxicity in experimental animals, are also more rapidly excreted from the body than are HACs. Conversely, HACs are more resistant to dissolution, evaporation, and bacterial degradation. Hence, they tend to persist in the environment. The HACs are metabolized by fish to a greater extent than are the LACs and they have been shown to exert chronic toxicity in experimental animals (e.g., carcinogenicity, tetratogenicity, and reproductive dysfunction).

In this study, the levels of LACs in molluscs ranged from not detected to 16,000 ppb and levels of HACs ranged from not detected to 2,500 ppb. For fish

muscle, the levels of LACs ranged from not detected to 110 ppb, and levels of HACs ranged from not detected to 12 ppb. Benzo[a]pyrene, a carcinogenic HAC was detected in molluscs from Windy Bay and Chenega Bay at levels of 0.1 to 7 ppb, but was not detected in fish. Only two samples of smoked salmon from Old Harbor and Tatitlek were analyzed in this study; they contained 7,500 and 20,000 ppb of LACs and 670 to 2,400 ppb HACs, respectively. The concentrations of benzo[a]pyrene in these samples were 6 ppb (Old Harbor) and 20 ppb (Tatitlek). At present there are no national guidelines established for acceptable levels of aromatic contaminants in food products; however in an unofficial advisory opinion, the Food and Drug Administration has indicated that little additional risk is involved in the consumption of the nonsmoked subsistence foods harvested after the *Exxon Valdez* oil spill.²

The main use of the analyses of bile from fish was to assess exposure to ACs and prioritize the GC/MS analyses of the corresponding samples of edible flesh. For each species, edible flesh samples were analyzed as individual samples or as composite samples according to the levels of fluorescent aromatic compounds (FACs) in bile. Interesingly, unsubstituted ACs predominated in fish muscle,³ which could be due to the more rapid metabolism of alkylated ACs than of unsubstituted ACs by fish liver. Conversely, molluscs which have little ability to metabolize ACs had both alkylated and unsubstituted ACs, and the pattern more closely resembled that of Prudhoe Bay crude oil.³

The results to date provide a) important information on the level of contamination of subsistence fish and shellfish from fishing areas of native Alaskan villages in and near Prince William Sound and b) a reference database against which future temporal changes of petroleum derived ACs in the edible flesh of fish and shellfish can be evaluated.

³ GC/MS observations on sample extracts.

 ² FDA advisory opinion on the safety of aromatic hydrocarbon residues found in subsistence foods that were affected by the *Exxon Valdez* oil spill by the Center for Food Safety and Applied Nutrition's (CFSAN) Quantitative Risk Assessment Committee (QRAC). Guidelines (Report of August 9, 1990) transmitted to Chairman of Alaska Oil Spill Task Force, August 21, 1990, from Fred R. Shank, Director, CFSAN, Department of Health and Human Services, Food and Drug Administration, Washington, D.C. 20204.

ACKNOWLEDGMENTS

We are grateful to our colleagues in the National Marine Fisheries Service (NMFS) and National Ocean Service (NOS), NOAA, who provided valuable assistance and support in organizing this joint NOAA/Exxon study. Particularly noteworthy in this respect were the efforts of Dr. Charles Ehler, Director, Office of Oceanography and Marine Assessement (OMA/NOS), and John Robinson, Director, Hazardous Materials Response Branch (HazMat) of OMA/NOS, who were instrumental in initiating and developing the NOAA/Exxon MOU. Other HazMat members who provided valuable liaison include Jay Field, biologist; Lew Consiglieri, Coastal Resources Coordinator; and Ann Hayward-Walker, Scientific Support Coordinator. We also appreciate the support and encouragement of Dr. Richard Berry, Director, Northwest Fisheries Center (NWC/NMFS) and Dr. Tom Nighswander, Chair, Oil Spill Health Task Force. Dave Schmidt and his staff of field biologists from Dames and Moore performed the field sampling for this study, under contract to Exxon, and forwarded the samples to us under chain of custody. Pippa Coiley and Craig Mishler of Alaska's Department of Fish and Game assisted with field collections, as did Tim Reilly of RPI International, Inc. Dr. Paul Boehm of Arthur D. Little, Inc., under contract to Exxon, conducted the interlaboratory comparisons in which we participated. Gary Duker and his staff of the NWC publications unit provided expert review of this manuscript. Finally, a number of EC Division chemists and technicians ably assisted this study in the sample analyses and the data management. In alphabetical order they are Lisa Bogatzki, Jennie Bolton, Richard Boyer, Tara Felix-Slinn, Jennifer Fisher, Barbara French, Deborah Holstad, Anna Kagley, Ron Pearce, Eunice Schnell, and Dana Whitney.

CITATIONS

- Burrows, D. G., D. W. Brown, and W. D. MacLeod, Jr. In press. Improved sensitivity for aromatic hydrocarbon quantitation by sequencing GC-MS MID scan descriptors. In Proceedings of the 38th ASMS Conference on Mass Spectrometry and Allied Topics.
- Collier, T. K., and U. Varanasi. 1987. Biochemical indicators of contaminant exposure in flatfish from Puget Sound, WA. In Oceans '87/proceedings, Vol. 5, Coastal and estuarine pollution, p. 1544-1549. Available from IEEE, 445 Hoes Lane Piscataway, NJ 08854.
- Dunn, O. J. 1964. Multiple contrasts using rank sums. Technometrics 6: 241-252.
- Hollander, M., and D. A. Wolfe. 1973. Nonparametric statistical methods. John Wiley, New York, 503 p.
- Krahn, M. M., M. S. Myers, D. G. Burrows, and D. C. Malins. 1984. Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. Xenobiotica 14:633-646.
- Krahn, M. M., L. K. Moore, and W. D. MacLeod, Jr. 1986a. Standard analytical procedures of the NOAA National Analytical Facility, 1986: Metabolites of aromatic compounds in fish bile. U.S. Dep. Commer. Tech. Memo. NMFS F/NWC-102, 25 p.
- Krahn, M. M., L. J. Kittle, Jr., and W. D. MacLeod, Jr. 1986b. Evidence for exposure of fish to oil spilled into the Columbia River. Mar. Environ. Res. 20:291-298.

l

Krahn, M. M., C. A. Wigren, R. W. Pearce, L. K. Moore, R. G. Bogar, W. D. MacLeod, Jr., S-L. Chan, and D. W. Brown. 1988. Standard analytical procedures of the NOAA National Analytical Facility, 1988: New HPLC cleanup and revised extraction procedures for organic contaminants. U.S. Dep. Commer. Tech. Memo. NMFS F/NWC-153, 52 p.

- Lowry, O. H., W. J. Rosebrough, A. L. Farr and R. S. Randall. 1951. Proteir measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.
- MacLeod, W. D., Jr., D. W. Brown, A. J. Friedman, D. G. Burrows, O. Mayne
 R. W. Pearce, C. A. Wigren, and R. G. Bogar. 1985. Standard analytical
 procedures of the NOAA National Analytical Facility, 1984-1985:
 Extractable toxic organic compounds, Second Ed., U.S. Dep. Commer.
 Tech. Memo. NMFS F/NWC-92, 121 p.
- Reichert, W. L., and U. Varanasi. 1982. Metabolism of orally administered naphthalene in spawning English sole (*Parophrys vetulus*). Environ. Res. 27:316-324.
- Sokal, R., and F. Rohlf. 1981. Biometry (2d ed.). W. H. Freeman and Co, San Francisco. 854 p.
- Statham, C. N., Melancon, M. J., Jr., and Lech, J. J. 1976. Bioconcentration of xenobiotics in trout bile: A proposed monitoring aid for some waterborne chemicals. Science 193: 680-681.
- Stein, J. E., T. Hom, and U. Varanasi. 1984. Simultaneous exposure of English sole (*Parophrys vetulus*) to sediment-associated xenobiotics: I. Uptake and disposition of [¹⁴C]-polychlorinated biphenyls and [³H]-benzo[a]pyrene. Mar. Environ. Res. 13:97-119.
- Varanasi, U. and D. J. Gmur. 1981. Hydrocarbons and metabolites in English sole (*Parophrys vetulus*) exposed simultaneously to ³H-B(a)P and ¹⁴C-naphthalene in sediment. Aquat. Toxicol. 1:49-67.
- Varanasi, U., M. Nishimoto, W. L. Reichert and J. E. Stein. 1982.
 Metabolism and subsequent covalent binding of benzo[a]pyrene to macromolecules in gonads and liver of ripe English sole (*Parophrys vetulus*). Xenobiotica 12:417-425.

- Varanasi, U., S-L. Chan,, B. B. McCain, M. H. Schiewe, R. C. Clark, D. W. Brown, J. T. Landahl, M. M. Krahn, W. D. Gronlund, and W. D. MacLeod. 1988. National Benthic surveillance Project: Part I summary and overview of the results for cycles I to III (1984-1986). U. S. Dep. of Commerce Tech. Memo. NMFS F/NWC-156, 71 p.
- Varanasi, U., J. E. Stein, and M. Nishimoto. 1989a. Biotransformation and disposition of polycyclic aromatic hydrocarbons (PAH) in fish. In U. Varanasi (editor), Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment, p. 93-149. CRC Press, Inc., Boca Raton, FL.
- Varanasi, U., S-L. Chan, W. D. MacLeod, J. E. Stein, D. W. Brown, D. G. Burrows, K. L. Tilbury, C. A. Wigren, and T. Hom. 1989b. Survey of subsistence fish and shellfish for exposure to oil spilled from the Exxon Valdez: Interim report (Cycle I), August 28, 1989. Available from Environmental Conservation Division, Northwest Fisheries Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East., Seattle, Washington 98112.
- Varanasi, U., S-L. Chan, W. D. MacLeod, J. E. Stein, D. W. Brown, D. G. Burrows, K. L. Tilbury, C. A. Wigren, and T. Hom. 1989c. Survey of subsistence fish and shellfish for exposure to oil spilled from the Exxon Valdez: Interim report (Cycle II), October 1, 1989. Available from Environmental Conservation Division, Northwest Fisheries Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East., Seattle, Washington 98112.
- Varanasi, U., S-L. Chan, W. D. MacLeod, J. E. Stein, D. W. Brown, D. G. Burrows, K. L. Tilbury, C. A. Wigren, and T. Hom. 1989d. Survey of subsistence fish and shellfish for exposure to oil spilled from the Exxon Valdez: Interim report (Cycle III), November 13, 1989. Available from Environmental Conservation Division, Northwest Fisheries Center, National Marine Fisheries Service, National Oceanic and

Atmospheric Administration, 2725 Montlake Boulevard East., Seattle, Washington 98112.

- Varanasi, U., S-L. Chan, W. D. MacLeod, J. E. Stein, D. W. Brown, D. G. Burrows, K. L. Tilbury, J. T. Landahl, C. A. Wigren, T. Hom, and S. M. Pierce. 1989e. Survey of subsistence fish and shellfish for exposure to oil spilled from the Exxon Valdez: Summary report (Cycles I-III), February, 7, 1990. Available in expanded form as this tech. memo.
- Varanasi, U., S-L. Chan,, B. B. McCain, J. T. Landahl, M. H. Schiewe, R. C. Clark, D. W. Brown, M. M. Krahn, W. D. Gronlund, and
 W. D. MacLeod. 1989f. National Benthic Surveillance Project: Part II: Technical presentation of the results for Cycles I to III (1984-1986).
 U.S. Dep. Commer. Tech. Memo. NMFS F/NWC-170, 212 p.
- Zar, J. H. 1984. Biostatistical analysis (2d ed.). Prentice-Hall, Inc, Englewood Cliffs, NJ, 718 p.

APPENDIX A

ALC: NO.

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

SUMMARY OF CONCENTRATIONS: LACS/HACS, PLUS FIELD AND LABORATORY SAMPLE NUMBERS

Explanatory notes for Tables A-1 through A-26.

Results on sample extracts were determined by gas chromatography/mass spectrometry (GC/MS) using sequenced multiple ion detection.

Cycles I, II, and III refer to samples collected in July, August, and September 1989, respectively.

A hyphen (-) indicates that the analyte was not detected above the limit of detection which ranged from 0.02 to 1 ng/g (ppb) wet weight. This applies to individual contaminants, as well as groupings of contaminants (e.g., C2-phenanthrenes/anthracenes).

Low levels of naphthalene found were indistinguishable from those of blank analyses and were not included in the sums.

				the state of the				Angoon		
Site	1	1	1	2	l ſ	1	1	2	2	2
Lab no.	47	242	243	666		232	324	231	325	328
No. of field samples					I				Split s	amples
comprising lab sample	1	1	1	1			1	1	1	1
Cycle No.	I	III	Ш	I		II	11	II	II	II
Molluscs: mussels clams butter	3300 / 440	16000 / 2500 *	2400 / 550			0.6/-	1/0.1	0.5/-		
horse littleneck				830/130					0.5 / -	0.8/-

Table A-1. Windy Bay shellfish: Mussels and clams. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

* One of the mussels in this sample package had a black oil-like substance in it and no tissue. It was not included in the analysis. The remaining mussels from this package were used for the composite and were carefully dissected to avoid contamination from the one mussel.

							Angoon			
Site	1	1	1	1	1	2	2	2	1	1
Lab no.	76	360	684	232	324	231	325	328	326	327
No. of field samples							Split s	amples		
comprising lab sample		1	1	1	1	1	1	1	1	1_
Cycle No.	I	III	1	n	II	11	11	11	<u> </u>	II
Moliuscs: mussels clams butter				0.6/-	1 / 0.1	0.5/-				
Dutter						0.57-				
horse							0.5/-	0.8/-		
chitons	12/3	4000 / 1800							1/-	1/-
snails			620 / 160							

 Table A-1 (continued). Windy Bay shellfish: Chitons and snails. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.....

-

.

* ***

												An	goon		
Site	5	5	5	5	5	5	5	5	5	3	3	3	3	3	3
Lab No.	166	195	187	188	189	628	637	629	630	229	320	230	319	323	321
No. of field samples	Split sa	mplcs				Split sa	umples								
comprising lab sample	1	1	1	3	2	2	2	2	2	3	3	3	3	2	3
Cycle No.	П	Π	Π	Π	Π	Π	Π	Π	П	Π	П	II	П	Π	П
Salmon: pink coho chinook	110/12	72 / 8	54/5	22 / 2	6/0.2	84 / 10	22/3	4 / 0.2	32/5	2/-	2/-	2/-	4/-	2/-	5/0.1

Table A-2. Kodiak Village fish: Pink salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in	n
Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.	

and the second

											An	goon		-
5	5	5	5	5	5	5	5	3		3	3	3	3	3
						194	94	22	9	320	230	319	323	321
Split sa	mples	Split sa	mples	Split san	nples			1			and a second a second	1		
1	1	1	1	1	1	1	2	3		3	3	3	2	3
	Π	П	m_	M	m	Π				<u> </u>	Π	Π	Π	П
0.7/-	0.5/-	1/.	1/-	0.9/-	3/-			2/	-	2/-				
											2/-	4/-	2/-	
						11/0.5								
														5/0.1
							1/-			-				
	1	Split samples 1 1 III III	Split samples Split sa 1 1 1 1 1 11 11 11 11 11 11 11	Split samples Split samples 1 1 1 11 11 1 111 111 111	Split samples Split samples Split samples Split samples 1 1 1 1 1 11 1 1 1 1 11 11 1 1 1	Split samples Split samples Split samples 1 1 1 1 1 1 1 1 11 11 11 11	Split samples Split samples Split samples 1 1 1 1 III III III III III 0.7 /- 0.5 /- 1 /- 1 /- 0.9 /- 3 /-	Split samples Split samples Split samples Image: Constraint of the samples Image: Consamples	Split samples Split samples Split samples 3 1 1 1 1 2 3 III III III III II I 1 1 2 3 III III III III III II II II II II 0.7 /- 0.5 /- 1 /- 1 /- 0.9 /- 3 /- 1 2 / 11 / 0.5 1 /- 1 /- 0.9 /- 3 /- 11 / 0.5 2 /	Split samples Split samples Split samples 3 1 1 1 1 2 3 III III III III II I 2 3 III III III III III II I 1 1 1 1 1 1 1 I	Split samples Split samples Split samples 3 3 III III III III II 1 1 2 3 3 III III III III III II II	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Split samples Split samples Split samples 3	5 6 6 7 7

 Table A-2 (continued). Kodiak Village fish: Pink salmon (continued), sockeye salmon, and Dolly Varden. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

• •••

.

50

					An	goon
2 4	6 193	6 508	1 24		3 228	3 322
2	2	1	2		3	2
	Π	Ш	<u> </u>		Π	П
-/-	0.3/-	0.9 / -			0.4 / -	
						0.6/-
			-1-			
	2 4 2 1 -/-	4 193 2 2 I II	4 193 508 2 2 1 I II III	4 193 508 24 2 2 1 2 -1 II III I -/- 0.3 / - 0.9 / - 1	4 193 508 24 2 2 1 2 I II III I -/- 0.3/- 0.9/-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Table A-2 (continued). Kodiak Village fish: Halibut and rockfish. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

												Алдооп			
Site		3	3	3	3	3	4	5	1	1	2	2	2	1	1
Lab No.		212	437	447	208	396	96	341	232	324	231	325	328	326	327
No. of field samples												Split	samples		
comprising lab sample		1	1	1	1		1	1			1	1	1	1	1
Cycle No.	I	Ц	m	m	п	m		<u>п</u>			<u>n</u>	Π	_Π_	Π	11
Molluses:															
mussels	1500/160								0.6/-	1/0.1					
clams															
butter		410/50									0.5/-				
horse												0.5/-	0.8/-		
littleneck			270/87	120/24											
chitons					230/27	90/30								1/-	1/-
Crabs:															
Dungeness				6			0.2/-	0.6/-							

Table A-3. Kodiak Village shellfish: Mussels, clams, chitons, and crabs. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

. ...

52

1

١

L I F I Y Y

											An	goon		
Site		3	3	4	4	4	4	4	3	3	3	3	3	3
Lab No.	137	138	152	452	453	456	454	455	229	320	230	319	323	321
No. of field samples					Split s	amples								
comprising lab sample	2	3	3	1	1	1	1	1	3	3	3	3	2	3
Cycle No.	n	П	Π	ПІ	m	Ш	m	ΠΙ	П	П	П	п	П	Π
Salmon: pink coho chinook	0.9/-	20/-	-1-	0.3/-	2/-	2/-	1/-	0.2 / -	2/-	2/-	2/-	4/-	2/-	5/0.1

Table A-4. Chenega Bay fish: Pink salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

ь ×

.

53

											An	goon		
Site	4	4	4	4	4	4	4	4	3	3	3	3	3	3
Lab No.	465	466	467	468	469	470	471	472	229	320	230	319	323	321
No. of field samples														
comprising lab sample	_1	1	1	1	1	1	1	1	3	3	3	3	2	3
Cycle No.	Ш	Ш	Ш	Ш	Ш	Ш	m	Ш	П	11	Π	П	n	П
Salmon: pink coho	-/-	0.4 / -	-1-	-/-	-/-	-/-	0.6/-	-1-	2/-	2/-	2/-	4/-	2/-	5.00.1
chinook														5/0.1

....

 Table A-4 (continued). Chenega Bay fish: Pink salmon (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

<u>а</u> н

s

			_				An	goon		1
4 473	4 474	4 483	4 484	4 593	3 229	3 320	3 230	3 319	3 323	3 321
1	1	1	2	1	3	3	3	3	2	3
Ш	Ш	m	Ш	m	II	Π	<u> </u>	II	Π	П
3/-	1/-	0.3 / -	0.8 / -	0.7 / -	2/-	2/-				
							2/-	4/-	2/-	
										5/0
		473 474 1 1 <u>III</u> III	473 474 483 1 1 1 III III III	473 474 483 484 1 1 1 2 III III III III	473 474 483 484 593 1 1 2 1 III III III III	473 474 483 484 593 229 1 1 2 1 3 3 III III III III 1	473 474 483 484 593 229 320 1 1 2 1 3 3 III III III III III III	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	473 474 483 484 593 229 320 230 319 1 1 2 1 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Table A-4 (continued). Chenega Bay fish: Pink salmon (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

55

											_	An	goon
Site	2	2	2	2	2	2	2	2	2 ·	2	2	3	3
Lab No.	28	130	131	485	23	149	151	487	42	150	157	228	322
No. of field samples													1
comprising lab sample	_2	2	2	3	3				2 .	1	1	3	2
Cycle No.		П	п	Ш	I	П	_Π_	m	I	П	11		п
Halibut	-/-	-1-	-1-	0.5/-								0.4 / -	
Pacific cod					-1-	-/•	-1-	0.3/-					0.6/-
Rockfish									-1-	-1-	-1-		

ی منبو بواند

 Table A-4 (continued). Chenega Bay fish: Halibut, Pacific cod, and rockfish. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

* ~

•• •

×.

-

1

i.,

.

									Angoon											
Site		1	1	1	1	1	1	2	2	2	1	1								
Lab No.	44	114	304	305	306	232	324	231	325	328	326	327								
No. of field samples									Split sa	mples										
comprising lab sample	2	1	1	1	_1	1	1	1	1	1	1	1								
Cycle No.	I	П	Ш	Ш	Ш	П	Π	П	II	П	П	Π								
Molluscs: mussels	220/20	160/22	200 / 22	190/26	96 / 15	0.6/-	1 / 0.1													
clams butter								0.5/-												
horse									0.5/-	0.8/-										
chitons											1/-	1/-								

.

Table A-5. Chenega Bay shellfish: Mussels. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

57

wir de

						Angoon			
Site	1	1	1	1	2	2	2	1	1
Lab No.	664	665	232	324	231	325	328	326	327
No. of field samples						Split s	amples		
comprising lab sample	1	1	1_1_		1	1	1	1	1
Cycle No.	I	I	II	Π	Π	П	П	П	П
Molluscs: mussels			0.6 / -	1/0.1					
clams									
butter	37/5	15/3			0.5/-				
horse						0.5/-	0.8 / -		
chitons .					1 - C			1/-	1/-

 Table A-5 (continued). Chenega Bay shellfish: Clams. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

18.94

											An	goon		
Site	2	2	2	2	2	2	2		3	3	3	3	3	3
Lab No. No. of field samples		262	269	270	279	<u>650</u>			229	320	230	319	323	321
comprising lab sample		1	1	3	3	2	1		3	3	3	3	2	3
Cycle No.		П	Π	Π	Π	П	m		11	<u> </u>	Π	II	Π	Π
Salmon: pink coho chinook	-/-	1/-	2/0.1	1/-	1/-	4/0.3	·-/-		2/-	2/-	2/-	4/-	2/-	5/0.1

Table A-6. Old Harbor fish: Pink salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

Site	2	2	2	2	2	2	2	3	3	3	3	3	3
Lab No.	544	545	546	555	556	557	558	229	320	230	319	323	321
No. of field samples comprising lab sample	1	1	1	1	1	1	1	3	3	3	3	2	3
Cycle No.	Ш	m	Π	Ш	Щ	Ш	Ш	Π	II	II	II	Π	Π
almon: pink coho	-1-	-1-	-/-	-/-	-/-	-/-	-1-	2/-	2/-	2/-	4/-	2/-	
chinook													5/0

 Table A-6 (continued). Old Harbor fish: Pink salmon (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

.

-

										An	goon		
Site Lab No.	2 559	2 573	2 598	2 599	1 241	1 244	2 703	3 229	3 320	3 230	3 319	3 323	3 321
No. of field samples comprising lab sample	1	2	1	2	1	1	1	3	3	3	3	2	3
Cycle No.	Ш	Ш	m	m	1.	_1	1	п	n	Π	Π	П	п
Salmon: pink coho chinook	-/-	-/-	0.2/-	0.2 / -				2/-	2/-	2/-	4/-	2/-	5/0.1
smoked salmon					7100 / 650	7800 / 700							
olly Varden			-				17-				1		

2

 Table A-6 (continued). Old Harbor fish: Pink salmon (continued), Dolly Varden, and smoked salmon. Sums of the concentrations, ng/g (ppb) wet weight of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

.

						_	An	roon
Site	1	1	1	1	2		3	3
Lab No.	40	283	707	26	524		228	322
No. of field samples comprising lab sample	1	3	1	2	1		3	2
Cycle No.	1	Π	<u> </u>		Ш		Π	Π
Halibut	-1-	1/-	0.8/-				0.4 / -	
Pacific cod				-/-	0.7 / -			0.6/-

 $\overline{2}_{2}$

.

 Table A-6 (continued). Old Harbor fish: Halibut and Pacific cod. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

-

.....

.

								•				Angoon			
Site	3	3	3	3	3	3	4		1	1	2	2	2	1	1
Lab No.		669	225	226	431	432	670	1	232	324	231	325	328	326	327
No. of field samples												Split sa	mples		
comprising lab sample	1	1	1	1	1	1	1		1	1	1	1	1	1	1
Cycle No.	1	I	Π	Π	Ш	Ш	I]	Π	II	П	П	Π	II	II
Molluscs: mussels clams butter horse chitons	-1-	2/0.6	2/0.8	0.7 / 0.3	1/1	0.3 / -	4/7		0.6/-	1/0.1	0.5/-	0.5 / -	0.8/-	1/-	1/-

Table A-7. Old Harbor shellfish: Mussels and clams. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

FEB 2 8 1991

 $\sim 10^{-1}$

噻%

									Angoon			
Site	4	4	4	4	4	1	1	2	2	2	1	1
Lab No.	227	247	418	419	433	232	324	231	325	328	326	327 -
No. of field samples			Split s	amples					Split s	amples		• • •
comprising lab sample	1	1	1	1	1	1	1	1	1	1	1	•1 5
Cycle No.	П	П	Ш	Ш	Π	П	П	Π	n	П	Π	<u>``П -</u>
Molluscs: mussels clams butter horse chitons	6/5	4/3	230 / 21	330 / 29	210/20	0.6/-	1 / 0.1	0.5/-	0.5/-	0.8/-	1/-	- •

 Table A-7 (continued). Old Harbor shellfish: Clams (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.....

.

14. 14

									2.1			Angoon			
Site Lab No.	3 615	4 616	3 79	3 345	3 401	3 691	2 98	[1 232	1 324	2 231	2 325	2 328	1 326	1 327
No. of field samples comprising lab sample		1	1	1	1	1	2		1	1	1	Split sa		1	1
Cycle No.	Ш	m	. I	Π	m	I	Ī		<u> </u>	Π	II	Π	П	П	Π
Molluscs: mussels clams butter horse									0.6/-	1 / 0.1	0.5/-	0.5/-	0.8/-		
littleneck chitons	2/0.7	200 / 19	2/0.1	0.9/-	0.5/-									1/-	1/
Urchins						5/2									
Crabs: Tanner							0.1 / -								

Table A-7 (continued). Old Harbor shellfish: Clams (continued), chitons, urchins, and crabs. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

												A	ngoon		
Site	2	3	3	3	3	3	7	7	7	3	3	3	3	3	3
Lab No.	1	134	139	135	136	153	362	363	364	229	<u>_320</u>	230	319	323	321
No. of field samples		Split s	amples												
comprising lab sample	3	1	1	1	1	3	3	3	2	3	3	3	3	2	3
Cycle No.	1	Π	П	П	Π	Π	Ш	m	III	II	П	Π	<u> </u>	II	II
Salmon: pink coho chinook	0.05 / -	-/-	-/-	- -	-/-	-/-	14/1	15/1	19/2	21-	2/-	2/-	4/-	2/-	5/0.1

-

.

 Table A-8. Tatitlek fish: Pink salmon and coho salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

W. alt

									A	ngoon		
Site Lab No.	7 448	7 449	7 450	7 451	na 526	na 527	3 229	3 320	3 230	3 319	3 323	3 321
No. of field samples comprising lab sample		3	3	2	па	na	3	3	3	3	2	3
Cycle No.		III	III	III	na	na	II	II	II	II	II	II
Salmon: pink coho	3/0.1	5/0.2	3/-	3/-			2/-	2/-	2/-	4/-	2/-	
chinook												5/0.1
smoked salmon					20000 / 3000	21000 / 1800						

 Table A-8 (continued). Tatitlek fish: Coho salmon (continued) and smoked salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site; na = not applicable.

						An	zoon
Site	4	6	4	3	4	3	3
Lab No.	27	132	22	701	702	228	322
No. of field samples							
comprising lab sample	2	2	2	1	1	3	2
Cycle No		11	I	I		11	II
Halibut	-/-	-/-				0.4 / -	
Pacific cod			-/-				0.6/-
Rockfish				1/-	0.6/-		

 $\mathbf{X}_{\mathbf{r}}$

 Table A-8 (continued). Tatitlek fish: Halibut, Pacific cod, and rockfish. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

									 			Angoon			
Site	1	1	5	5	5	5	5	5	1	1	2	2		1	1
Lab No.		66	111	112	113	307	308	309	232	324	231	325	328	326	327
No. of field samples	Split s	amples										Split sa	mples		
comprising lab sample	2	2	1	1	1	1	1	1	1	11	1	1	1	1	1
Cycle No.	<u> </u>	1	п	1	П	Ш	ПІ	Ш	Π	П	II	II	Π	П	п
Molluscs: mussels clams butter	-/-	-/-	3/0.2	3 / 0.1	3/0.3	0.8 / -	1/-	0.9 / -	0.6 / -	1 / 0.1	0.5/-		- - - - - - - - - - - - - - - - - - -		
horse												0.5 / -	0.8/-		
chitons														1/-	1/-

Table A-9. Tatitlek shellfish: Mussels. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

. .

						Angoon			
Site	5	5	1	1	2	2		1	1
Lab No.	120	357	232	324	231	325	328	326	327
No. of field samples						Split san	nples		
comprising lab sample		1	1	<u> </u>		1	1	. I	
Cycle No.	<u> </u>	III	II	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
Molluscs: mussels			0.6/-	1/0.1					
clams butter					0.5/-				
horse						0.5/-	0.8/-		
chitons	-/-	1/-						1/-	1/-

 $\tilde{C} \rightarrow$

 Table A-9 (continued). Tatitlek shellfish: Chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

										Ал	goon		
Site	6	7	7	7	8	8	8	3	3	3	3	3	3
Lab No.		3	29	10_	504	505	506	229	320	230	319	323	321
No. of field samples		Split se	unples										
comprising lab sample	3	l i	1	1	1	1	1	3	3	3	3	2	3
Cycle No.	1	I	I	I	Ш	Ш	П	Π	Π	11	Π	П	п
Salmon: pink coho chinook	2/-	13 / 0.7	12/0.2	1/-	0.3/-	0.8 / -	0.8 / -	2/-	2/-	2/-	4/-	2/-	5 / 0.1

Table A-10. Larsen Bay fish: Pink salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

									_			An	goon		
. Site Lab No.	8 507	8 543	8 581	8 582	8 594	8 595	8 596	8 597		3 229	3 320	3 230	3 319	3 323	3 321
No. of field samples comprising lab sample		1	3	3	1	1	1	1]	3	3	3	3	2	3
Cycle No.	Ш	Ш	Ш	Ш		Ш	<u> </u>	<u> </u>		П	, <u>n</u>	П	<u>n</u>	П	II
Salmon: pink coho chinook	0.5/-	-/-	0.2 / -	0.3 / -	1 / 0.1	0.2/-	0.7/-	0.7 / -		2/-	2/-	2/-	4/-	2/-	5/0.1
СПІЛООК															570.

 Table A-10 (continued).
 Larsen Bay fish: Pink salmon (continued).
 Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh.
 Angoon = reference site.

.

 \sim

72

							_			Ang	oon		
Site	6	6	6	6	6	6		3	3	3	3	3	3
Lab No.	264	282	286	652	653	655		229	320	230		323	321
No. of field samples	3	3	3	3	2	1		3	3	3	3	2	3
Cycle No.	П	Π	Π	П	Π	Π		П	п	II	П	П	Π
Salmon: pink coho sockeye chum chinook	6/0.2	3/-	2/-	6/0.1	3/-	1/-		2/-	2/-	2/-	4/-	2/-	5/0.1

Table A-10 (continued). Larsen Bay fish: Sockeye salmon and chum salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

73

~ 1

								An	goon
Site Lab No.	5 41	6 284	6 708	8 520	8 521	6 704	6 285	3 228	3 322
No. of field samples comprising lab sample	1	3	1	2	2	1	2	3	2
Cycle No.		п	<u> </u>	m		I	Π	Π	<u>п</u>
Hallbut	-/-	0.3/-	0.7/-	0.5/-	0.6/-			0.4 / -	
Pacific cod						0.5/-	0.3/-		0.6/

. .

 Table A-10 (continued). Larsen Bay fish: Halibut and Pacific cod. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

a management of a second second

									_				Angoon			-
Site	1	1	1	1	2	2	2	2]	1	1	2	2	2	1	1
Lab No. No. of field samples		673	416	435	682	249	250	260		232	324	231	325 Salita	328	326	327
comprising lab samples	1	1	1	1	1	1	1	1		1	1	1	i sparsa	amples 1	1	1
Cycle No.		1	m	Ш	I	Π	Π	п]	П	Π	Π	Π	П	П	II
Molluscs: mussels	1/0.3									0.6/-	1/0.1					
clams butter		3/1	0.5/-	1/-	2/0.1	4/0.8	1/0.2	4/0.8				0.5/-				
horse		:											0.5/-	0.8/-		
chitons															1/-	1/-

Table A-11. Larsen Bay shellfish: Mussels and clams. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

ورارا والمتويد عينكر فكالا فتعققهم

								Angoon			
Site	1	1	2	l F	1	1	2	2	2	1	1
Lab No.	81	346	411		232	324	231	325	328	326	327
No. of field samples comprising lab sample	1	1	1		1	1	1	Split sa	mples 1	1	1
Cycle No.	Ī	Ī	Ш		Π	Ū	л	П	II	n	Î
folluscs: musscls clams					0.6/-	1 / 0.1					
butter							0.5/-				
horse								0.5/-	0.8 / -		
chitons	0.6/0.06	0.9/0.6	0.4 / -							1/-	1/-

.....

 Table A-11 (continued). Larsen Bay shellfish: Chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

Ala and the intervention of the										Angoon			
Site	4	1	3	4	4	4	1	1	2	2	2	1	1
Lab No.	686	690	692	99	100	689	232	324	231	325	328	326	327
No. of field samples										Split s	amples		
comprising lab sample						1	1	1			1		
Cycle No.	<u> </u>			<u> </u>	I	<u> </u>	П	П	Π	Π	II	Π	Π
Molluscs: mussels							0.6/-	1 / 0.1					
clams butter									0.5 / -				
horse										0.5/-	0.8/-		
chitons												1/-	1/-
snails	1/-												
limpets		2/0.1											
Urchins			2/1				<i>k</i>						
Crabs: Dungeness				0.1 / -									
Tanner					0.2/-								
king						2/-							

Table A-11 (continued). Larsen Bay shellfish: Snails, limpets, urchins, and crabs. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

			_							Ang	oon		-
Site	1	5	5	5	5	5	5	3	3	3	3	3	3
Lab No.	9	175	191	192	631	632	633	229	320	230	319	323	321
No. of field samples comprising lab sample	2	3	2	3	2	2	2	3	3	3	3	2	3
Cycle No.	- 1	Π	Π	П	П.	П	Π	П	Π	Π	11	Π	Π
ialmon: pink coho chinook	-/-	1/-	3/-	5/0.5	1/-	1/-	1/-	2/-	21-	2/-	4/-	2/-	5/0.1

a and a second a low-are in

د می د مراجعه مراجعه

 Table A-12. Ouzinkie Fish: Pink salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.....

.....

÷.

.

*

74. **.** .

78

and the second s

											Ал	goon		
Site	5	5	5	6	6	6	6	6	3	3	3	3	3	3
Lab No.		635	636	<u>528</u>	542	563	<u> </u>	575	229	320	230	319	323	321
No. of field samples													ļ	
comprising lab sample		2		1	1	2	3	3	3	3	3	3	2	3
Cycle No.	П	1	П	111	Ш	m	ПІ	<u> </u>	<u> </u>	II	I	Π	<u>Π</u>	Π
Salmon: pink coho chinook	1/-	0.9/-	1/-	6/0.6	0.8 / -	2/-	0.6/-	0.6 / -	2/-	2/-	2/-	4/-	2/-	5/0.1

Table A-12 (continued).	Ouzinkie fish: Pink salmon (continued) and coho salmon. Sums of the concentrations, ng/g (ppb) wet weight, of
	aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

۰.

						An	goon		
Site Lab No.	6 609	6 610	6 611	3 229	3 320	3 230	3 319	3 323	3 321
No. of field samples comprising lab sample		2	2	3	3	3	3	2	3
Cycle No.	Ш	Ш	Ш		<u> </u>	П	Π	Π	ĪĪ
almon: pink coho chinook	4/0.2	2/-	5/0.4	2/-	2/-	2/-	4/-	2/-	5/0.1

 Table A-12 (continued). Ouzinkie fish: coho salmon (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

- ----

-

3.06

80

1...

а с на семени на на 17 а ба алија и на на

. ...

							An	goon
Site	1	3	3	3	3		3	3
Lab No.	8	171	172	510	519	1	228	322
No. of field samples comprising lab sample	2	2	2	2	2		3	2
Cycle No.		Ш	Π	Ш	III		I	Π
Halibut	-/-	0.2/-	1/0.1	-/-	0.3 / -		0.4/-	
Pacific cod								0.6/-

 Table A-12 (continued). Ouzinkie fish: Halibut. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

									,		Angoon			
Site		2	2	3	4	2	2	1	1	2	2	2	1	1
Lab No.		63	434	672	207	671	_214_	232	324	231	325	328	326	327
No. of field samples											Split s	amples		
comprising lab sample		1	1	1	1	1	1	1	1	1	1	1	1	1
Cycle No.	Ш	1	_ <u>_</u>	I	<u> </u>	I	Π	П	Π	Π	Π		П	Π
Molluscs: mussels clams butter	0.97-	-/-	0.97-	7/2	3/0.5			0.6/-	1 / 0.1	0.5/-				
horse											0.5 / -	0.8 / -		
littleneck						1/-	0.6/-							
chitons													1/-	1/-

٠.

--- 84

 Table A-13. Ouzinkie shellfish: Mussels and clams. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in

 Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

-

.

×

82

exert in the spectrum

رهيره التصع

••

ية بن من التي يا م التسايير علي ما ما م

-

			-				Angoon			
Sitc	2	2		1	1	2	2	2	1	1
Lab No.	80	410		232	324	231	325	328	326	327
No. of field samples							Split s	amples		
comprising lab sample	1	1		1	1	1 1	1	1	1	1
Cycle No.	<u> </u>	m		П	<u> </u>	п	П	Π	п	П
Molluscs: mussels				0.6/-	1/0.1					
clams butter						0.5/-				
· · horse							0.5/-	0.8/-		
littleneck	3									
chitons	0.1/-	0.5/-							1/-	1/-

Table A-13 (continued). Ouzinkie shellfish: Chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

												Ar	goon		
Site	5	5	5	5	5	5	5	7	7	3	3	3	3	3	3
Lab No.	261	288	265	266	287	648	649	501	502	229	320	230	319	323	321
No. of field samples	Split sa	amples													
comprising lab sample		1	3	1	3	2	2	1	1	3	3	3	3	2	3
Cycle No.	П	Π	Π	П	Π	П	П	Ш	m	Π	Π	Π	Π	Π	П
Salmon: pink coho chinook	2/-	0.4 / -	3/0.2	1/-	2/-	4/0.2	4 / 0.2	0.3 / -	0.3 / -	2/	2/-	2/-	4/-	2/-	5/0.1

_

Table A-14. Chiniak fish: Pink salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.......

.

-

te a Conta Alia es 17 10

												An	goon		
Site	7	7	7	7	5	5	5	7		3	3	3	3	3	3
Lab No. No. of field samples		579	580	600	651	280	654	525		229	320	230	319	323	321
comprising lab sample		3	3	3	1	3	3	2		3	3	3	3	2	3
Cycle No.		Ш	Ш	Ш	Π	П	П	m		П	Π	Π	Π	n	Π
Salmon: pink	03/-	03/-	-]-	0.3/-						2/-	2/-				
coho										-		2/-	4/-	2/-	
sockeye					1/-										
chum						5/0.2	0.8/-	0.4/-							
chinook									•						5/0.1

 Table A-14 (continued). Chiniak fish: Pink salmon (continued), sockeye salmon, and chum salmon. Sums of the concentrations,

 ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

Table A-14 (continued).	Chiniak fish:	Halibut and rockfish.	Sums of the concentrati	ons, ng/g (ppb) wet weight, of aromatic
	contaminants	listed in Table 1 (LAC	(/HAC) in edible flesh.	Angoon = reference site.

				_	An	zoon
Site	6	6	4]	3	3
Lab No.	706	509	25		228	322
No. of field samples						
comprising lab sample		2	2		3	2
Cycle No.						
Halibut	0.8/-	1/-			0.4/-	
Pacific cod						0.6/-
Rockfish			-1-			

									Angoon			
Site	1	2	1	1	1	1	1	2	2	2	1	1
Lab No.	57	58	667	413	428	232	324	231	325	328	326	327
No. of field samples									Split (amples		
comprising lab sample	1	1	1	1	1	1	1	1	1	1	1	1
Cycle No.				<u> </u>	Ш	Π	П	Π	<u> </u>	Π	П	Π
Molluscs: mussels	-/-	-/-				0.6/-	1 / 0.1					
clams butter			1/0.1	0.2/-	0.6/0.3			0.5 / -				
horse								r	0.5 / -	0.8 / -		
chitons											1/-	1/-

Table A-15. Chiniak shellfish: Mussels and clams. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

								1.1				Angoon			
Site	2	2	2	2	1	1	2		1	1	2	2	2	1	1
Lab No.	668	223	415	429	246	613	614		232	324	231	325	328	326	327
No. of field samples												Split s	amples		
comprising lab sample	1	1	1	1	1	1	1		1	1	1	11	1	1	1
Cycle No.		П	Ш	П	П	Ш	Ш		П	<u> </u>	<u>n</u>	П	Π	<u> </u>	П
folluscs: mussels clams butter	0.3 / -	0.5/-	0.3/-	0.9/-					0.67-	1 / 0.1	0.5/-				
horse												0.5/-	0.8 / -		
littleneck					0.6/0.3	2/0.4	1/0.1								
chitons		1												1/-	1/

المان المان المانية ال المانية ب موسعیت د

-

.

 Table A-15 (continued). Chiniak shellfish: Clams (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

......

- ----

.....

											Angoon			
Site		2	2	2	2	2		1	1	2	2	2	1	1
Lab No.		612	618	77	343	344		232	324	231	325	328	326	327
No. of field samples		Split s	amples								Split s	samples		[
comprising lab sample		1	. 1	1	1	1	· .	1	1	11	11	1	1	1
Cycle No.	Ĩ	m	Ш	I	11	<u> </u>		IJ	П	Π	Π	<u> </u>	Π	П
Molluscs: mussels								0.6/-	1/0,1					
clams butter										0.5 / -				
horse											0.5 / -	0.8/-		
cockles	0.8 / 0.1	0.7 / -	0.5/-											
chitons				1/0.1	1/0.1	1/0.1							1/-	1/-

 Table A-15 (continued). Chiniak shellfish: Clams (continued) and chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

enter a a

									Angoon			
Site Lab No.	2 397	2 398	2 685	3 97	ſ	1 232	1 324	2 231	2 325	2 328	1 326	1 327
No. of field samples comprising lab sample		1	1	1	Γ	1	1	1		samples	1	1
Cycle No.	Ш	<u>m</u>	I	L	Ē	П	<u> </u>	<u> </u>	<u> </u>	Π	Π	Π
Moliuses: mussels clams butter						0.6/-	1/0.1	0.57-				
horse -	0.5/-	0.1/-							0.5/-	0.8/-		
mails			1/-								1/-	1/-
Crabs: Dungeness				0.1/-								

-

•

-

Table A-15 (continued). Chiniak shellfish: Chitons (continued), snails, and crabs. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

-

2

90

a a ny sana any shi a a akampa y

a and a second second at a

					_			Алдо	on		
Site	4	4	4	1		3	3	3	3	3	3
Lab No.	263	267	560	5		229	320	230	319	323	321
No. of field samples			_								_
comprising lab sample		3	3	2] 1	3	3	3	3	2	3
Cycle No.	Π	Π	Ш	I		П	П		п	П	П
Salmon: pink coho	4 / 0.4	1 / 0.1	-/-			2/-	2/-	2/-	4/-	2/-	
sockeye				-/-							
chinook											5/0.1

 Table A-16. Akhiok fish: Pink salmon, coho salmon, and sockeye salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

													Angoon			
Site	2	3	2	2	2	3	3	2	1 1	1	1	2	2	2	1	1
Lab No.		251	62	417	430	301	310	399		232	324	231	325	328	326	32
No. of field samples						Split s	mples						Split s	amples		
comprising lab sample		1	1	1	1	1	1	1		1	1	1	1	1	1	1
Cycle No.	Ш	П	1	Ш	111	Π	Π	Ш		Π	<u> </u>	Π	<u> </u>	П	Π	Π
Molluscs: mussels	0.3/-	0.4/-								0.6/-	1/0.1					
clams butter		h f	-/-	0.4 / -	0.3 / -							0.5 / -				
horse	4												0.5 / -	0.8 / -		
littleneck						0.3/-	0.7/-			1						
chitons								1/-			e. G				1/-	1/

Table A-17. Akhiok shellfish: Mussels, clams, and chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

92

and the second second

- ----

and a second second

										An	goon		
Site	3	3	7	7	7	7	7	3	3	3	3	3	3
Lab No.	6	169	167	168	173	174	190	229	320	230	319	<u>323</u>	321
No. of field samples comprising lab sample	2	1	1	3	1	3	3	3	3	3	3	2	3
Cycle No.	1	П	П	П	Π	Π	Π	Π	II	II	Π	П	Π
Salmon: pink coho chinook	-/-	3/0.2	0.4 / -	0.57-	- -	1/-	0.3 / -	2/-	21-	2/-	4/-	21-	5/0.1

Table A-18. Port Lions fish: Pink salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

									Ar	igoon		
Site	7	7	7	3	3	3	3	3	3	3	3	3
Lab No.	196	646	647	564	576	577	229	320	230	319	323	321
No. of field samples		3										
comprising lab sample	3	2	2	2	2	3	3	3	3	3	2	3
Cycle No.	П	Π	1	Ш	Ш		11	П	Π	П	Π	П
Salmon: pink	0.2 / -	0.9/-	0.8/-				2/-	2/-				
coho				2/-	0.6/-	0.2/-		11 I I	2/-	4/-	2/-	
chinook												5 / 0.1

 Table A-18 (continued). Port Lions fish: Pink salmon (continued) and coho salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

-

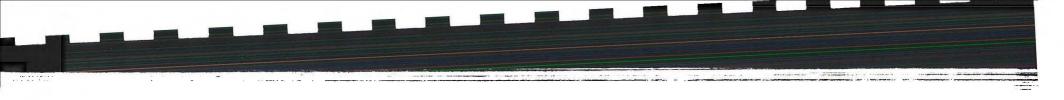
-

---- -

.

- managements and a second

..


.

.

			_		Angoon					
Site Lab No.	3	3	3]	3	3	3	3	3	3
No. of field samples	578	591	592		229	320	230	319	323	321
comprising lab sample	2	2	2		3	3	3	3	2	3
Cycle No.	<u> </u>	Ш	Ш		п	Π	П	п	П	п
Salmon: pink					2/-	2/-				
coho	0.3/-	3/0.1	2/-				2/-	4/-	2/-	
chinook										5/0.1

Table A-18 (continued). Port Lions fish: Coho salmon (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

Table A-18 (continued). Port Lions fish: Halibut and yellowfin sole. Sums of the concentrations, ng/g (ppb) wet weight, of aroma	tic
contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.	

						Ang	oon
Site	3	6	8	8	6	3	3
Lab No.	170	21	522	523	705	228	322
No. of field samples							
comprising lab sample	3	2	2	2		3	2
Cycle No.	П	I	Ш		I	П	11
Halibut	0.3/-	-1-	0.4 / -	0.6/-		0.4 / -	
Yellowfin sole					0.8 / -		
Pacific cod							0.6/-

				_	A				Angoon			
Site	1	1	1	1		1	1	2	2	2	1	1
Lab No.	64	205	206	414	1.1	232	324	231	325	328	326	327
No. of field samples									Split s	amples		
comprising lab sample	1	1	1	1		1	1	1	1	1	1	1
Cycle No.		п	П	Ш		П	П	П	П	П	П	П
Molluscs:												
mussels						0.6 / -	1/0.1					
clams												
butter	0.9 / 0.4	1/0.2	1/1	1/1				0.5/-				
horse									0.5/-	0.8/-		
chitons							5-12 I I			1	1/-	1/-

Table A-19. Port Lions shellfish: Clams. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

古门科学

										Angoon			
Site	1	2	2	1	1		1	1	2	2	2	1	1
Lab No.	436	65	211	213	617		232	324	231	325	328	326	32
No. of field samples						1 1				Split :	samples		
comprising lab sample	1	1	1		1				1	1	1		1
Cycle No.	<u> </u>	1	П	Π	Ш		<u> </u>	П	n	n	П	Π	П
Moltuscs: mussels clams butter	1/1	2/0.1	2/1				0.6 / -	1/0.1	0.5/-				
horse										0.5/-	0.8 / -		
littleneck				2/1	1/1								
chitons												1/-	1/

مدولات برد

and the second

.

- ----

Table A-19 (continued). Port Lions shellfish: Clams (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

-

7 4

										Angoon			
Site		1	1	2	2	2	1	1	2	2	2	1	1
Lab No.		210	412	83	84	209	232	324	231	325	328	326	327
No. of field samples				Split	samples					Split	samples		
comprising lab sample	1	1	1		1	1	1	1	11	1	1	1	1
Cycle No.	I	П	m	I	I	Π	Π	Π	Π	11	п	Π	П
Molluscs: mussels clams butter							0.6 / -	1 / 0.1	0.5 / -				
horse										0.5/-	0.8/-		
chitons	0.6/-	2/-	1/-	0.3/-	0.4 / -	1/-						1/-	1/-

 Table A-19 (continued). Port Lions shellfish: Chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

ب دیردنیودرسوم م

			_			Angoon			
Site	1	2	1	1	2	2	2	1	1
Lab No.	687	688	232	324	231	325	328	326	327
No. of field samples						Split :	samples		
comprising lab sample	1		1	1	1	1	1	1	1
Cycle No.	<u> </u>	1	Π	п	п	П	n	11	<u>II</u>
Molluscs: mussels			0.6 / -	1/0.1					
clams butter					0.5/-				
horse						0.5/-	0.8 / -		
chitons								1/-	17-
snails	0.8/-	0.9/-					1		

 Table A-19 (continued). Port Lions shellfish: Snails. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

....

								Angoon			
Site	5	4	4	4	1	1	2	2	2	1	2
Lab No.	102	101	491	342	232	324	231	325	328	326	32
No. of field samples								Split	samples		
comprising lab sample						1			<u>· </u>	1	1
Cycle No.	<u> </u>	I	Ш	п	П	п	<u>п</u>	<u>n</u>	11	11	I
Molluscs:										5	
mussels					0.6/-	1/0.1					
clams											
butter						1	0.5/-				
horse								0.5/-	0.8/-		
chitons										1/-	1
Crabs:										0000	
Dungeness	0.1/-										
Tanner		0.1/-	0.7 / -								
king				3/-							

Table A-19 (continued). Port Lions shellfish: Crabs. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

						- 1 - 1						An	goon		
Site	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Lab No.	2	133	148	154	155	156	537	93	538	229	320	230	319	323	321
No. of field samples						1 C									
comprising lab sample		1		2	2	3	3		3	3	3	3	3	2	3
Cycle No.	I	Π	1	Π	<u> </u>	Π	<u>Ш</u>		Π	Π	Π	П	Π	П	
almon: pink coho	./.	1/-	-/-	-/-	-/-	-/-	-/-	1/-	-1-	2/-	2/-	2/-	4/-	2/-	
chinook															5/0.

Table A-20. Port Graham/English Bay fish: Pink salmon and coho salmon. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

~

.....

					An	goon
Site	2	5	2	2	3	3
Lab No.	39	486	709	710	228	322
No. of field samples						
comprising lab sample	1	1	1	1	3	2
Cycle No.	<u> </u>	<u> </u>				Π
Halibut	-/-	0.2 / -			0.4 / -	
Pacific cod						0.6/-
Irish lord	ı .		0.6/-	0.4 / -		

· · · · · · · · · ·

 Table A-20 (continued). Port Graham/English Bay fish: Halibut and Irish lord. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

.

Sec. ...

										Angoon			
Site	1	1	1	1	1		1	1	2	2	2	1	1
Lab No.	45	115	116	337	338		232	324	231	325	328	326	327
No. of field samples										Split s	amples		
comprising lab sample		1	1	1	1		1	1	1	i	1	1	1
Cycle No.	I	П	Π	Ш	Ш]	Π	Π	П	II	Π	II	П
Molluscs: mussels	-/-	4/0.4	1/-	1/-	2/-		0.6/-	1/0.1					
clams butter									0.5/-				
horse										0.5/-	0.8/-		
chitons												1/-	1/-

Table A-21. Port Graham/English Bay shellfish: Mussels. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

-

÷

. .

- .

1

...

-

				5		_			Angoon			
Site	1	4	4	4	4	1	1	2	2	2	1	1
Lab No.	339	46		118	119	232	324	231	325	328	326	327
No. of field samples comprising lab sample	1	1	1	1	1	1	1	1	Spiit s	amples 1	1	1
Cycle No.		I	Π	п	П	Π	Π	Π	Π	П	Π	Π
Molluses: mussels clams butter	1/-	2/0.2	5/12	4/9	2/3	0.6 / -	1 / 0.1	0.5/-				
horse		1							0.5/-	0.8/-		
chitons			2.1	1 1							1/-	1/-

Table A-21 (continued). Port Graham/English Bay shellfish: Mussels (continued). Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

										Angoon			
Site	1	1	1	1	1	4	1	1	2	2	2	1	1
Lab No.	340	302	75	121	359	683	232	324	231	325	328	326	327
· · No. of field samples										Split s	amples		
comprising lab sample		1	1	1	1			1	1	1	1	1	1
Cycle No.		Π			Ш		Π	<u> </u>	<u> </u>	n	Π	Π	П
Molluses: mussels							0.6/-	1/0.1					
clams butter									0.5/-				
ouucr									0.57-				
horse										0.5/-	0.8/-		
littleneck	20/9												
cockles		3/10											
chitons			0.7/-	0.2/-	0.7/-							1/-	1/-
snails						3/0.9							

 Table A-21 (continued). Port Graham/English Bay shellfish: Clams, chitons, and snails. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angeon = reference site.

. ...

.

- ---

.....

1. 100 40

									Angoor	1		
Site	1	1	1	1	2	1	3	3	3	3	3	3
Lab No.	1	561	562	20	268	95	229	320	230	319	323	321
No. of field samples comprising lab sample	2	2	3	2	2	2	3	3	3	3	2	3
Cycle No.	1	Ш	Ш	1	Π		П	П	Π	Π	Π	Π
Salmon: pink coho	-/-	0.5/-	0.5/-				2/-	2/-	2/ -	4/-	2/-	
sockeye				0.2/-	0.7/-							
chinook												5/0.1
Dolly Varden						0.6/-						1

 Table A-22. Karluk fish: Pink salmon, coho salmon, sockeye salmon, and Dolly Varden. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

1											Angoon			
Site	1	2	2	2	2	1	2	1	1	2	2	2	1	1
Lab No.		245	393	394	224	78	400	232	324	231	325	328	326	327
No. of field samples							1				Split i	amples		
comprising lab sample		1.1.	1	1	1	1	1		1	1	1	1	1	1
Cycle No.			Ш	Ш	П		I m	Π		<u> </u>	П	П	П	Π
Molluscs: mussels clams butter	-/-	0.4/-	0.3 / -	0.3 / -	0.3/-			0.6/-	1/0.1	0.5/-				
horse					0.07					0.07	0.5/-	0.8 / -		
chitons						0.2 / -	-/-						1/-	1/-

.....

 Table A-23. Karluk shellfish: Mussels, clams, and chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

								Angoon			
Site	1	1	1	1	1	1	2	2	2	1	1
Lab No.	355	356	361	358	232	324	231	325	328	326	327
No. of field samples								Split	samples		
comprising lab sample	1	1	1	1	 1	1	1	1	1	1	1
Cycle No.	III		III	III	II	II	II	II	II	II	II
Molluscs: mussels	1/-	0.7/-			0.6/-	1/0.1					
clams butter			2 / 0.4				0.57-				
horse								0.5/-	0.8/-	- 	
chitons				2/-						1/-	1/-

Table A-24. Kasitsna shellfish: Mussels, clams, and chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh. Angoon = reference site.

~ -

				Angoon				
Site Lab No.	3 229	3 320	3 230	3 319	3 323	3 321	3 228	3 322
No. of field samples comprising lab sample	3	3	3	3	2	3	3	2
Cycle No.	Π	II	II	II	ĪĪ	<u> </u>	II	П
Salmon: pink	2/-	2/-						
coho			2/-	4/-	2/-			
chinook						5/0.1		
Halibut							0.4 / -	
Pacific cod								0.6/

*

.....

 Table A-25. Angoon fish: Pink salmon, coho salmon, chinook salmon, halibut, and Pacific cod. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh.

- .

				Angoon			
Site	1	1	2	2	2	1	1
Lab No.	232	324	231	325	328	326	327
No. of field samples				Split s	amples		
comprising lab sample		1	1	1	1	1	1
Cycle No.	Π	II	II	II	II	II	II
Molluscs: mussels clams butter	0.6/-	1/0.1	0.5 / -				
horse				0.5/-	0.8/-		
chitons						1/-	. 1/-

Table A-26. Angoon shellfish: Mussels, clams, and chitons. Sums of the concentrations, ng/g (ppb) wet weight, of aromatic contaminants listed in Table 1 (LAC / HAC) in edible flesh.

NO 444 A A T ALCOHOLDER LAND

APPENDIX B

CONCENTRATIONS OF INDIVIDUAL AROMATIC CONTAMINANTS IN FISH

Explanatory Notes for Tables B-1 through B-15.

Naphthalene-d8 was the internal standard for naphthalene through C4naphthalenes. Acenaphthene-d10 was the internal standard for acenaphthylene through C1-fluoranthenes/pyrene. Benzo[a]pyrene-d12 was the internal standard for benz[a]anthracene through benzo[ghi]perylene. Percent recoveries for the internal standards (surrogates) averaged 91%, RSD = 19%, n = 662. Percent recoveries of the surrogates include split or duplicate samples.

Results on sample extracts were determined by gas chromatography/mass spectrometry (GC/MS), using sequenced multiple ion detection.

A hyphen (-) indicates that the analyte was not detected above the limit of detection which ranged from 0.02 to 1 ng/g (ppb) wet weight. This applies to individual contaminants, as well as groupings of contaminants (e.g., C2-phenanthrenes/anthracenes).

Low levels of naphthalene found (a) were indistinguishable from those of blank analyses and are unlikely to indicate exposure to petroleum in the absence of 1- and 2-methylnaphthalene. Table B-1. Pink salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh .

	Village:		_					<- Ko	odiak ->							
	Site:	KODS	KOD5	KOD5	KOD5	KODS	KODS	KODS	KOD5	KOD5	KOD5	KOD5	KOD5	KODS	KOD5	KOD5
	Cycle:	II	11	II	TI.	П	П	П	П	11	111	UI	111	П	111	11
	D & M no.:	214	214	219	209	206	207	207	210	222	496	496	497	497	498	498
		>Split sa	amples<		215	217	208	208	213	218	>Split #	samples	>Split :	samples	>Split sa	amples<
ACs		•	-		216		>Split s	amples<			•	-	•	-	-	-
	Lab no.:	166	195	187	188	189	628	637	629	<u>630</u>	488	489	490	492	539	540
naphthalene			2	1	1	1		1	1		а	8	а		8	а
C1-naphthalenes		7	5	3	2	0.6		0.9	0.2	1				-		
C2-naphthalenes		14	10	6	1		8	0.7	•	0.9			-			-
C3-naphthalenes		ġ	6	6	i	0.5	8	0.5	-	0.7		-	-	-		-
C4-naphthalenes		0.1	0.1	0.2	:	0.5	0.3	0.5		0.7			-			
acenaphthylene		0.1		0.2	_	_		_	_	_	_	-				
acenaphthene		14	9	6	Ā	0.2	9	3		5			-	-	_	_
fluorene		15	10	7	3	0.2	12	3	_	5	-	-	-	-	-	
C1-fluorenes		3	2	2	0.3	0.3	4	0.5	-	0.5		-			-	_
C2-fluorenes		2	2	2	0.5	0.5	-	0.5	•	0.5	-	•	-		-	
C3-fluorenes		-	-	•	•	-	-	•	-	-	-	-	-	0.3	-	-
phenanthrene		37	- 24	18	10	- 3	- 30	12	-	17	0.7	0.5		0.3	0.9	. 3
		3/	24	2	0.2	3	30	0.4	4	0.3	0.7	0.5	1	0.7	0.9	3
C1-phenanthrenes/anthracenes		د	1	2	0.2	-	3		•	0.3	•	•	-	•	•	•
C2-phenanthrenes/anthracenes		•	-	•	•	•	•	•	-	•	-	•	-	-	•	•
C3-phenanthrenes/anthracenes		•	•	•	•	•	-	•	•	•	-	•	•	•	•	-
C4-phenanthrenes/anthracenes		:	:	-	-		:	:			-	•	-	•	•	-
dibenzothiophene		5	4	3	1	0.5	5	1	0.2	2	-	-	•	-	•	-
C1-dibenzothiophenes		1	0.6	1	-	•	1	-	-	•	-	•	•	-	-	-
C2-dibenzothiophenes		-	-	•	-	-	, -	•	-	-	-	•	-	•	•	-
C3-dibenzothiophenes		-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
Sum of LACs		110	72	54	22	6	84	22	4	32	0.7	0.5	1	1	0.9	3
fluoranthene		12	8	5	2	0.2	10	3	0.2	5	-	-	-	•	-	-
pyrene		0.3	•	•	•	•	0.1	-	•	-	-	-	-	-	•	•
C1-fluoranthenes/pyrenes		•	•	-	-	•	•	-	•	-	-	-	-	-	-	-
benz[a]anthracene		•	-	•	-	-	-	-	-	-	-	-	-	-	-	-
chrysene		0.1	-	•	-	-	-	-	-	•		-	-	-	•	-
C1-chrysenes/benz[a]anthracenes		-	•		-	-		•	-		-	-	•	•	-	-
C2-chrysenes/benz[a]anthracenes		-	-	-	-	-	-	•	-	•	-	-	-		-	-
C3-chrysenes/benz[a]anihracenes	I	-	-	-	-	•	•	-	-		-	-	•		-	-
C4-chrysenes/benz[a]anthracenes			-	-	-		-	-	-	-	-	•	-	•	-	-
benzo[b]fluoranthene					-	•	-	-	-	-	· -	-	•	•	-	-
benzo[k]fluoranthene		-	•		-		-	-		-			-	-	-	-
benzo[a]pyrene		-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
ndeno[1,2,3-cd]pyrene			-	-	-	-	-	-	-	-	-	-	-	-	-	-
dibenz(a,h)anthracene					-		-	-	-	-		-	-	-	-	-
benzo[ghi]perylene		-		-			-	-	-	-	-	•	-	-	-	-
Sum of HACs		12	8	5	2	0.2	10	3	0.2	5	-	-	-	-	-	
sample weight, grams:		5.10	5.25	5.00	5.11	5.40	5.03	5.07	5.17	5.36	5.38	5.33	5.35	5.40	5.04	5.34

	Village:								<- (Chenega	Bay ->								
	Site:	CHE3	CHE3	CHE3	CHEA	CHE4	CHE4	CHEA				CHE4	CHEA	CHE4	CHE4	CHE4	CHE4	CHE4	CHE
	Cycle:	П	П	П	Ш	П	III	III	Ш	III	III	III	111	Ш	ПІ	BI	Π	III	11
	D & M no.:	142	145	143	462	464	464	442	443	445	446	447	448	449	450	451	460	461	46
		144	146	141		>Split a	amples<												
ACs			147	140															
	Lab no.:	137	138	152	452	453	456	454	455	465	466	467	468	469	470	471	472	473	47
aphthalene											8								
C1-naphthalenes		0.4	3			0.1	0.2	0.2			-			-					
C2-naphthalenes			3							-							-	-	
C3-naphthalenes			2					-			-						-		
C4-naphthalenes								0.06							-			-	
cenaphthylene								0.00											
icenaphthene													-			-			
luorene					•	•	•	-	•	-		•	•		•			•	
		•	-		•	-	-	-	•	-	•	*	•	-	-	•	-		
C1-fluorenes		-	1	•		*	•	-		-	-	•	•	-			-	•	
C2-fluorenes	1	•	-		-		•	-	•	-	-	-		-	•			•	
C3-fluorenes			-		-	-	•	-	•		•		-			•	•	•	
henanthrene		0.5	5	- A	0.3	2	2	0.9	0.2		0.4				-	0.6		3	1
1-phenanthrenes/anthracenes			1	-	-	-	•	*	-		-					-	-	•	
2-phenanthrenes/anthracenes						*	-	-										-	
3-phenanthrenes/anthracenes		•	•	-			•	-			-			•			•		
4-phenanthrenes/anthracenes			-		-						-		-	-	-	-			
ibenzothiophene		-	3		-		-	-		-		-	-	-			-		
1-dibenzothiophenes	P.1		1			-		-			-			-			-		
2-dibenzothiophenes								-											
3-dibenzothiophenes		-	-	-	-						-			-			-		
Sum of LACs		0.9	20	٠	0.3	2	2	1	0.2	•	0.4	•	٠		-	0.6	•	3	1
luoranthene		×			-	-	. 	-			-		-	-	-		-		
yrene			-									×		-			-	-	
1-fluoranthenes/pyrenes			*		-		÷.,	-			-		•	-		-	-		
enz[a]anthracene		-	н.		Ξ.				-		-		*						
hrysene			÷.	-	-		-	-		-	-			-		-			
1-chrysenes/benz[a]anthracenes	P					-	141	-			-	-	-	-					
2-chrysenes/benz[a]anthracenes	2		-	-	-			-			-			-	-		-		
3-chrysenes/benz[a]anthracenes			-		-			-											
4-chrysenes/benz[a]anthracenes			-	-	-	-		-	-	-		-	-		-		-	-	
enzo[b]fluoranthene			-		-	-	-			-	-	-	-		-		-	-	
enzo[k]fluoranthene			-	24.0			•	-			•		-	-				•	
		•			~	•		*	•	-	-	-	-	-	-	-	-		
enzo[a]pyrene					•			-			-	-		-	-	•	-		
ndeno[1,2,3-cd]pyrene		-	٠		H			-			×			•			-	-	
ibenz[a,h]anthracene		-		1H	-		-	-				-		-		-	×	-	
enzo(ghi)perylene	1	-	14		-		14	-				-	-	-		-			

Table B-2. Pink salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

-

-

	Village:	<- (Chenega	Bay ->						<-	Old Ha	·bor ->						- 4 45 - 4	
	Site:	CHE4	CHE4	CHEA	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2	OHA2
	Cycle:	ПІ	П	01	1	П	П	П	11	11	111	III	П	III	Ш	Ш	П	III	П
	D& M no.:	465	466	444	117	326	327	328	333	331	617	616	622	623	624	625	626	627	628
	1		467					329	334	332									
ACs								330	335										
	Lab no.:	483	484	593		262	269	270	279	650	541	544	545	546	555	556	557	558	559
naphthalene	1			2			1	a 0.4	0.3	1				2	2				-
C1-naphthalenes	1	*	-	0.3	•	0.5		0.4		100 100	-		-			-	•		
C2-naphthalenes	N	*	•	•			•	•		0.1		-		•			-	•	
C3-naphthalenes	1	-		-		-			-	-			•		•	•		•	
C4-naphthalenes	1	•		-	-	-	٠		-	•		14	-		-	1.0			
accnaphthylene		٠	-	-					-				-			•	-	•	
acenaphthene	1		•		-		÷.		-	-	•	•	•	٠		•			
fluorene						•	-		-	0.2				•			-		
C1-fluorenes	1		-	-													-	•	-
C2-fluorenes				-						-		-	-	-		14			-
C3-fluorenes		-		-			-	-					-	-				•	-
phenanthrene		0.3	0.8	0.4		0.6	1	1	0.8	3	-	-	-	-				-	
C1-phenanthrenes/anthracenes						-	-				-								
C2-phonanthrenes/anthracenes							•				-								
C3-phenanthrenes/anthracenes								- E		-						-		-	
C4-phenanthrenes/anthracenes	1															-			
tibenzothiophene	1					-				0.2		-	-	-	-	-	-		-
		-	•	-	-	-	•	•	•	0.2	•		•	•		-	-	-	
C1-dibenzothiophenes				-	-				-	-	-	-		-	-			~	
C2-dibenzothiophenes		-		-	-			•	-	•			-		•	•		*	
C3-dibenzothiophenes			-	-	-			-	-	-			-			•	•	-	
Sum of LACs	1	0.3	0.8	0.7	•	1	2	1	1	4		•		•	-	•	•	-	
fluoranthene		-					0.1			0.3		-	-		-	-	-	-	
pyrene				-	-	-	-			-	-		-		-		-	-	
C1-fluoranthenes/pyrenes	1	-		-	-	-			-					-	-	•		-	
benz[a]anthracene									-	-		-	-	-	-				
chrysene	1	-		-	-	-			-	-			4	-	-	Ξ.	-		
C1-chrysenes/benz[a]anthracenes			_	_				-	-			-							
C2-chrysenes/benz[a]anthracenes			-	-	-					2	1								
		-		•	•					F .2	2 .		1 00						
C3-chrysenes/benz[a]anthracenes				-	-					•				-		-			
C4-chrysenes/benz[a]anthracenes		-	-	-		-		-	•	-	(m)		-		×	•			
benzo[b]fluoranthene		-		*		-	. *	-		-	•			-	-	•	-	-	
enzo[k]fluoranthene		-								-	-	-	-		~		-	-	
cnzo[a]pyrene								-	-	-	-	-	-	-	-	-	14	-	-
ndeno[1,2,3-cd]pyrene				-	-				-	-			-		-	-		-	
tibenz[a,h]anthracene		-		-	-1	14	-			-			-		-	-	-	-	
benzo[ghi]perylene			-	-	•		•	•	-	-			-		×		-	-	8
Sum of HACs			-				0.1			0.3			-		-	•			
sample weight, grams:		5.13	5.42	5.17	3.10	5.38	5.11	4.77	5.52	5.14	5.48	5.56	5.39	5.11	5.34	5.11	5.31	5.30	5.23

J.U0

14

Table B-3. Pink salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

Autor a

Table B-4. Pink salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Village:	<-	Old Ha	rbor ->			<- Tati						<-	Larsen	Bay ->				
	Site:	OHA2	OHA2	OHA2	TAT2	TAT3	TAT3	TAT3				LAB7	LAB7	LAB7					
	Cycle:	Ш	Ш	Ш	T	11	11	II	II	Π	П	I	I	I	Ш	ПІ	ПІ	111	III
	D& M no.:	618	629	620	4	153	153	155	162	150		106	107	107	590	592	597	598	596
		619		621	5	>Split s	amples<			151	312		>Split s	amples<					
ACs					6					161	301								
2112 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 122 - 12	Lab no.:	573	598	599	1	134	139	135	136	153	281	10	3	29	504	505	506	507	543
naphthalene												a		a				a	a
C1-naphthalenes		-		-		-					0.4	-	4	-		-	•		-
C2-naphthalenes	1	-	-			-		•			•								
C3-naphthalenes	olar -			Ξ.		-		•					-	-		-		-	÷
C4-naphthalenes	1990 - C	-		-	-			-										-	
acenaphthylene			•	-		-	•			-	-	-		-		-	-	-	
acenaphthene			-	-		-		-	-			•	1	0.1		-	-	-	
fluorenc	1			-			-			-	-		1	0.3		-		-	-
C1-fluorence	1					-	•			-	A	-				÷	<u>.</u>	-	
C2-fluorenes	1							-				÷.,				-	-	-	
C3-fluorencs		-		-	-			-		-		-	•			-	-	-	-
phenanthrene			0.2	0.2	0.05			-			2	1	11	12	0.3	0.8	0.8	0.5	
C1-phenanthrenes/anthracenes			-	-						-	-			-		-		-	-
C2-phenanthrenes/anthracenes		-	-					-				-							
C3-phenanthrenes/anthracenes					-	-				-						-		-	
C4-phenanthrenes/anthracenes	1			-								-				-		-	
dibenzothiophene									-		-	-	-						
C1-dibenzothiophenes	1					-			-	-	-	-				-			
C2-dibenzothiophenes												-		-					
C3-dibenzothiophenes	1					_		- T						-					
C3-underzonalopiteitea		~			-			-	-										
Sum of LACs	1		0.2	0.2	0.05		-	-	•	-	2	1	13	12	0.3	0.8	0.8	0.5	
fluoranthene	1			-	•					•		-	0.7	0.2		-	-	-	
pyrene	1		-				-	-	14	-	-	*		-	-		-		-
C1-fluoranthenes/pyrenes	1	(m)			-		-		-	-	•	-1		-	-	-			-
benz[a]anthracene		÷.			-	-	21 4 -1		-	-		-		-		-		-	
chrysene			-	-		-	-			-									
C1-chrysenes/benz[a]anthracenes				-		-				-	-			-	-	×		-	÷
C2-chrysenes/benz[a]anthracenes			-		-		-			×	*						-	2 0	
C3-chrysenes/benz[a]anthracenes			.2		-	-		(H.)			-			-	÷	*	-	-	
C4-chryscnes/benz[a]anthracenes		-	-	-		-	-		-		~	-	-	-		-	-	-	
enzo[b]fluoranthene		-				-		-	-		-	-	-	-	-	-	~	-	
benzo[k]fluoranthene	1			-		-	-			-		-	<u>.</u>			-		4.	
benzo(a)pyrene			-						-				¥.	-				÷.,	1
indeno[1,2,3-cd]pyrene	1	-		-	-					1			-	-		-			
dibenz[a,h]anthracene		_	-	-	_	_	_	_		2		-		_				14	
	1						-		-	-		-	5.						
benzo[ghi]perylene	1	10					(e.)												

1 22 1.1.5

Table B-5. Pink salmon.	Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

54

Shares a fragment in the goal of the strange

 $p \rightarrow -$

	Village:		<-	Larsen	Bay ->	-						<- Ouzin	kie ->					<- Ak	chick ->
	Site:	LAB8	LAB8	LAB8	LAB8	LAB8	LAB8	OUZ1	OUZ5	OUZ5		OUZ5		OUZ5	OUZ5	OUZ5	OUZS		
	Cycle:	Ш	п	Ш	Ш	Ш	Ш	I	II	II	II	II	п	п	п		П	П	
	D & M no.:	591	595	599	604	601	594	57	254	263	258	265	272	274	260	262	256	357	283
		593	600					58	257	264	259	271	273	275	261	255	269		350
ACs		602	603						270		268								28:
	Lab no.:	581	582	594	595	596	597	9	175	191	192	631	632	633	634	635	636	263	267
				30.3						1800							,		
naphthalene C1-naphthalenes			A			a 0.2	a 0.2		a 0.2	a 0.8	a 0.3	a		8			8	a 1	a 0.2
C2-naphthalenes				2		0.1			0.2	0.3	0.3		-	-		-			0.,
C3-naphthalenes		_		-	_	-	-	_	-	0.5	0.5		-			_		-	
C4-naphthalenes	•	-		0.09		-	-					-	-						
acenaphthylene		-	-	0.07		-	-	-	-	-	-		-	-	-	-	-		
acenaphthene		-	-	-	-		-	-				-	-	-		-		0.2	
fluorene		-	-	-		-	-	-	4	0.1	0.4		-	-		-	-	0.3	
C1-fluorence	,	-					- ÷			-								0.0	
C2-fluorenes							-	-			-		-	-	-	-	-	-	
C3-fluorenes			-	-	-	-	-	-	-				-	-				-	
phenanthrene		0.2	0.3	0.9	0.2	0.5	0.5		1	2	4	1	1	1	1	0.9	1	3	1
C1-phenanthrenes/anthracenes		-	-	-	-	-	-	-	-	-			-		-	-	-	-	
C2-phenanthrenes/anthracenes			-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	
C3-phenanthrenes/anthracenes		a .,	-		-		-	1 .	-	-	-			-		-	-	-	
C4-phenanthrenes/anthracenes		-	4						-	-	-	-	-	-		-	-		
dibenzothiophene			-	-		-	-	-		0.2	0.2		-						
C1-dibenzothiophenes		-							-		-	-	-	-	-	-	-	-	
C2-dibenzothiophenes			-	-	-	-	-		-	-	-	-	-	-				-	
C3-dibenzothiophenes		-							÷	-	-	~	-		-			-	
Sum of LACs		0.2	0.3	1	0.2	0.7	0.7	-	1	3	5	1	1	1	1	0.9	1	4	1
fluoranthene			-	0.1		-					0.5						-	0.4	0.1
pyrene				0.1					_	-	0.5			-	-			0.4	0.1
C1-fluoranthenes/pyrenes							-		-		-	-	-	-					
benz[a]anthracene				-			-	-	-						-	_			
chrysene		-	- û	-			-	-	-		-	-	-		-		-	-	
C1-chrysenes/benz[a]anthracenes												-	-	-					
C2-chrysenes/benz[a]anthracenes		-	-	-		-	-		-		-	-	-	-	-	-			
C3-chrysenes/benz[a]anthracenes		-	-	-	-	-	-	-		-	-1		-	-	-	-	-	-	
C4-chrysenes/benz[a]anthracenes			-	-	-				-	-	-	-	-	-	-	-	-	-	
benzo[b]fluoranthene			~	-	-	-	-	-	-	-	-		-	-		-	-	-	
benzo[k]fluoranthene		-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	
benzo[a]pyrene		-	-	-		-	-	-		-	-		-	-	-	-	-	-	
indeno[1,2,3-cd]pyrene			-	-	1	-		-							-	-			
dibenz[a,h]anthracene		-		-						-		-	-	-	-		-	-	
benzo[ghi]perylene							*	-				-			-	-			
Sum of HACs		-		0.1				٠	-		0.5	•	-					0.4	0.1
sample weight, grams:		5.34	5.33	5.17	5.28	5.24	5.34	3.23	4.72	5.21	4.73	5.03	5.04	5.11	5.16	5.13	5.03	5.23	5.78

Han

Village: <- Chiniak -> <- Port Lions -> Site: CHIS CHIS CHR CHR CHIS CHIS CHIS CHI7 CHI7 CHI7 CHI7 CHI7 CHI7 PTL3 PTL3 PTL7 PTL7 PTL7 Cycle: П П 11 II Π П Π П ПІ П Ш Ш ш 1 П пп П 338 340 352 509 502 505 500 504 511 69 234 242 286 241 D & M no.: 338 339 346 344 508 287 >Split samples-343 341 342 349 501 506 70 507 517 289 ACs 516 345 348 287 648 502 503 579 580 600 168 173 Lab no.; 261 288 265 266 649 501 6 169 167 naphthalene 8 C1-naphthalenes 0.1 0.5 0.5 0.6 0.8 0.7 0.4 0.2 0.1 1 C2-naphthalenca 0.1 0.1 0.1 0.04 _ 4 C3-naphthalenes 0.1 0.1 0.1 C4-naphthalenes . acenaphthylene acenaphthene 0.2 0.2 0.2 fluorene 0.1 0.2 C1-fluorenes 0.1 0.2 C2-fluorencs C3-fluorenes phenanthrene 0.3 2 0.6 2 2 0.3 0.3 0.3 0.3 0.3 2 0.2 0.4 0.6 1 C1-phenanthrenes/anthracenes C2-phenanthrenes/anthracenes C3-phenanthrenes/anthracenes 14 C4-phenanthrenes/anthracenes 1 . dibenzothiophene 0.1 0.2 0.2 C1-dibenzothiophenes C2-dibenzothiophenes C3-dibenzothiophenes Sum of LACs 2 0.3 0.3 0.3 0.3 0.3 0.4 0.5 0.4 3 1 2 4 3 4 fluoranthene 0.2 0.2 0.2 0.2 pyrene Cl-fluoranthenes/pyrenes benz[a]anthracene chrysene C1-chrysenes/benz[a]anthracenes C2-chrysenes/benz[a]anthracenes C3-chrysenes/benz[a]anthracenes C4-chrysenes/benz[a]anthracenes benzo[b]fluoranthene

Table B-6. Pink salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

benzo[k]fluoranthene benzo[a]pyrene indeno[1,2,3-cd]pyrene dibenz[a,h]anthracene benzo[ghi]perylene -----

-

	Village:			<- Port	Lions ->				<- Port	Graham	/ Englis	Bay ->		Karluk	<-Ango	on ->
	Site:	PTL7	PTL7	PTL7	PTL7	PTL7	PTG3	PTG3	PTG3	PTG3	PTG3	PTG3	PTG3	KAR1	AGN3	AGN
	Cycle:	II	11	11	Ц	п	I	П	П	11	11	11	Ш	1	Ш	I
	D& M no.:	243	240	246	239	288	31	135	128	127	130	134	480	84	187	180
		284	244	247	285	291				129	133	131	479	83	188	190
ACs		290	245	248								132	485		189	18
	Lab no.:	174	190	196	646	647	2	133	148	154	155	156	537	7		
naphthalene																
C1-naphthalenes		0.2			0.5	0.3				-	-	-			1	0.9
C2-naphthalenes			-					-							0.09	
C3-naphthalenes		-			-		-		-							
C4-naphthalenes			-		-	-	-	-	-	-	-				-	
cenaphthylene															-	
cenaphthene	1 C C C C C C C C C C C C C C C C C C C															
luorene												_	-			
Cl-fluorence																
2-fluorenes	4	*	-	•	1. .	•		-		-						
C3-fluorenes		-	-		-	•	-	•	-		-		-	-	-	
			0.3		0.4	0.5	•	1	-	-	•	•	•	-	1	
henanthrene		1	0.3	0.2	0.4	0.3	•	1	-	-	-	•	-	•	1	
1-phenanthrenes/anthracenes	1	-	-		-	•	-	-	-	-	-	-		-	-	
2-phenanihrenes/anthracenes			-	-	•		-	•	-	•	-		-		•	
3-phenanthrenes/anthracenes			-			*	-	-	•	-	-		-	-	•	
4-phenanthrenes/anthracenes	1		-			-		-	-	-	-	*	-		-	
ibenzothiophene					•			-		٠	•			*		
1-dibenzothiophenes		*						-	· •	Ξ.	•	•	-	-		
2-dibenzothiophenes		*					1	-		=			-	-	-	
3-dibenzothiophenes				-	*	-		-	*		-		•		-	
Sum of LACs		1	0.3	0.2	0.9	0.8	•	1	•	•	•		•	•	2	
luoranthene		-	-		-		-	-	-		-				-	
yrene		-	-	-	-	-	-		-	-			-		*	
1-fluoranthenes/pyrenes		<u>a.</u>			-	×.					-					
enz[a]anthracene		÷.			-		-	-	-		-	-	-		*	
hrysene		-	18		-		-		-							
1-chrysenes/benz[a]anthracenes	1	-			-				-	-	-	-	-	•	-	
2-chrysenes/benz[a]anthracenes		-			-		-	-	-	-		-	-		-	
3-chrysenes/benz[a]anthracenes			-		-		-			-	-		-		-	
4-chrysenes/benz[a]anthracenes	100	-			-		-		-	-	-		-			
enzo[b]fluoranthene		-			-		-		-	-	-	ж.	-		1	
enzo[k]fluoranthene					-				-				-		-	
enzo[a]pyrene																
ideno[1,2,3-cd]pyrene		-							-				-		-	
ibenz[a,h]anthracene			-		-		2		-	-		-	-		-	
enzo[ghi]perylene		-			-			-	-							
ium of HACs													-		-	
ample weight, grams:		5.24	5.14	5.51	5.01	5.05	3.20	5.04	4.53	4.41	4.46	4.87	5.40	3.43	5.58	5.3

Table B-7. Pink salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

dana a

-

	Village:			<- Ta	titlek ->			1			<- Ou:	zinkie ->				
	Site:	TAT7	TAT7	TAT7	TAT7	TAT7	TAT7	TAT7	OUZ6	OUZ6	OUZ6	OUZ6	OUZ6	OUZ6	OUZ6	OUZ
	Cycle:	П	n	П	10	111	III	111	III	111	111	111	111	111	III	1
	D& M no.:	434	425	430	440	431	436	424	201	455	202	361	456	200	360	45
		437	426	432	441	433	438	429			452	362	457	203	453	45
ACs		439	428			435	427					363	458			
	Lab no.:	362	363	364	448	449	450	451	528	542	563	574	575	609	610	61
naphthaiene	1															
C1-naphthalenes		2	2	2	0.3	0.7	0.2	0.2	0.4		0.5			1	0.7	0.
C2-naphthalenes		2	2	3		0.2		2		-			-	0.4	-	
C3-naphthalenes		2	1	2		0.2	-	-				-	-	0.2		
C4-naphthalenes		-	-	0.1	-		0.2		0.7			-		-		
accnaphthylene				-			-	-	-	-		-		-	-	
cenaphthene		1	0.9	1				-						-		
fluorene		1	1	2		0.2	-	-	-	-		-		0.3		
C1-fluorenes		0.3	0.3	0.4		-	-	-	-	-						
C2-fluorenes		-		-				-					-		-	
C3-fluorenes		-	-					-	0.3	-				0.3	0.2	0.
phenanthrene		4	5	6	2	3	2	1	3	0.8	1	0.6	0.6	2	1	
C1-phenanthrenes/anthracenes		0.2	0.4	0.6		-							0.0			
C2-phenanthrenes/anthracenes			-						0.3							
C3-phenanthrenes/anthracenes		-	-						0.7							
C4-phenanthrenes/anthracenes						-										
dibenzothiophene		1	2	2	0.4	1	0.3					-		0.3		0.
C1-dibenzothiophenes		0.1	0.09	0.2	0.4		-							0.5		U.
C2-dibenzothiophenes		0.1	0.07	0.2					0.4							
C3-dibenzothiophenes		-						-			-		-	-		
Sum of LACs		14	15	19	3	5	3	3	6	0.8	2	0.6	0.6	4	2	
luoranthene		1	1	2	0.1	0.2								0.2	-	0.
yrene		0.1	-	0.3				-	0.6							
C1-fluoranthenes/pyrenes		-	-							-		-			-	
enz[a]anthracene	2 I I I I I	-							-	•			-	_	-	
chrysene		-	-		-		-		-	-		-				
C1-chrysenes/benz[a]anthracenes		-	-	-	-				-	-				-	-	
2-chrysenes/benz[a]anthracenes			_													
C3-chrysenes/benz[a]anthracenes			-		-			-	-	_	2	-		-	-	
C4-chrysenes/benz[a]anthracenes			-	-	-	-		-	-	_	-	-	-	T	_	
enzo[b]fluoranthene		-	-	-	-	-		_	-	-		_	-	-		
enzo[k]fluoranthene						•										
enzo[a]pyrene								•				-		* * .		
				-				•				•			*	
ndeno[1,2,3-cd]pyrene				-	-	÷.	-	-	-	-		-				

Table B-8. Coho salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

sample weight, grams:						•	•	¥.9				•	.2		Å.4	
sample weight, grams:	4.74	5.28	5.25	4.90	5.22	5.07	5.11	5.34						•	0.4	
				Min att ping states		5.07	1 1 - 4.	2.34	5.38	5.28	5.33	5.28	5.22	5.47	5.18	

Table B-9. Coho salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Village:			<- Port I	ions ->			Port Gra./	./Eng.Bay	<- }	Carluk ->		<- A1	<- Angoon ->	
	Site:	PTL3	PTL3	PTL3	PTL3	PTL3	PTL3	PTG3	PTG3	KAR1	KAR1	AKH4	AGN3	AGN3	AGN3
	Cycle:	П	nı	Ш	111	III	III	1	III	III	III	III	II	II	11
	D& M no.;	572	574	573	579	520	523	30	481	372	374	381	181	177	193
	10-10 B-10 (323423473501880730	578	521	575	577	522	580		482	373	375	382	182	178	192
ACs				576					483		376	383	184	186	
	Lab no.:	564	576	577	578	591	60-592	60-93	60-538	60-561	60-562	560	60-230	60-319	60-323
		-			_		-	-		~		-			
naphthalene CI-naphthalenes		∎ 0.8	0.09			A 0.8	0.6	0.5			0.2		1	2	1
C2-naphthalenes		0.0	0.09	•	•	0.1		0.5	-	-	0.2	•		0.7	0.2
C3-naphthalenes		-	•	•	~	0.1	-	-	-	•	•	-	0.2	0.1	0.2
C4-naphthalenes	8	-	-	•	-	•	-	•	•	•	-	-	•	0.1	-
acenaphthylene		•	•	-	-	•	•		-	•	•	-	•	•	
			-	•	•	•	•	•	•	-	-	-	•	-	-
acenaphthene		-	-	-	-	-	•	-	•	-	-	-	•	01	
fhorene C1-fluorenes					-				٠	-	-	•		0.1	-
C2-fluorenes	2	-		- -		* 1	•	-	•	-	-	-	•	•	-
C3-fluorenes				-				-		-			*		
phenanthrene		Ē	0.6	0.2	0.3	2	1	0.7	•	0.5	0.3	1. 	ĩ	ī	ī
C1-phenanthrenes/anthracenes		1. 	0.0	0.2	0.5	<u></u>		0.7	-	0.5	0.5				
C2-phenanthrenes/anthracenes					-										
C3-phenanthrenes/anthracenes											-				
C4-phenanthrenes/anthracenes						-									
dibenzothiophene				-	•	0.1									-
C1-dibenzothiophenes						0.1									
C2-dibenzothiophenes		-													
C3-dibenzothiophenes		-	-		-	-			-				-		
C3-dibattorinopiatos															
Sum of LACs		2	0.6	0.2	0.3	3	2	1	•	0.5	0.5	•	2	4	2
fluoranthene		-	~	-	-	0.1	-	-	-	-	-	-	-	-	-
рутепе			-		-	-	-	-	•	-	-		•	•	
C1-fluoranthenes/pyrenes						-	-		•	-	-		-	•	-
benz[a]anthracene		-		14	-	14	-		-	•				-	-
chrysene		•	•	-	•	-	-		-	-	-	14	•	-	-
C1-chrysenes/benz[a]anthracenes		-	-			-	-	-	-	-	-		•	-	-
C2-chrysenes/benz[a]anthracenes		*			-	-	-	-	•	-	-	-	•	-	-
C3-chrysenes/benz[a]anthracenes					-	· · ·		-	•	-	•	8 -	-	-	-
C4-chrysenes/benz[a]anthracenes					•	۰		-	•	-	-	-	•	-	-
benzo[b]fluoranthene		•							•	-	-	*	-	-	-
benzo[k]fluoranthene		•		۰	-	-			-						-
benzo[a]pyrene		•			٠	-		•	•			-	-	-	-
indeno[1,2,3-cd]pyrene			•		•		*		-		•	1		•	-
dibenz[a,h]anthracene		•			-		*	•	•		•		-		-
benzo[ghi]perylene					•	-		٠	-			•	٠		•
Sum of HACs					۰.	0.1	-		-	×			-	н	-
sample weight, grams:		5.26	5.45	5.49	5.10	5.35	5.03	4.99	5.16	5.13	5.15	5.17	5.09	5.54	4.85

Village: Kodiak <- Larsen Bay -> Chiniak Akhiok <- Karluk -> Site: KOD5 LAB6 CHIS LAB6 LAB6 LAB6 LAB6 **AKHI** KAR1 KAR1 Cycle: II п П П П 11 11 H I I D & M no.: 211 296 298 309 307 295 347 91 86 280 297 304 311 308 300 92 87 281 AC 302 306 303 305 194 282 652 653 Lab no.: 264 286 651 20 268 naphthalene 8 8 8 8 0.9 2 0.7 2 **Cl-naphthaleues** 0.6 0.9 0.5 0.3 0.9 C2-naphthalenes 0.7 0.1 0.5 **C3-naphthalenes** 0.1 0.06 1 . C4-naphthalenes 0.2 . acenaphthylene 0.8 acenaphthene fluorene 2 0.8 0.3 0.2 0.5 **C1-fluorenes** 0.4 0.2 C2-fluorenes -. C3-fluorenes 1 1.00 phenanthrene 4 2 2 2 2 0.7 0.4 1 C1-phenanthrenes/anthracenes 0.1 0.1 C2-phenanthrenes/anthracenes C3-phenanthrenes/anthracenes 14 C4-phenanthrenes/anthracenes . 1 0.7 dibenzothiophene 0.1 0.2 1 0.4 0.6 C1-dibenzothiophenes 1 . 1 1 1 12 C2-dibenzothiophenes 1.00 C3-dibenzothiophenes 4 2 Sum of LACs 11 4 3 2 3 1 0.2 0.7 6 fluoranthene 0.5 0.2 0.1 ругеле **C1-fluoranthenes/pyrenes** benz[a]anthracene chrysene C1-chrysenes/benz(a)anthracenes C2-chrysenes/benz[a]anthracenes C3-chrysenes/benz[a]anthracenes 1 C4-chrysenes/benz[a]anthracenes benzo[b]fluoranthene benzo[k]fluoranthene . benzo[a]pyrene indeno[1,2,3-cd]pyrene dibenz[a,h]anthracene

henzolahiloendene

Table B-10. Sockeye salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Fish:	<-	Chum ->		T	Chinook	<- D	Colly Varden	->	<- Smoked salmon ->					
		Larsen Bay	<-	Chiniak->	T	Angoon	Kodiak	Karluk	<-01d	Harbor->		<-Tat	illek->		
	Site:	LAB6	CH15	CH15	CHI7	AGN3	KOD5	KAR1	OHA2	OHA	OHA	TAT	TAT		
	Cycle:	11	11	II	111	II	I	1	I	>spli	samples<				
	D& Mno.;	310	350	351	503	191	46	81	111	-	•				
	1		355	336	510	. 194	56	82							
ACs			353	354		183									
·	Lab no.:	655	280	654	525	321	94	95	703	241	244	526	527		
naphthalene					2					450	510	1200	1200		
C1-naphthalenes		0.3	1	0.3	-	2	0.4	0.2	0.7	320	400	800	950		
C2-naphthalenes			0.4	-	-	0.8	0.07	•	-	410	530	930	1500		
C3-naphthalenes		•	0.3	-		0.08	•	•	•	510	610	770	1400		
C4-naphthalenes		-	0.5	_	_	0.00			-	380	370	650	1200		
cenaphthylene		_	_		_	-		_	_	580	640	3000	3400		
cenaphthene			-	•	-		-		-	75	91	280	280		
luorene	1	•	0.6	-	•	0.3	•	•	•	410	450	1800	2100		
	1	•	0.0	•	-	0.3	-	-	•	340		940	1000		
C1-fluorenes		•	-	-	•	•	•	-	-		380				
C2-fluorenes		•	•	-	•	•	•	-	-	740	780	1700	1400		
C3-fluorenes	1	•	•	•	•	•	•	•		210	190	260	130		
phenanthrene		1	2	0.5	0.4	2	0.7	0.4	0.7	1800	1800	5100	4600		
C1-phenanthrenes/anthracenes		-	0.07	•	-	-	-	•	-	560	610	1800	1400		
C2-phenanthrenes/anthracenes		-	•	-	•	-	-	-	-	230	250	710	370		
C3-phenanthrenes/anthracenes		•	•	-	-	-	-	-	-	87	94	220	110		
C4-phenanthrenes/anthracenes		-	-	-	-			-	-	2	2	4	0.9		
libenzothiophene			0.3	-	-		-	-	-	14	14	44	39		
C1-dibenzothiophenes				_	-	•	-		-	11	13	23	26		
C2-dibenzothiophenes	ł	_		-		-	-		-	6	10	10	11		
C3-dibenzothiophenes		•	-	•	•	-	-	•	-	0.3	7	4	3		
Sum of LACs		1	5	0.8	0.4	5	1	0.6	1	7100	7800	20000	21000		
luoranthene		•	0.2	-	-	0.1			-	280	310	1400	820		
pyrene	1	•		-	-	•	-	-	-	200	210	1000	590		
C1-fluoranthenes/pyrenes		-		-			-	_		97	100	440	250		
benz[a]anthracene		_	-			-	-		_	13	100	45	32		
chrysene		-	-	-	-	-	-	-	-	23	24	41	29		
C1-chrysenes/benz(a)anthracenes		-	-	-	-	-	-	•	-	8	11	7	5		
2-chrysenes/benz[a]anthracenes	1	-	•	-	•	-	-	•	-	• •	1	0.5	0.7		
	1	-	-	-	-	•	•	-	-	-	1	0.3	0.7		
C3-chrysenes/benz[a]anthracenes	1	-	•	-	-	•	•	-	-	· -	-		د.0		
24-chrysenes/benz[a]anthracenes	1	-	-	-	-	-	-	-	-	-	-	• •	-		
enzo[b]fluoranthene	1	-	-	-	•	-	•	-	-	6	7	16	12		
enzo[k]fluoranthene		•	-	-	-	-	-	-	-	6	6	21	16		
enzo[a]pyrene	1	-	-	•	-	-	-	-	-	7	6	20	17		
ndeno[1,2,3-cd]pyrene		-	-	-	-	-	-	-	-	3	4	9	8		
libenz[a,h]anthracene	1	-	-	•	-	-	•	-	-	0.2	0.6	-	-		
enzo[ghi]perylene	1	•	-	-	-	-	-	-	-	3	3	8	7		
Sum of HACs		•	0.2	•	•	0.1	•	•	•	650	700	3000	1800		
sample weight, grams:		5.08	5.23	5.10	5.26	5.17	5.28	5.24	5.29	4.83	5.23	2.09	2.19		

Table B-11. Chum salmon, chinook salmon, Dolly Varden and smoked salmon. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

Table B-12. Halibut. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

Site: Cycle:	KOD2	KOD6	KOD6			Bay ->		Old Ha				itlek ->		Larsen			
Cycle:				<i>G</i> (a) (a) (b) (b) (b)	A STREET	CI HAG	CHEZ	UNAL	UNAI	UNAI	1414	TAID	LABS	LABO	LABO	LABS	LAB
	1	11	III	I	П	П	III	I	II	п	I	II	1	II	II	10	I
D& M no.;	49	220	499	19	169	171	472	120	323	322	27	148	104	292	251	605	60
-	50	221		18	170	94	473		324		28	149		293		606	60
							474		325					294			
Lab no.:	4	193	508	28	130	131	485	40	283	707	27	132	41	284	708	520	52
																	,
	•	0.1	0.3				-	-	0.3	0.3			-	0.1	0.2	0.2	0.
					-		-			-							
	•			-	-			-	-	-				-		-	
		-	-	-		-							-		-		
		1.	-	-		-				-				4			
1		-							-	-	-		-	-	-		
		-		-	-	-	-	-		-						4	
1.0		-		-						-						-	
		÷.,			-						-						
S									-								
84 L		02	0.6				05		09	05				0.2		0.3	0.4
			0.0				0.5			0.0					0.0	0.5	
										_		-		-			
				-										-		_	
	-					_				-				-	-	-	
												-					
6	-													-			
			-														
	•	-	-		•	-			•	•	-		•	-		-	
	•	0.3	0.9	•	•		0.5	-	1	8.8		•	•	0.3	0.7	0.5	0.0
		-	-			•		-	-	-	-			-	-	-	
			-				-		-						•	-	į
		-	-		ie.									-	-		2
			-					. •							•		
	-	-	-		-			-	-		-		(#.	1 4 .		-	
	-	-	-		-		•	-	-	-	-		•		-		
	-	-	-		-	-	*		-	-	-	-	-		-	-	
	-		-				-		-	-	-		-		-	-	
									-					•			
		-	-		-	-		-				-	-	-			
	<u> </u>	<u></u>	- 2		2	2		2		-	2		-	-			
	-								-						-		
	-												-			-	
			•					1. 2011				8					
		-		•		-			•		-			-			
	Lab no.:	Lab no.: 4	a a 0.1					Lab no.: 4 193 508 28 130 131 485	Lab no.: 4 193 508 28 130 131 485 40	Lab no.: 4 193 508 28 130 131 485 40 283	Lab no.: 4 193 508 28 130 131 485 40 283 707 a	Lab no.: 4 193 508 28 130 131 485 40 283 707 27 a	Lab no.: 4 193 508 28 130 131 485 40 283 707 27 132 a	Lab no.: 4 193 508 28 130 131 485 40 283 707 27 132 41 a	Lab no:: 4 193 508 28 130 131 485 40 283 707 27 132 41 284 a	Lab no:: 4 193 508 28 130 131 485 40 283 707 27 132 41 284 708 a	Lab no: 4 193 508 28 130 131 485 40 283 707 27 132 41 284 708 520 a

 $\overline{\epsilon}$

1.00

B- WARN WILL ME ALLOW A

Table B-13. Halibut. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Village:		<- Ou:	zinkie ->			<- Chini	iak ->		<- PL.)	Lions ->		PL. Gra./ E	ing. Bay	Angoor
	Site:	OUZI	OUZ3	OUZ3	OUZ3	OUZ3	СНІ6	СНІ6	PTL3	PTL6	PTL8	PTL8	PTG2	PTG5	AGN
	Cycle:	I	11	11	Ш	Ш	11	III	П	I	III	Ш	I	Ш	1
	D & M no.:	90	266	276	364	366	337	512	236	75	582	584	23	484	19
		85	267	277	365	367		513	237	76	583	585			19
ACs	1								238						17
	Lab no.:	8	171	172	510	519	706	509	170	21	522	523	39	486	221
naphthalene	1														
C1-naphthalenes			0.07	0.6		-	0.4	0.2	0.1	-		-	-		0.2
C2-naphthalenes					•			-	•		-	-	-	-	
C3-naphthalenes						•		×			٠	-	•	-	
C4-naphthalenes	1	-						•		÷	-		-	-	
cenaphthylene							-						ж.	-	
censphthene		-		-	*	•						-			
fluorene			-		-	•			· •		a ic	-	-	-	
C1-fluorenes	1	-		-			-	-	-			-		-	
C2-fluorenes		-			-	•	•	-	-		-	-		•	
C3-fluorenes						•		0.5			-	-	-		
phenanthrene		-	0.1	0.5		0.3	0.4	0.6	0.2	-	0.4	0.6	-	0.2	0.3
C1-phenanthrenes/anthracenes	-									-	-			-	
C2-phenanthrenes/anthracenes		-	-			-	-		-		-	-	-		
C3-phenanthrenes/anthracenes											-			-	
C4-phenanthrenes/anthracenes					_	-		-		-		-	-		
libenzothiophene										-		-			
C1-dibenzothiophenes					-		-	-				-			
C2-dibenzothiophenes			- ÷				2	× _						-	
C3-dibenzothiophenes		×	÷			•				-	-			-	
Sum of LACs		•	0.2	1	•	0.3	8.8	1	0.3		0.4	0.6	-	0.2	0.4
fluoranthene		-		0.1		-				_	-		-		1
pyrene				-	14		_	-		-	-		-	-	
C1-fluoranthenes/pyrenes		-				-			14	-	-	-		-	
enz[a]anthracene		-	-			-		-	14	-		-	-	-	
hrysene	S					-	-		-		-	-		-	
Cl-chrysenes/benz(s)anthracenes		-	-	-	-	-		•	-		-	-	-	-	
C2-chrysenes/benz(a)anthracenes		-	-		-	14					-	-	1-	-	
3-chrysenes/benz[a]anthracenes				-		-	-	-		-	-			-	
4-chrysenes/benz[a]anthracenes		-	-	-	-			-		-	-	-	.+	-	
enzofbifluoranthene				-			-			-		-		-	
enzo[k]fluoranthene			- 1 - 1	-	-		-	-		-	-	-		-	
enzo[a]pyrene							-		-	-	-	-		4	
ndeno[1,2,3-cd]pyrene			_	-	-		-	-	-	-	-	-	-	-	
libenz(a,h)anthracene		-	_	-	-		-	-	_	-	_	-	_	-	
enzo[ghi]perylene		-			-	-	-	-	-	-	-	-	-	-	
Sum of HACs				0.1		•				•			-	-	
tample weight, grams:		3.22	6.13	5.63	5.07	5.29	5.13	5.08	5.51	4.68	5.22	5.20	4.61	5.54	4.9

can inte

	Village:		<-Cheneg			Old H	larbor	Tatitlek	Lars	en Bay	Ango
	Site:	CHE2	CHE2	CHE2	CHE2	OHA1	OHA2	TAT4	LAB6	LAB6	AG
	Cycle:	I	П	П	ш	I	Ш	I	I	п	
	D&M no.:	014	166	165	471	108	631	025	105	249	1
		015				112		026		250	1
Cs		013						10,010		-	-
	Lab no.;	23	149	151	487	26	524	22	704	285	
phthalene					-						
-naphthalenes									# 02	■ 0.1	
-naphthalenes		-	•	•	•	•	•	-	02	0.1	
		-	-	1		-	-	•		-	
naphthalenes		-	-	-			•		-	<i>F</i>	
naphthalenes		-	-	-	-	-	-	-	•	-	
naphthylene		-	-	-	-	-		-	•	-	
naphthene	F	•		•	-	•	· ·		1		
rene			*	H.		-					
fluorenes					÷.	_ 2:	-	-	-	-	
fluorenes	E	-	-	-		•	-	-	-	-	
fluorenes		÷.		-		¥.,		=	-	-	
anthrene		-		-	0.3	-	0.7	~	0.3	0.2	
phenanthrenes/anthracenes	1	-	-					-			
phenanthrenes/anthracenes	1	_	-	-		-		_	-	-	
phenanthrenes/anthracenes		-	-	-	-			-		_	
phenanthrenes/anthracenes		*				-	-				
phenankhrenesyaninracenes		•	-				•	-		•	
nzothiophene		*	-						-		
dibenzothiophenes		-	•	-	-		-	-	-	-	
dibenzothiophenes		•1	-			-	-	-	÷	-	
dibenzothiophenes		•				(*	*		÷	•	
n of LACs				-	0.3		0.7	•	0.5	0.3	
ranthene		-							-		
ne		-			-	-	-	-	-	-	
luoranthenes/pyrenes			-	-	-	-	-	-	-	-	
a)anthracene		-	-				-		-	-	
sene	1	-	-	-		-					
chrysenes/benz[a]anthracenes			_	12			-	<u>~</u>	-	-	
hrysenes/benz[a]anthracenes			-				-	-	-		
hrysenes/benz[a]anthracenes			_			-		_	_	_	
thrysenes/benz[a]anthracenes	1	-	-	-	-	-	-	-	-	-	
thysches/benziajanunmeenes	1	-	•	2.				-	.	-	
co[b]fluoranthene	1	-	-	•			-	H	•	•	
ro[k]fluoranthene	1		-	•	-		•	*	-	•	
to[a]pyrene	1	-	7	•		-	•	-	-	-	
no[1,2,3-cd]pyrene	1	3 	-2	-			-	-	-	*	
mz[a,h]anthracene	1	-	-	-	-	-	•	-	-	-	
zo[ghi]perylene	1	-	.	-		-		8	×.		
					18						

Table B-14. Pacific Cod. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

THE REAL PROPERTY AND ADDRESS

....

Table B-15. Rockfish, Irish Lord and Yellowfin Sole. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Fish:			<- F	lockfish ->				<- Irish Lor	d ->	Yf. Sole
	Village:	Kodiak	<-Che	enega Bay->		<-Tatitlek->			on Graham/ En		PL Lions
	Site:	KODI	CHE2	CHE2	CHE2	TAT3	TAT4	CHI4	PTG2	PTG2	PTL6
	Cycle:	I	1	п	П	I	I	I	I	I	1
	D&M no.:	047	016	168	167	007	008	044	029	024	074
10		048	017					045			
ACı	Lab no.:	24	42	150	157	701	702	25	709	710	705
naphthalene											
Cl-naphthalenes	1	•	•	•	-	0.4	0.3	•	0.2	0.2	0.4
C2-naphthalenes		-	•	•	•	-	•	-	-	-	-
C3-naphthalenes		-	-	-	-	-	-	-	•	•	-
C4-naphthalenes		-	• 1	-	-	•	· •	•	-	-	-
acenaphthylene	[-	-	•	•	-	•	-	-	•	-
acenaphthene		-	•	-		-	-	•	-	-	-
fluorene	1	-	•	-	-	•	•	-	-	•	•
C1-fluorenes		-	•	•	•	-	•	-	-	•	•
C2-fluorencs	l .	-	•	•	•	•	-	-	-	•	•
C3-fluorencs		•	-	-	-	-	•	-	-	-	-
phenanthrene		•	-	-	-	0.7	0.3	-	0.4	0.2	0.4
C1-phenanthrenes/anthracenes		-	-	-	•	-	-	-	-	•	-
C2-phenanthrenes/anthracenes		•	-	-	-	-	•	-	-	-	-
3-phenanthrenes/anthracenes	ł	-	-	•	•	•	-	-	-	•	-
C4-phenanthrenes/anthracenes		-	•	-	-	-	-	-	-	-	-
tibenzothiophene		-	-	-	-	-	•	-	-	-	-
C1-dibenzothiophenes		-	-	-	-	•	•	-	-	-	•
C2-dibenzothiophenes		-	-	-	- ,	•	-		-	-	-
C3-dibenzothiophenes		•	-	•	-	•	-	•	-	•	-
Sum of LACs		•	•	•	•	1	0.6	-	0.6	0.4	0.8
fluoranthene		-	-					-	-	•	-
pyrene		-	-	-	-	-	-	-	•	-	-
C1-fluoranthenes/pyrenes		-	-	•	-	-	-	-	-	-	-
benz[a]anthracene		-	-	-	-	-	•	-	-	-	-
chrysene		-	-	•	-	-	-	•	-	-	-
C1-chrysenes/benz[a]anthracenes		-	-	-	•	•	•	-	•	•	-
C2-chrysenes/benz[a]anthracenes		-	-	-	•	-	-	-	-	•	-
3-chrysenes/benz[a]anthracenes		-	-	-	-	•	-	-	-	•	-
C4-chryscnes/benz[a]anthracenes		-	-	-	٠	•	-	•	-	-	•
enzo[b]fluoranthene		-	-	-	•	-	-	-	-	•	-
enzo[k]fluoranthene		•	-	-	•	•	•	-	-	•	-
enzo[a]pyrene		-	-	-	-	•	-	-	•	•	•
ndeno[1,2,3-cd]pyrene		-	-	-	•	•	-	-	-	-	-
libenz[a,h]anthracene		-	-	-	•	•	-	-	-	•	•
penzo[ghi]perylene		•	-	•	-	•	•	-	•	-	-
Sum of HACs		• .	-	-	-	•	•	•	•	•	•
ample weight, grams:		4.01	4.68	4.56	4.70	5.27	5.19	4.26	5.33	5.23	5.33

4-01-000

APPENDIX C

CONCENTRATIONS OF INDIVIDUAL AROMATIC CONTAMINANTS IN SHELLFISH

Explanatory Notes for Tables C-1 through C-12.

Naphthalene-d8 was the internal standard for naphthalene through C4naphthalenes. Acenaphthene-d10 was the internal standard for acenaphthylene through C1-fluoranthenes/pyrene. Benzo[a]pyrene-d12 was the internal standard for benz[a]anthracene through benzo[ghi]perylene. Percent recoveries for the internal standards (surrogates) averaged 88%, RSD = 15%, n = 452. Percent recoveries of the surrogates include split or duplicate samples.

Results on sample extracts were determined by gas chromatography/mass spectrometry (GC/MS), using sequenced multiple ion detection.

A hyphen (-) indicates that the analyte was not detected above the limit of detection which ranged from 0.02 to 1 ng/g (ppb) wet weight. This applies to individual contaminants, as well as groupings of contaminants (e.g., C2-phenanthrenes/anthracenes).

Low levels of naphthalene (a) found were indistinguishable from those of blank analyses and are unlikely to indicate exposure to petroleum in the absence of 1- and 2-methylnaphthalene.

	Village:	<-V	Vindy Ba	V->	Kodiak		<-Ch	enega B	av->				<	-Port G	raham/	English	Bay->				Lars. B.
	Site:		WNB1							CHEI	PTGI	PTG4						PTG1	PTGI		LABI
	Cycle:	1	Ш	Ш	I	I	П	Ш	Ш	Ш	1		n	П	п	п	Ш	Ш	Ш	Ш	
	D& M no.:	036	490	491	051	009	164	468	469	470	020	033	126	125	121	122	123	476	477	478	07
ACs						010					021										
ACI	Tak and	47	242	242	40	44	114	204	205	104	45	46	115	116	117	110	110	117	338	220	61
	Lab no.:	47	242	243	48	44		304	305	306	45	46	115	116	117	118	119	337	338	339	61
naphthalene																					a
Cl-naphthalenes			16	0.3			0.7	0.5	0.2	0.5		-	0.3	0.1	0.2	0.3	0.09	0.7	0.7	0.5	
C2-naphthalenes		0.3	120	1	- 4		0.2	0.2	0.1	0.1			*			-		•			,
C3-naphthalenes		54	340	14	41	0.5	2	2	1	1						-		-	•		
C4-naphthalenes		34	560	46	85	1	4	3	3	3		-	-			•		-		-	
acenaphthylene	()-4 · · · ·		0.07	-			1			-	2=	-	1		-				÷.,		
acenaphthene	Sec. 1		0.5		-				-		10		-				•	-	•		÷
fluorene	6		14	0.4	2	-	0.5	0.2	0.1	0.3	-			-	0.1						14
C1-fluorenes	2	10	88	7	27	0.2	1	1	1	0.9			-	-	-	-		-		-	
C2-fluorenes		81	600	54	110	3	4	4	3	2	- A	-				8					
C3-fluorenes		78	180	31	73	0.2	0.4	0.6	2	0.7		-	-	-	-	-		-	-		
obcoanthrene		17	72	6	34	5	7	5	4	4		2	3	0.9	4	3	2	0.7	0.8	0.7	1
C1-phenanthrenes/anthracenes		140	560	63	140	18	12	10	9	7	-	-	-		0.2	0.3	-			-	
C2-phenanthrenes/anthracenes		540	2400	330	250	52	29	22	23	15				-	0.09	0.1		-			
C3-phenanthrenes/anthracenes		740	3700	630	150	46	29	22	23	14								-	÷.,	14	
C4-phenanthrenes/anthracenes		160	980	200	5	0.5	4	3	6	2	-		-	-	-	-		-	-		-
dibenzothiophene		11	70	4	14	0.5	1	3	2	1		-			0.1					-	
C1-dibenzothiophenes		100	420	48	99	10	ŝ	14	11	ŝ			-	-		-	-	-			
C2-dibenzothiophenes	S	510	2300	310	270	40	26	49	42	18										-	0.1
C3-dibenzothiophenes		780	3500	620	230	47	33	56	56	21	•		-	-	•		-			-	0.06
Sum of LACs		3300	16000	2400	1500	220	160	200	190	96	-	2	4	1	5	4	2	1	2	1	1
fluoranthene		13	47	8	57	5	6	8	7	6		0.07	0.4		6	4	2				0.3
pyrene		9	56	7	25	2	3	5	4	3		0.1			2	2	0.5		-	14	
C1-fluoranthenes/pyrenes		68	450	60	14	0.4	1	3	3	1			-					-			
benz[a]anthracene		0.7	10	2	6		0.8	1	1	0.9	-	-	-		0.5	0.1	4		-		
chrysene		110	380	73	19	8	4	3	4	2	-				2	2	0.3			-	-
C1-chrysenes/benz(a)anthracenes		160	520	160		5	3	1	3	0.8	$\sim 2 \omega$	-	-		-		-	-		14	-
C2-chrysenes/benz[a]anthracenes		68	600	160		-	1	0.1	1	0.05	-					-					
C3-chrysenes/benz[a]anthracenes		0.2	270	52		-		-		-		4	-	<u>.</u>		-		-		.÷	
C4-chrysenes/benz[a]anthracenes			58	5		-	-						-	-		-				-	
benzo[b]fluoranthene		8	62	15	5	0.1	2	1	2	1					1	0.4	0.2				1.
benzo[k]fluoranthene			56	0.9	37	0.1	ī	0.3	0.7	0.3					0.6	0.1					-
cenzo[a]pyrene		-	7	2		_	1	0.09	0.2	0.1	_	-						_	_	-	
indeno[1,2,3-cd]pyrene		-	3		-		-	0.09			-	-				-	-	-	-	-	
dibenz[a,h]anthracene		-	5	0.5											-	-	-	220			
benzo[ghi]perylene			17	3		-		-		×	-	-	-			-		-		-	i.
Sum of HACs		440	2500	550	160	20	22	22	26	15		0.2	0.4		12	9	3			-	0.3
sample weight, grams:		4.58	4.93	5.19	5.31	5.05	4.61	4.83	5.19	4.49	4.78	4.72	2.92	3.77	5.45	5.17	5.33	£ 20	5.13	5.35	5.09

Challet Worker

	Village:				illek->					OId H			Chiniak			rluk->		Akt		Kasit		Ango	
		TAT1	TATI	TAT5	TAT5	TATS			TATS	CHA3		CHII	CHI2	KARI	KAR2 I								
	Site:	I	I	П	п	П		ш		I	Ш	I	I	I	n	ш	Ш	ш	П	ш	ш	п	п
	Cycle:	001	001		157	158	420	421	422	119	089	054	040	079	278	368	369	380	359	487	488	173	174
	D & M no.:		002																				
ACs		>du	plicate																				
	Lab no.:	43	66	111	112	_113	307	308	309	60	_ 395	57	58	59	245	393	394	392	_ 251	355	356	232	324
aphthalene																							
Cl-naphthalenes	8			0.2	0.2	0.2	0.2	0.4	0.1	-	0.2	-		-	0.2	0.1			0.2	0.3	0.3	0.3	0.3
2-naphthalenes	÷	•	-	0.2	0.2	0.2	0.2	0.4	0.1	*	0.2	-			0.2	0.1			0.2	0.5	0.5	0.5	0.5
		*	•	-	*	-	•	•	-	•	-	•			•	-		-	-	-		-	•
3-naphthalenes		-	-			-	-	-	-	•	-	•	-	-	•		•	-	-	•	la la	-	
4-naphthalenes			-		~		-		-			•	-	-	•	•	-	-	-				
cenaphthylene		•	-	0.5	0.6	0.5	-	•	•	•	-		•	-		-	*	•	-	-		-	•
cenaphthene		-	-	-	*	-	-		-	-	-	۰	-	•		•		-	-	-	-	-	
uorene		-		*	•		*	-			-	•	•				•	-	-	-	10		
1-fluorenes			-		٠	-	-	-	-	-	-		•	-	141	-		•	-	-	-		•
2-fluorenes			-	•	•	•		-	-	•	•		•			•	•	-		-	•	•	-
3-fluorenes			-	•	-	-	-	-	-	-	-	-		-		-	-		-	*	-	-	-
henanthrene		-	-	2	2	2	0.6	0.7	0.8		0.7	•	H	-	0.2	0.2	0.3	0.3	0.2	0.8	0.4	0.3	0.7
1-phenanthrenes/anthracenes			-				-	-					•	-	-	-	-	-	-				
2-phenanthrenes/anthracenes			-		-	-	-	-		-	-			-			-		÷.				
3-phenanthrenes/anthracenes			-			-		-	-	•	-			-	-	-			-		-	-	•
4-phenanthrenes/anthracenes	S	-			-	-			-	•		-		-			-	-	-	-	-	-	
benzothiophene		-	-	-		-	-	-	141		-			-					-	-	-	-	
1-dibenzothiophenes			-		. 4 .			54 (H			-		-								-	-	-
2-dibenzothiophenes		-	-		-			-				-				-	•	-		-		-	
3-dibenzothiophenes			-	-				-				•	-	-		-		-	-	-		100	
um of LACs		-	-	3	3	3	0.8	1	0.9		0.9		•		0.4	0.3	0.3	0.3	0.4	1	0.7	0.6	1
uomnthene				0.2	0.1	0.3																-	0.1
/rene				0.2	0.1	0.5				-		<u> </u>	-			-			<u></u>			-	0.1
1-fluoranthenes/pyrenes																	_						
enz[a]anthracene						-	-	-	-							-			-	-		-	
nrysene					-		•			•													
1-chrysenes/benz[a]anthracenes		-	-		•	•	•	-		•		-	-			-		•	•				
1-chrysenes/benziajanuracenes		•	-	-	-	-		-	•	•			-	5.	•		-	-	-		-	-	-
2-chrysenes/benz[a]anthracenes		-	-		-	•		-	-	•	-		-	-		-		-	-	-	-	•	•
3-chrysenes/benz[a]anthracenes		-	-	-	-	•	-	-	-	-	•			-		-	-	•	-	•	•	-	
-chrysenes/benz[a]anthracenes			-	-	-	-	-	-	-	•	-	-	•	-	-		-				•		
nzo[b]fluoranthene		-	-	•		•		-	•	•	-			-		-	-		-			-	
nzo[k]fluoranthene			-					-	•		-	•	•			-	•	•	-	•		-	
nzo[a]pyrene		-			÷		•	-	•		-		*	-1		-	-				•	-	
deno[1,2,3-cd]pyrene		-	-	-	14	-	-	-		-	-	-		-	•			-	-			-	-
benz[a,h]anthracene		-	-		-	-	-	-			-		-	-		-		-	-				-
enzo[ghi]perylene			٠		÷	-	•	-	•	•			-			•		-	-	×	-	-	-

a the description

Table C-2. Mussels. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

-

Table C-3. Butter clams. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Village:	Kodiak	Chene	ega Bay					<- 0	ld Harbo	or ->		*/			Angoon
	Site:	KOD3	CHE1	CHE1	OHA3	OHA3	OHA3	OHA3	OHA3	OHA4	OHA4	OHA4	OHA4	OHA4	OHA4	AGN2
	Cycle:	П	I	I	I	П	П	ш	Ш	П	I	П	Ш	ш	Ш	I
	D& M no.:	205	011	012	110	318	319	614	613	320	114	321	609	609	610	176
ACs													>duj	plicate<		
	Lab no.:	212	664	665	669	225	226	431	432	227	670	247	418	419	433	231
naphthalene																
C1-naphthalenes		1	0.7	0.4	0.6	0.2	0.2	0.3		0.2	0.1	0.4	0.2	0.4	0.4	0.2
C2-naphthalenes		4	0.6	-		-	-	-				· -	2	3	0.9	
C3-naphthalenes		24	2	0.07			-	-	-				26	33	16	
C4-naphthalenes		40	0.8	0.06									23	39	21	
acenaphthylene		0.06		-			-	-						-		
acenaphthene		0.8			-		-	-	-		-				-	
fluorene		2					-			-			0.8	1	0.3	
C1-fluorenes	1	8		0.1		-	-						9	11	3	
C2-fluorenes		28	01								*		9	19	14	
C3-fluorenes		8	0.8	0.5										ĩ	3	
phenanthrene		16	3	2	1	0.9	0.5	1	0.3	2	3	2	16	19	13	0.3
C1-phenanthrenes/anthracenes		32	7	3		0.3	0.5		0.5	2	1	ĩ	37	46	36	0.5
C2-phenanthrenes/anthracenes		45	10	4		0.1				0.8	0.3	0.4	32	44	40	
C3-phenanthrenes/anthracenes		22	2	0.1		0.1			•	0.0	0.5	0.4	5	13	15	
C4-phenanthrenes/anthracenes		42	-	0.1	-				•					0.05	13	
dibenzothiophene	N	5	1	0.2		•	-	•	•		•	•			-	
C1-dibenzothiophenes	1.	66	2	0.2	-		•			0.2		0.0	-	3	4	
C1-dibenzouniophenes	1		1				•	-		0.3	-	0.2	23	30		
C2-dibenzothiophenes		41	/	3	٠		•	2.7		0.3	0.1	0.1	33	47	25	-
C3-dibenzothiophenes		28		1	•	*	-	•	•	-	-		10	22	22	
Sum of LACs		410	37	15	2	2	0.7	1	0.3	6	4	4	230	330	210	0.5
fluoranthene		27	3	2	0.6	0.7	0.3	0.9	-	3	5	2	12	15	10	
ругеле		14	1	1		0.1	-	0.2		2	2	1	8	10	7	
C1-fluoranthenes/pyrenes		4	-	*				*	· .	-			0.3	2	1	
benz[a]anthracene		0.8		-			-			0.1				0.4	0.5	
chrysene		3	0.6	0.3		-	-			0.2	0.1	0.1	0.5	1	1	
C1-chrysenes/benz[a]anthracenes		0.04				-	-	¥.		-		-		-		
C2-chrysenes/benz[a]anthracenes				-					•		-			-	-	-
C3-chrysenes/benz[a]anthracenes										-			-			
C4-chrysenes/benz[a]anthracenes				-		-							-			
benzo[b]fluoranthene		0.7												0.2	0.5	
benzo[k]fluoranthene		0.5												0.2	0.2	
benzo[a]pyrene		0.1	<u> </u>	2				-	-			-	. ÷	2		
indeno[1,2,3-cd]pyrene		0.1		20 20		1. 	-		_						-	
dibenz[a,h]anthracene											-			₹. 		
benzo[ghi]perylene		•	•	•	-		-			•	•	-		-	•	
oenzolknijperytene		-	•				- 1				-	- 1		•	•	
Sum of HACs		50	5	3	0.6	0.8	0.3	1		5	7	3	21	29	20	
sample weight, grams:		5.11	5.07	5.02	5.03	5.07	5.04	5.26	5.31	5.20	5.05	5.52	5.00	5.65	5.38	5.09

	Village:				arsen Bay	y ->					inkie ->			Akhiok -		Karluk
	Site:	LAB1	LABI	LAB1	LAB2	LAB2	LAB2	LAB2	OUZ2	OUZ2	OUZ3	OUZA	AKH2	AKH2	AKH2	KAR
3'	Cycle:	I	ш	ш	I	П	П	П	1	Ш	I	п	I	ш	Ш	I
	D & M no.:	096	586	587	097	315	316	314	059	088	062	253	093	377	378	279
ACs																
	Lab no.:	673	416	435	682	249	250	260	63	434	672	207	62	417	430	224
naphthalene			1													a
C1-naphthalenes		0.3	-	0.3	0.9	0.3	0.2	0.7		0.2	0.2	0.4			0.1	0.1
C2-naphthalenes						-			-	-				-		
C3-naphthalenes		÷.,								-					-	
C4-naphthalenes			•								•		•			
acenaphthylene	1	*								-	-	-	-	*		
censphthene	1	-	14			-			-	-	-		-	-	-	
fluorene		-				-				-	-			-	-	
C1-fluorenes				-						-		•			-	
C2-fluorencs		-	-						-	-				-		
C3-fluorenes		•			-	-	-	-	*			-				
phenanthrene		2	0.5	0.7	1	1	0.8	2		0.7	2	1	-	0.4	0.2	0.2
C1-phenanthrenes/anthracenes	1	0.3	-			2		0.6	-		ī	0.7				
C2-phenanthrenes/anthracenes		0.3				0.5	-	0.3			2	0.4				
C3-phenanthrenes/anthracenes						-			-	-	0.3	0.1	-			
C4-phenanthrenes/anthracenes		-	2								0.5				-	
dibenzothiophene		-	-			-	-				2					
C1-dibenzothiophenes	1				-					-	0.1	0.1				
C2-dibenzothiophenes			-			0.1			-		1	0.1			_	
C3-dibenzothiophenes		.÷				-					0.4				-	
Sum of LACs		3	0.5	1	2	4	1	4		0.9	7	3		0.4	0.3	0.3
fluoranthene		1			0.1	0.7	0.2	0.7		•	1	0.5				
pyrene	1	0.3			-	0.1	-	0.1			0.5			-		
C1-fluoranthenes/pyrenes			-			-				-	-					
benz[a]anthracene		-	*			-	-				-					
chrysene		-	-			-					-				-	
C1-chrysenes/benz[a]anthracenes	1	-			•	-			-		-					
2-chrysenes/benz[a]anthracenes							-						_	_		
3-chrysenes/benz[a]anthracenes								_	-	-	-	-	-			1
4-chrysenes/benz[a]anthracenes										-	-	-	-		•	
enzo[b]fluoranthene								-	-				•		•	•
enzo[k]fluoranthene			*	*		-		-	-			-	•	-	-	
enzo[a]pyrene				-	•		-	-	-		-	-	-	•	-	-
ndeno[1,2,3-cd]pyrene		-	-		-		-	-	-		-				-	•
		*	-	-		•	•	-	-		-	-	•1	-	-	-
libenz[a,h]anthracene penzo[ghi]perylene			-			-	-			-	-			•	-	-
Sum of HACs		1	-		A 1	~ 0		• ~								

Table C-4. Butter clams. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Village:			<- 1	Chiniak ->	>					<- F	t. Lions -	>	*	1	Kasitsn
	Site:	CHII	CHII	CHII	CHI2	CHI2	CHI2	СНІ2	PTLI	PTLI	PTLI	PTL1	PTLI	PTL2	PTL2	KAS
	Cycle:	I	ш	ш	I	п	ш	Ш	I	П	П	ш	Ш	1	П	I
	D& M no.;	053	632	633	041	226	636	637	063	229	230	514	515	066	232	48
Cs	1															
	Lab no.:	667	413	428	668	223	415	429	64	205	206	414	436	65	211	36
aphthalene				A .												8
1-naphthalenes		0.5		0.1		-		0.6	- T.	0.3	0.3		0.3		0.3	0
2-naphthalenes		0.0		0.1	-	-			-	0.5	0.5	-	0,5	-	0,5	Ŷ
3-naphthalenes				-				-					-	-		
4-naphthalenes				_	_			-		_		-	-			
cnaphthylene				-			-	-								
cnaphthene			201	-					-		-					
uorene	1		*1		•	•			•							
-fluorenes	ľ				*	•	•	•			÷.				-	
2-Auorenes		•	-	*	-				-	•	•	•	-	-	-	
-fluorenes		-	•	•	*	-	-		-		-					
		0.1	-		-									-		
enanthrene		0.6	0.2	0.5	0.3	0.5	0.3	0.3	0.9	0.7	1	1	1	2	2	
-phenanthrenes/anthracenes			-	-	. "		-	*	÷.	-	0.07	•	-	-	0.09	(
-phenanihrenes/anthracenes			-	-	•	•		•	-	-	-	-	•	•	-	1
-phenanthrenes/anthracenes			•		•			•	-	-	÷.		-	-		
-phenanthrenes/anthracenes				1 			5 4 5	÷.		-						
enzothiophene			ie.	-				÷.	•		8	8			-	
-dibenzothiophenes			1 4	141		-		•	•	-	-	-	-	-	•	
-dibenzothiophenes		-	-	-	-	-	p	-	-	-	-	-	-	-		
-dibenzothiophenes		1 H				÷	٠	÷.	-	•	-	•	*	×		
m of LACs		1	0.2	0.6	0.3	0.5	0.3	0.9	0.9	1	1	1	1	2	2	
ominthene		0.1	÷	0.3			æ		0.4	0.2	1	1	1	0.1	1	C
rene		٠		•	-			<u>.</u>			0.3	-	-		0.2	0.
-fluoranthenes/pyrenes		•	-	· •			-	•	-	-	-	-	-		-	
nz[a]anthracene		-	-	-			-	•		-	-	-	-	-		
rysene		-	<i>.</i>					.		-	-	-	-			
-chrysenes/benz[a]anthracenes	i i i i i i i i i i i i i i i i i i i		-						-	H						
-chrysenes/benz[a]anthracenes		-	-	-	•			-	-	-	-	-	-	-	-	
-chrysenes/benz[a]anthracenes		-	-	-		-		•	-	-		-	-			
-chrysenes/benz[a]anthracenes		-	-	-	4	. 		<u>a</u> .,	-	-		-		-		
zo[b]fluoranthene								-	-	-	-	-	-			
zo[k]fluoranthene				-	-						-	-	-		-	
zo[a]pyrene		-	-	-	-	-	-	-	-	-	-	-	-	-		
eno[1,2,3-cd]pyrene		-	-	-	_		-		•		-	-	-			
enz[a,h]anthracene		-	-	-	-		-	-	-	-	-	-	-			
zo[ghi]perylene	4		-			-										
n of HACs		0.1	٠	0.3					0.4	0.2	1	1	1	0.1	1	a la
-							5.53								5.12	

Table C-5. Butter clams. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

ъ.,

Sector to the

	Village:	Windy Bay			Old Ha		Ouzin		<-	Chiniak-:		Akhio		Port Li		PG/EB
	Site:			KOD3	OHA3			OUZ2	CHII	CHII		AKH3		PTLI	PTLI	PTG1
	Cycle:	I	ш	ш	Ш	ш	I	п	n	Ш	Ш	n	п	п	Ш	I
	D& M no.:	038	494	495	615	611	060	252	227	634	639	358	358 licate<	231	519	137
ACs	C											Auh	IICALC \			
	Lab no.:	666	437	447	615	616	671	214	246	613	614	301	310	213	617	340
naphthalene																
C1-naphthalenes	100	0.7	0.9	-	0.5	0.2	0.3	02	0.2	0.1	0.3	-	0.2	0.2	0.2	0.6
C2-naphthalenes	Sec. 1.	0.8	2	•		0.9					-	-	-	•		0.1
C3-naphthalenes		7	14	4	-	17	-	•		7 	-				-	0.2
C4-naphthalenes		13	22	_ 6	-	16	-			-				-	-	
acenaphthylene	1		-	*				-			-		-	-		
acenaphthene					-			н.		•			-		-	
fluorene		0.2	1	-		0.4		-	-		•	-	-	•		0.1
C1-fluorenes	1	4	6	3	-	8		-	-			-	-	-	-	0.09
C2-fluorenes		19	18	6	-	9				-	-		-			
C3-fluorenes		6	9	2	0.4	3				1	0.3		-		-	
phenanthrene		7	8	4	1	15	0.7	0.4	0.4	0.8	0.5	0.3	0.5	1	1	5
C1-phenanthrenes/anthracenes		43	28	14		34	-			-		-	-	0.3		6
C2-phenanthrenes/anthracenes		130	42	22		32			-			-	-	0.3		3
C3-phenanthrenes/anthracenes		180	20	8		9		-	-	-			-		-	3
C4-phenanthrenes/anthracenes	and the second se	45	0.9	-					-	-	-		-			
dibenzothiophene		5	4	2	-	8		-					-			0.4
C1-dibenzothiophenes		27	17	9		21		_				-		-		1
C2-dibenzothiophenes		120	44	24		18				-	-				-	0.08
C3-dibenzothiophenes		220	31	15	-	10		•		-	•	•				
Sum of LACs		830	270	120	2	200	1	0.6	0.6	2	1	0.3	0.7	2	1	20
fluoranthene		4	23	15	0.7	11			0.3	0.4	0.1			1	0.9	6
pyrene		3	11	7		7	-		-					0.1	0.1	2
C1-fluoranthenes/pyrenes		20	51	0.9		0.5	-	-	-		-			-		0.08
benz[a]anthracene		0.3	0.2					-			-		-		-	0.3
chrysene		24	2	0.8		0.3		-					-		-	0.6
C1-chrysenes/benz[a]anthracenes		32	-							-			-		-	
C2-chrysenes/benz[a]anthracenes		32											-		-	
C3-chrysenes/benz[a]anthracenes		11			-	-						-	-		-	
C4-chrysenes/benz(a)anthracenes			-						-	-			-		-	
enzo[b]fluoranthene		2	0.2					-				-			-	
benzo[k]fluoranthene	1		-			2		-	2	-		-		-		2-
benzo[a]pyrene		-	_	_	_	-		-	-	-	-	-	-	-	-	
indeno[1,2,3-cd]pyrene		-	-		_	_		_	-	-	_	_	-	-	-	
dibenz[a,h]anthracene			-		•		-	-	-	-				-		
benzo[ghi]perylene		0.1								-	-		-		-	-
Sum of HACs		130	87	24	0.7	19		-	0.3	04	0.1			-4		

Table C-6. Littleneck clams. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

Table C-7. Cockles and horse clams. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Mollusc:		Cockle			Horse Clam	
	Village:		Chiniak ->		PG/EB	<- Angoon	
	Site:	CHI2	CHI2	CHI2	PTG1	AGN2	AGN2
	Cycle:	П	ш	Ш	П	п	11
	D & M no.:	224	638	638	136	175	175
			:	>duplicate<		>duplicate<	
ACs		(0.000	<i>(</i>) <i>(</i>))		<0.000	-	220
	Lab no.:	60-303	60-612	60-618	60-302	325	328
aphthalene			8.				2
Cl-naphthalenes		0.2		0.1	0.2	0.2	0.4
2-naphthalenes		0.2	-	0.1	0.2	0.2	
3-naphthalenes		-	-	-	-	-	-
24-naphthalenes	5	-	-	-	-	-	
cenaphthylene		-	-		-	-	
cenaphthene		-	-		-	-	-
luorene	1	•	-	-	-	-	
11-fluorenes	1	-	-	-	-	-	
2-fluorenes	1	-	-	-	-	-	
3-fluorenes		-	0.3	-	-	-	
henanthrene		0.6	0.4	0.4	3	0.3	0.4
1-phenanthrenes/anthracenes		0.0	0.4	0.4	5	0.5	
2-phenanthrenes/anthracenes		-	-		_	-	
3-phenanthrenes/anthracenes		_	-	_	-	-	
4-phenanthrenes/anthracenes		_	_		-	_	
ibenzothiophene		-	-		-	· -	
1-dibenzothiophenes		_	_	-		-	-
2-dibenzothiophenes		_	-		-	-	
3-dibenzothiophenes		-	-	•	-	-	-
um of LACs		0.8	0.7	0.5	3	0.5	0.8
uoranthene		0.1	•	•	5	-	-
yrene		-	-	•	3	•	
1-fluoranthenes/pyrenes		-	-	-	-	-	-
enz[a]anthracene		-	•	-	0.5	-	
rysene		-	-	-	1	-	-
l-chrysenes/benz[a]anthracenes		-	-	-	-	-	-
2-chrysenes/benz[a]anthracenes		•	•	-	-		-
3-chrysenes/benz[a]anthracenes		•	-	•	-	-	•
4-chrysenes/benz[a]anthracenes		-	-	-	-	-	
mzo[b]fluoranthene		-	-	-	0.3	-	
nzo[k]fluoranthene		•	•	-	-	-	•
mzo[a]pyrene		-	-	-	-	-	•
deno[1,2,3-cd]pyrene		-	-	-	-	-	
benz[a,h]anthracene		-	-	-	-	-	
nzo[ghi]perylene		•	-	-	-	-	
um of HACs		0.1	•	-	10	•	
umple weight, grams:		5.42	5.26	5.49	5.03	5.32	5.64

	Village:	Wind	y Bay	Kodi	ak	<- 0	ld Harbo	x ->	Tatitle		<- L	arsen Ba	y->	Ouzir	ikie	Akhiok	Kar	luk
	Site:	WNB1	WNB1	KOD3	KOD3	OHA3	OHA3	OHA3	TATS	TAT5	LAB1	LAB1	LAB2	OUZ2	OUZ2	AKH2	KAR1	KAR
	Cycle:	1	Ш	П	Ш	I	11	Ш	П	Ш	I	n	111	1	Ш	III	I	II
	D& M no.:	35	492	204	493	109	317	612	159	423	78	313	589	61	199	379	80	370
ACs																		
	Lab no.;	76	360	208	396	79	345	401	120	357	81	346	411	80	410	399	78	400
naphthalene												8		2			8	a
C1-naphthalenes	1	0.4	0.6	3	1	0.5	0.3			0.8	0.2	0.2		•	0.2	0.4	0.1	
C2-naphthalenes		0.04	0.2	4	0.3	-	-		-		-			-		•	-	3
C3-naphthalenes	1	-	3	14	1		-				-		-			-		
C4-naphthalenes		0.02	43	27	1		-		-		-			-		-	-	
acenaphthylene			-				-					•	4	-	-		-	8
acenaphthene				2	•		-			•	-					*		
fluorene			0.2	3	0.3						-	•		-				8
C1-fluorenes		0.03	4	9	3	•	-						-					
C2-fluorenes	10	2	98	45	7		-		-	•	-						-	
C3-fluorenes		-	77	12	3		-			-		-	-	-		-		
phenanthrene		2	5	14	13	0.9	0.6	0.5		0.4	0.4	0.7	0.4	0.1	0.3	0.7	0.1	
C1-phenanthrenes/anthracenes	1	1	38	30	34	0.02		-			-		-	-	-		-	3
C2-phenanthrenes/anthracenes	I.	2	380	21	14	1					-		-			•		
C3-phenanthrenes/anthracenes		3	1000	19	4			-			-						-	
C4-phenanthrenes/anthracenes	- 1	0.4	310	2	-		-			-		-			-			
dibenzothiophene		0.3	3	3	0.5	-	÷		-		-		-		-	-	-	
C1-dibenzothiophenes		0.1	25	6	1		-	-	-		-	-	•					
C2-dibenzothiophenes		0.7	580	11	3	-		-		-	-	-	-	-			-	
C3-dibenzothiophenes		0.9	1400	9	4			•		•					•	•	-	
Sum of LACs		13	4000	230	90	2	0.9	0.5		1	0.6	0.9	0.4	0.1	0.5	1	0.2	
fluoranthene		0.04	11	11	7	0.05	-			-	0.05	0.4	-	-		-	*	
pyrene			22	0.4	7	0.03		•		-	0.01	0.2	-		-	•	-	
C1-fluoranthenes/pyrenes	- C	0.6	220	9	13	-		-			-	-	-	-			-	
benz[a]anthracene			5	0.8	0.1					-	-	-	-	-	-		-	
chrysene		1	220	4	3			-	-	-	-	-	-	-		-	~	
C1-chrysenes/benz[a]anthracenes		0.6	370	-	-		-	•	-	-	-	-	-	-			-	-
C2-chrysenes/benz[a]anthracenes		1	400		-				-	-	-	-	-	-				
C3-chrysenes/benz[a]anthracenes		0.02	230	-	-		-			-	-	-	-	-	-	-	-	
C4-chrysenes/benz[a]anthracenes			270	-			-	-		-		-	-		-	4	-	
benzo[b]fluoranthene			41	0.8				-	-	-			÷.		-		-	
benzo[k]fluoranthene		-	3	0.5	-		-			4	-		a	-	-		-	
benzo[a]pyrene		ě.	6	0.1		-	-	•		-			-		-	-		
ndeno[1,2,3-cd]pyrene			3		-		-		-	-	-	-	-			-		
tibenz[a,h]anthracene		-	4	-				· .			-	-				-		
benzo[ghi]perylene		-	19			-		-	*	*			-		-	-	-	
Sum of HACs		3	1800	27	30	01												

Table C-8. Chitons. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

Table C-9. Chitons. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

	Village:		<- (Chiniak -	·>	1		•	<- Port L	ions ->			Pt. G	ra./Eng.	Bay	Kasits.	Ang	oon
	Site:	CH12	CHI2	CHI2	CH12	CH12	PTL1	PTL1	PTLI	PTL2	PTL2	PTL2	PTG1			KAS1		
	Cycle:	I	11	п	111	п	I	П	п	1	I	п	I	11	Π	111	II	L I
	D & M no.:	43	225	223	635	640	64	228	518	68	68	233	22	124	475	486	163	172
										>dupl	icate<							
ACa			• • •	• • • •		•••					•••							
	Lab no.:	77	343	344	397	398	82	210	412	83	84	209	75	121	359	358	326	327
naphthalene		8									a	a	a	a			A	а
C1-naphthalenes		0.2	0.3	0.6	-		0.2	1	0.4	0.1	0.1	0.7	0.3	•	0.4	0.8	0.6	0.8
C2-naphthalenes			•	-		-	-	-	•		•	-	-	•	-	•	0,07	
C3-naphthalenes		•	•	-	•	•	-	-	•	-	-	•	•	-	-		-	
C4-naphthalenes		-	-	•	•	•	•	-	•	-	•	-	•	-	•	-	-	
acenaphthylene		•	•	•	-		•	•	-		•	-	-	•	•	•	-	
acenaphthene		•	-	•		-	•	•	•	•	•	-	-	-	-	•	-	
fluorene		•	•	•	•	-	•	-	•	•	-	-		-	-	-	-	-
C1-fluorenes		-	-		-	•	•	-	•	•	-	-	•	-	•	-	-	
C2-fluorence		-	•	-	-	•	-	-		•	•	•	-	-	•	-	•	-
C3-fluorence		•	-	•	•	•	•	-	-	-	-	-		-	•	-	-	-
phenanthrene		1	0.7	0.6	0.5	0.1	0.4	0.7	0.7	0.2	0.3	0.6	0.4	0.2	0.3	0.7	0.7	0.6
C1-phenanthrenes/anthracenes		•	-	-	•	•	•	-	-	-	-	-	-	•	•	-	•	-
C2-phenanthrenes/anthracenes		•	•	-	-	-	-	-	-	-			-	-			-	-
C3-phenanthrenes/anthracenes		•	•	-		-	-		-		-	•	-	•	•	-	-	
C4-phenanthrenes/anthracenes		-	•			-		•	-	-	-	-	•	•	-	-	-	-
dibenzothiophene		-	•	-	•	-	•	-	-	-	-	-	•	-	-	-	-	-
C1-dibenzothiophenes		•	-	•	•	-	•	•	-	-	-	•	-	•	•	-	-	-
C2-dibenzothiophenes		•	•	-	-	-	• '	·	-	-	-	-	-	•	-	-	-	-
C3-dibenzothiophenes		-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-
Sum of LACs	-	1	1	1	0.5	0.1	0.6	2	1	0.3	0.4	1	0.7	0.2	0.7	2	1	1
fluoranthene		0.1	0.08	0.09						-				-	-			-
pyrene		0.04	0.00	0.02		-	-			-	-	-	-		-			
C1-fluoranthenes/pyrenes				-	-	-		-	-		-	-	•		-	-	-	
benz[a]anthracene		•		-			•		-	-	-	-	-	-	-	-		-
chrysene		-	•		-						-	-		-	-	-	-	
C1-chrysenes/benz[a]anthracenes		-	-	-	-			•	-	-	-	· -		-	-	-	-	
C2-chrysenes/benz[a]anthracenes		-			-	-			-	-	-	-	-	-		-		-
C3-chrysenes/benz[a]anthracenes		-		-		-	-	-	-		-	-	-	-	-	-	-	
C4-chrysenes/benz[a]anthracenes		-	-	-			-	-	-	-	-	-	-	-	-	-	-	
enzo[b]fluoranthene			-	-	-		-		-		-		-	-	-	-	-	
enzo[k]fluoranthene			•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
enzo[a]pyrene		-	-		-	-	:	-	-		•	-		-		-	-	-
ndeno[1,2,3-cd]pyrene		-	-		-		-	-		•	-	-	-	-	-	-		-
tibenz[a,h]anthracene		-	-	-		-	-	-	-	-	-	-	-	-	•	-	-	-
benzo[ghi]perylene		•	•	-	•	-	•	•	-	•	-	-	-	-		-	-	-
Sum of HACs		0.1	0.1	0.1	•	-	•	-	•	-	•	-	•	-	•	•	•	
sample weight, grams:		5.01	5.30	5.37	5.41	5 .31	5.03	5.03	5.18	5.10	5.42	5.33	5.19	5.12	5.09	5.50	5.28	5.32

a

ninen

Limpets Mollusc: <- Snails -> Village: Windy Bay <- Port Lions -> Port Graham Chiniak <- Larsen Bay -> Site: WNB1 PTL2 **CIII2** PTL1 PTG4 LAB4 LAB1 Cycle: I I I I I I D& M no.; 37 39 65 67 34 101 95 ACs Lab no.: 684 685 687 688 683 686 690 naphthalene . 8 C1 naphthalcnes 1 0.8 0.3 0.5 1 0.5 0.9 C2-naphthalenes 14 -..... C3-naphthalenes C4-naphthalenes 3 . -.... accnaphthylene -1.00 1 acenaphthene fluorene . . -. . C1-fluorenes 0.3 14 . le. C2-fluorenes 16 14 140 C3-fluorenca 13 . . . phenanthrene 0.5 2 0.8 6 0.6 0.4 0.6 C1-phenanthrenes/anthracenes 11 -C2-phenanthrenes/anthracenes 99 -. C3-phenanthrenes/anthracenes 170 4 -C4-phenanthrenes/anthracenes 40 ×. dibenzothiophene 0.06 C1-dibenzothiophenes 2 C2-dibenzothiophenes 54 . --. -C3-dibenzothiophenes 210 Sum of LACs 620 1 0.9 3 2 0.8 1 fluoranthene 1 0.6 0.1 pyrene 2 0.2 C1-fluoranthenes/pyrenes 13 14 2 benz[a]anthracene 0.5 . -. chrysene 39 0.07 . . 1 . . C1-chrysenes/benz[a]anthracenes 54 10 -14 C2-chrysenes/benz[a]anthracenes 38 -. C3-chrysenes/benz[a]anthracenes 10 --C4-chrysenes/benz[a]anthracenes 0.9 benzo[b]fluoranthene 2 . benzo[k]fluoranthene 100 ~ . --1.00 4 benzo[a]pyrene -. -. indeno[1,2,3-cd]pyrene dibenz[a,h]anthracene -. benzo[ghi]perylene 0.1 4

Table C-10. Snails and limpets. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

5.00 5.15 5.00 5.08 5.03

Management of particular systems

	Crab:		<- Du	ngeness ->				<- Tan			<- King	->
	Village:	<-Kodiak->	1	arsen Bay Cl	niniak P	ort Lions	Old Harbor L	ursen Bay	<-Port Lions	5->	Larsen Bay Po	ort Lions
	Site:	KOD4	KOD5	LAB4	CH13	PTL5	OHA2	LAB4	PTL4	PTL4	LAB4	PTL4
	Cycle:	1	Ц	I	Ľ	1	E -	1	I	111	I	I
	D& M no.:	52	212	103	55	73	115	99	71	581	102	235
							116	100	72			
AC												
	Lab no.:	96	341	99	97	102	98	100	101	491	689	342
				Reserved traine sectors	and the second second	and e						
naphthalene		2	8		8	2		8	8	A .		8
C1-naphthalenes		0.1	0.2	÷	-	-	0.08	0.1	-	•	0.8	
C2-naphthalenes		-	-	-	-	-	•	-	-	•	-	
C3-naphthalenes		-	0.08	•	-	-	-	-	-	-	-	
C4-naphthalenes		-	•	-	-	•	÷		-		-	
acenaphthylene		-	* -		-		-	-	•			
acenaphthene		•					•		•		-	0.
luorene		•	à.	-		Ξ.	•	×	•	•	-	0.2
C1-fluorenes		•	•	•	-					•	-	
C2-fluorenes		٠	-	-					-		-	5
C3-fluorenes		-		•			-		-	0.3		
phenanthrene		0.09	0.3	0.08	0.1	0.09	0.05	0.1	0.07	0.4	0.9	1
C1-phenanthrenes/anthracenes		-	-	-	-	•	•		-		-	
C2-phenanthrenes/anthracenes		-		-	-	•	•		-		-	
C3-phenanthrenes/anthracenes		-	-	-	-	-	-	-	-		H	
C4-phenanthrenes/anthracenes					.#				-		*	
libenzothiophene				*		×	-		=			
C1-dibenzothiophenes				-			-	-	-	•	-	
2-dibenzothiophenes		-	-	F	8 4	-	•	-	-	•	-	
C3-dibenzothiophenes		•	-	- 3	7	-	-		-		-	
Sum of LACs		0.2	0.6	0.1	0.1	0.1	0.1	0.2	0.1	0.7	2	÷
luoranthene					-			-				
yrene				-	-		-		-	-	-	
C1-fluoranthenes/pyrenes		-		-	-			-	-		-	
enz[a]anthracene		-		-	-		•	-	-	-	-	
hrysene		-	-	-		~	-	-	-	-	-	
C1-chrysenes/benz[a]anthracenes		-		-		-	-			•	-	
2-chrysenes/benz[a]anthracenes			-	-	-	-	-	-		-	-	
3-chrysenes/benz[a]anthracenes		-	-	-	-	-	-	-		÷.	-	
A-chrysenes/benz[a]anthracenes			-	-	-		•	-	-	-	-	
enzo[b]fluoranthene			-	-			÷.	-		¥.,	-	
enzo[k]fluoranthene			-	-	-	•	-		-	-		
enzo[a]pyrene		.=		-		-	÷					
ndeno[1,2,3-cd]pyrene				-			÷.			*		
ibenz(a,h)anthracene				-	-	-					-	
enzo[ghi]perylene			۲			٠		÷		•	÷	
ium of HACs								•	-	•	-	

Table C-11. Dungeness crab, Tanner crab and king crab. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

. .

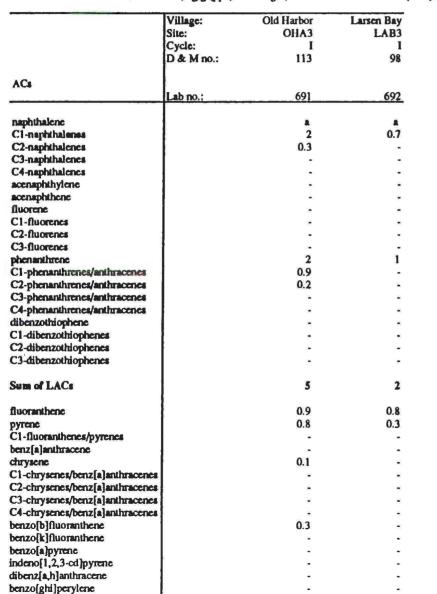


Table C-12. Urchins. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in edible flesh.

- Lands order - se

APPENDIX D

QUALITY ASSURANCE FOR INDIVIDUAL AROMATIC CONTAMINANTS IN FISH AND SHELLFISH

5

Quality Assurance for Individual Aromatic Contaminants in Fish and Shellfish:

Matrix Spikes, Spiked Blanks, and Method Blanks

For each set of 10 samples, a method blank and a matrix spike or a metho spiked blank were analyzed for selected aromatic contaminants (ACs) in Table 1.

Matrix Spikes

Thirty-one matrix spikes were analyzed for this project. The results are summarized in Table D-1. Mean percent recoveries for the ACs ranged from 79 to 110% and the relative standard deviations (RSDs) ranged from 7 to 34%.

Spiked Blanks

Spiked method blanks were analyzed with 6 sets of samples (Table D-2). Mean percent recoveries for the ACs ranged from 95 to 120% and the RSDs ranged from 2 to 19%.

Method Blanks

Thirty-seven method blanks were analyzed (Tables D-3a,b). Naphthalene was present in each method blank at about 1 ppb (1 ng/g). The source of the naphthalene appeared to be the dichloromethane solvent, despite the dichloromethane being the highest grade available. Traces of methylnaphthalenes and phenanthrene were also found in some method blanks.

147

Explanatory Notes for Tables D-1 through D-3a.b.

A CONTRACTOR

Naphthalene-d8 was the internal standard for naphthalene through C4naphthalenes. Acenaphthene-d10 was the internal standard for acenaphthylene through C1-fluoranthenes/pyrene. Benzo[a]pyrene-d12 was the internal standard for benz[a]anthracene through benzo[ghi]perylene. Percent recoveries for the internal standards (surrogates) averaged 87%, RSD = 15%, n = 216.

Results on sample extracts were determined by gas chromatography/mass spectrometry (GC/MS) using sequenced multiple ion detection.

A hyphen (-) indicates that the analyte was not detected above the limit of detection which ranged from 0.02 to 1 ng/g (ppb) wet weight. This applies to individual contaminants, as well as groupings of contaminants (e.g., C 2-phenanthrenes/anthracenes).

The matrix spike values are the percent recoveries of analytes added to a sample comparable to the type of tissue being analyzed. The matrix spike was then analyzed as a sample.

The spiked blank values are the percent recoveries of analytes added to a method blank and analyzed as a sample.

The relative standard deviation (RSD) is the standard deviation divided by the mean and expressed as a percent.

ACs	mean %	RSD %	Amount spiked ng/g
naphthalene	100	7	65
acenaphthylene	93	15	70
acenaphthene	93	10	63
fluorene	97	12	69
phenanthrene	106	13	68
dibenzothiophene	104	14	120
benz[a]anthracene	97	22	58
chrysene	101	18	68
benzo[b]fluoranthene	91	16	66
benzo[k]fluoranthene	86	12	65
benzo[a]pyrene	88	12	59
indeno[1,2,3-cd]pyrene	82	24	54
dibenz[a,h]anthracene	84	34	43
benzo[ghi]perylene	79	19	56

.

Table D-1. Matrix spikes. Percent recoveries of aromatic contaminants (ACs) in matrix spikes (n=31).

ACs	mean %	RSD %	Amount spiked ng/g
naphthalene	102	4	65
acenaphthylene	95	7	63
acenaphthene	98	2	69
fluorene	98	4	66
phenanthrene	103	6	68
dibenzothiophene	109	7	120
benz[a]anthracene	124	18	58
chrysene	113	9	68
benzo[b]fluoranthene	110	16	66
benzo[k]fluoranthene	111	12	65
benzo[a]pyrene	9 6	4	59
indeno[1,2,3-cd]pyrene	109	15	54
dibenz[a,h]anthracene	115	19	43
benzo[ghi]perylene	103	13	56

Table D-2. Spiked blanks. Percent recoveries of aromatic contaminants (ACs) in spiked blanks (n=6).

:

ACs	Lab no.:	32	50	68	86	104	123	141	159	177	198	216	234	253	272	290	312	348	403
naphthalene		2			1	0.9	1	0.7	2	0.9	1	2	1	1	1	1	1	1	0.9
C1-naphthalenes		4		-	0.04	0.9	1	0.7	0.2	0.9	*	0.1		0.2	0.2	0.1	0.1	0.2	0.9
C2-naphthalenes		-	-	•	0.04	•	-	-	0.2	-	•	0.1	•	0.2	0.2	0.1	0.1	0.2	
			-	-	-	-	-	-	•	-	-		•		•	•		•	
C3-naphthalenes		-	-			-	-	-		-	-	-		-	-	•	-	-	
C4-naphthalenes		•	-	-	•	-	٠	-		•	-	-		-		-	-	-	
acenaphthylene		-	-	-	•	-	-	*	•	-	-	-	-		-	•	-	-	
accuaphthene			•	-	-	-		-	•	•	-	•	-		-	-		-	
fluorene	1	•	•		•	-	-	-	•	-		-				-	-	-	
C1-fluorenes		*	Ξ.		*	•		-	•	-		-	-	-	-	•	-	-	
C2-fluorenes	1					-	3 H						-	-	-	•	-	-	-
C3-fluorenes		-	-	-	-	-		*		Ψ.	-	-	*	-	-		-	-	
phenanthrene			-		0.02	*	*		0.1	-	•	0.08	-	-	0.2	0.08	0.1	0.09	-
C1-phenanthrenes/anthracenes			-	-	-	-	•	-	-		-	-	-	-	*	-	-		-
C2-phenanthrenes/anthracenes		-	-	-	-	-		•		-		-	-	-	-	-	-	1.441	
C3-phenanthrenes/anthracenes		-		-		•	-			-	14	•		-	-		٠		-
C4-phenanthrenes/anthracenes			-	-		-	3 7		*	-	8	-	7	-	-	-	-		-
dibenzothiophene			-	-	-	•				-		-	-	-	-	-	-	-	-
C1-dibenzothiophenes			-	-		•	-		-	-			-	÷	-		-	140	14
C2-dibenzothiophenes	1	-				-				-	-		-		-		-	-	~
C3-dibenzothiophenes			-		*	-		-	•			•	*		-	•	-		
Sum of LACs		2		×	1	0.9	1	0.7	2	0.9	1	2	1	1	1	1	1	1	0.9
fluoranthene			-			-			-						-	-	-	-	
pyrene		•		-					-	-	-		-	-	-	~	-	-	
C1-fluoranthenes/pyrenes		•		-		•			•		-		-			-		-	
benz[a]anthracene		-							-							-			
chrysene	1	-	ie.			-			•							-	H		
C1-chrysenes/benz[a]anthracenes		-	-	-		-		-						-		-			
C2-chrysenes/benz[a]anthracenes				<u>ш</u>	-	-		-	•		-	•			-	-		-	
C3-chrysenes/benz[a]anthracenes			-	-	-					-	-	-	-	-	-	-	-	-	
C4-chrysenes/benz[a]anthracenes		-	-	-						-			-					-	
benzo[b]fluoranthene			-	-		-		-	-		-		~	-	-		-	-	
benzo[k]fluoranthene		-		_		-		-	-				~	-		-	-	-	
enzo[a]pyrene		-	-	-	-				•	-	-	-	-	-		-	-		~
ndeno[1,2,3-cd]pyrene			2			-		-					-	-	-	-	-		
dibenz[a,h]anthracene												-	-		-	-	-	1.00	я
penzo[ghi]perylene				*	-			-	-					-		-	-	-	
Sum of HACs	8																		

Table D-3a. Method blanks. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in method blanks.

 $\tilde{L} >$

* N. Ther

and i

ACs	Lab no.:	366	421	439	458	476	494	512	530	548	566	584	602	620	639	657	675	694	712
naphthalene	1	1	0.9	1	1	0.9	1	1	2	1	2	0.9	1	2	1	2	2	3	3
Cl-naphthalenes	· ·	-	-	•	-	-	-	-	0.1	-	0.3	-	-	-	•	-	1	0.3	0.3
C2-naphthalenes		-	-	-	-	-	-	-	•	-	-		•	-	-	•	-		
C3-naphthalenes	l	-	-	-	-	-	-			-	•		-	-	-	-	-		-
C4-naphthalenes	1	-		-		-	-	-	0.2	•	-	-	-	-	-	-	-	-	
acenaphthylene		-	-	-	-	-	•	•	•	-	-	-	-		-	-	-	-	-
acenaphthene		-	-	•	-	-	-	-		-		-		-	-	•	-	-	
fluorenc	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
C1-fluorenes	4	•	-	-	•	-	-	-	-	-	•	-	-	-	•	•	-	-	
C2-fluorenes	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
C3-fluorencs		-	-	-	-	-	0.2	-	-	-	-	•	-	•	-		-	•	
phenanthrene		0.1	-	-	-	-	02	0.1	0.5	-	0.3		-	-	-		0.5	0.1	0.2
C1-phenanthrenes/anthracenes	(-	-	•	-	-	-	-	•	-	-	-		-		-	1	•	1
C2-phenanthrenes/anthracenes		-	-	-	•	-	-		-		-	-	-	-	-	-	-	-	
C3-phenanthrenes/anthracenes		-	-	-	-	-	-	0.2	0.2	-	-	-	•	-		-	-	-	-
C4-phenanthrenes/anthracenes		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
dibenzothiophene		-	-	-	-	-	•	-	-	-	÷	-	-	-	-	-	-	-	
C1-dibenzothiophenes		-	-	-	-	-	-	•	-	-	-	-	-		-	-		-	
C2-dibenzothiophenes		-	-	-	-	-	-	-	•	-	-		-	-	-	-	-	-	-
C3-dibenzothiophenes		•	-	•	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-
Sum of LACs		1	0.9	1	1	0,9	1	1	3	1	3	0.9	1	2	1	2	4	3	4
fluoranthene			-	_	-	-		-	-		-	-	-	•	-	-	-	-	-
ругеле		-		-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-
C1-fluoranthenes/pyrenes		-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	
benz[a]anthracene		-	-		-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
chrysenc		-	-	-	-	-	-	•	-		-	-	-	• .	-	-	-	•	
C1-chrysenes/benz[a]anthracenes		-	-	-	-	-	-	-	•		-	· .	-	•	-	-		-	-
C2-chrysenes/benz[a]anthracenes		-	-	-	-	-	-	-	•	-	-		-	-	-		-	-	
C3-chrysenes/benz[a]anthracenes		-		-		-	-	-		-	-	-	-	-	-		-	-	-
C4-chrysenes/benz[a]anthracenes		-	-	-	-	-	_ '	-	-	-	-	-	-	-	-	-	· -	-	
benzo[b]fluoranthene			-	-	-	-	-		-	-	-	-		-	•			-	-
benzo[k]fluoranthene			-		-	-	-		-	-	-	-		-	-	-	-	-	-
benzo[a]pyrene		_			-	-				-			-	-	-	-			
ndeno[1,2,3-cd]pyrene		-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	
dibenz[a,h]anthracene		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
benzo[ghi]perylene		•	•	•	•	-	-	-	•	-	-	-	-	-	-	-	-	-	
Sum of HACs			-	-			-			_		-	_						

Table D-3b. Method blanks. Concentrations, ng/g (ppb) wet weight, of aromatic contaminants (ACs) in method blanks.