

Source Water Assessment

A Hydrogeologic Susceptibility and Vulnerability Assessment for Paug Vik, Inc. Inlet Salmon Drinking Water System, Naknek, Alaska

> PWSID # 262705.001 February 2004

DRINKING WATER PROTECTION PROGRAM REPORT 1208 Alaska Department of Environmental Conservation

Source Water Assessment for Paug Vik, Inc. Inlet Salmon Drinking Water System Naknek, Alaska

PWSID # 262705.001

DRINKING WATER PROTECTION PROGRAM REPORT 1208

The Drinking Water Protection Program (DWPP) is producing Source Water Assessments in compliance with the Safe Drinking Water Act Amendments of 1996. Each assessment includes a delineation of the source water area, an inventory of potential and existing contaminant sources that may impact the water, a risk ranking for each of these contaminants, and an evaluation of the potential vulnerability of these drinking water sources.

These assessments are intended to provide public water systems owners/operators, communities, and local governments with the best available information that may be used to protect the quality of their drinking water. The assessments combine information obtained from various sources, including the U.S. Environmental Protection Agency, Alaska Department of Environmental Conservation (ADEC), public water system owners/operators, and other public information sources. The results of this assessment are subject to change if additional data becomes available. It is anticipated this assessment will be updated every five years to reflect any changes in the vulnerability and/or susceptibility of public drinking water source. If you have any additional information that may affect the results of this assessment, please contact the Program Coordinator of DWPP, (907) 269-7521.

CONTENTS

EXECUTIVE SUMMARY1
PAUG VIK, INC. INLET SALMON PUBLIC
DRINKING WATER SYSTEM1
PAUG VIK, INC. INLET SALMON DRINKING
WATER PROTECTION AREA2

INVENTORY OF POTENTIAL AND EXISTING	
CONTAMINANT SOURCES	2
RANKING OF CONTAMINANT RISKS	2
VULNERABILITY OF PAUG VIK, INC. INLET	
SALMON DRINKING WATER SYSTEM	3

TABLES

Table 1.	Definition of Zones	2
	Susceptibility	
	Contaminant Risks	
Table 4.	Overall Vulnerability	4
	5	

APPENDICES

APPENDIX

A. Paug Vik, Inc. Inlet Salmon Drinking Water Protection Area (Map A)

- B. Contaminant Source Inventory for Paug Vik, Inc. Inlet Salmon (Table 1)
 Contaminant Source Inventory and Risk Ranking for Paug Vik, Inc. Inlet Salmon Bacteria and Viruses (Table 2)
 Contaminant Source Inventory and Risk Ranking for Paug Vik, Inc. Inlet Salmon –
 - Nitrates/Nitrites (Table 3) Contaminant Source Inventory and Risk Ranking for Paug Vik, Inc. Inlet Salmon – Volatile Organic Chemicals (Table 4)
- C. Paug Vik, Inc. Inlet Salmon Drinking Water Protection Area and Potential and Existing Contaminant Sources (Map C)
- D. Vulnerability Analysis for Contaminant Source Inventory and Risk Ranking for Paug Vik, Inc. Inlet Salmon Public Drinking Water Source (Charts 1 – 8)

Drinking Water Protection Program Alaska Department of Environmental Conservation

EXECUTIVE SUMMARY

Paug Vik, Inc. Inlet Salmon has one Public Water System (PWS) well. The well (PWSID# 262705.001) has been used as a drinking water source since it was drilled in 1985.

The well is a Class B (transient/non-community) water system that is located at Mile 1.3, Alaksa Peninsula Highway in Naknek, Alaska. Available records indicate that the storage facility consists of two, 1,000-gallon tanks, and the drinking water source is treated with four different types of treatments: calcium hypochlorite disinfecting, iron removal, manganese removal, and particulate removal. This system operates seasonally and serves approximately 85 non-residents through four service connections. The wellhead received a susceptibility rating of **Low** and the aquifer received a susceptibility rating of Low. Combining these two ratings produce a **Low** rating for the natural susceptibility of the well. Identified potential and current sources of contaminants for the primary public drinking water source include: injection wells, seafood processing, aboveground fuel tanks, water supply wells, paint sales/service, a boat yard and manna, electric power generation, an airport, and roads. These identified potential and existing sources of contamination are considered as sources of bacteria and viruses, nitrates and/or nitrites, and volatile organic chemicals. Overall, the water well received a vulnerability rating of **Medium** for the bacteria and viruses, a vulnerability rating of Medium for nitrates and nitrites, and a vulnerability rating of **Low** for volatile organic chemicals contaminant categories.

PAUG VIK, INC. INLET SALMON PUBLIC DRINKING WATER SYSTEM

The Paug Vik, Inc. Inlet Salmon water well is a Class B (transient/non-community) public water system. The facility is located at Mile 1.3, Alaska Peninsula Highway, in Naknek, Alaska (Sec. 2, T17S, R47W, Seward Meridian; see Map A of Appendix A). Naknek is the primary fishery center in Bristol Bay, located about 12 miles northwest of King Salmon and 300 miles southwest of Anchorage. The community has a population of 642 (ADCED, 2003). Average annual precipitation in Naknek is 20 inches, including approximately 45 inches of snowfall. Temperatures range from 42 to 63° F in summer and -4 to 16° F in winter. Temperatures can be as extreme as -46 to 88° F.

The community of Naknek gets most of their water supply from individual wells. Most households are served by the piped sewage collection system operated by the Borough and the remaining households have individual septic tanks (ADCED, 2003). Naknek receives electrical power from the Naknek Electric Association operated by the REA Cooperative. Power generating facilities are fueled by diesel. Refuse is collected by the Patterson Sanitation Company and trucked to the Borough operated landfill located five miles outside of the community (ADCED, 2003).

According to information supplied by ADEC for the Paug Vik, Inc. Inlet Salmon PWS, the depth of the primary water well is 140 feet below the ground surface. Well construction details are unknown; however, based on nearby PWS well (262282.001), it is assumed the well is screened in gravel in a confined aquifer. Confined aquifers are less susceptible to groundwater impacts resulting from the downward migration of surface contaminants. The well is not located in a floodplain.

Information acquired from a May 1999 sanitary survey for the public water system indicated that the land surface is sloped away from the well. Generally, land surfaces that slope away from the wellhead promote surface water drainage, which reduces potential of contaminant migration down the well casing annulus. The well is not grouted according to ADEC regulations. Proper grouting provides added protection against contaminants traveling along the well casing annulus and into source waters.

Naknek is located in an area that has been mapped as being underlain by isolated masses of permafrost; predominantly fine-grained deposits. Permafrost is usually found either at a considerable depth as relict permafrost or near the surface as thin lenses of small extent where ground insulation is high or low. The terrain in this area consists of low hills with many shallow lakes. The lakes resulted from the delayed melting of buried ice blocks (ADOT&PF, 1982).

PAUG VIK, INC. INLET SALMON DRINKING WATER PROTECTION AREA

In order to evaluate whether a drinking water source is at risk, we must first evaluate what are the most likely pathways for surface contamination to reach the groundwater. These areas are determined by looking at the characteristics of the soil, groundwater, aquifer, and well.

The most probable area for contamination to reach the drinking water well is the area that contributes water to the well, the groundwater recharge area. This area is designated as the drinking water protection area (DWPA). Because releases of contaminants within the protection area are most likely to impact the drinking water well, this area will serve as the focus for voluntary protection efforts. An analytical calculation was used to determine the size and shape of the DWPA for the Paug Vik, Inc. Inlet Salmon PWS. The input parameters describing the attributes of the aquifer in this calculation were adopted from Groundwater (Freeze and Cherry, 1979). Available geology and groundwater contours were also considered to take into account any uncertainties in groundwater flow and aquifer characteristics to arrive at a meaningful protection area.

The protection areas established for wells by the ADEC are usually separated into four zones, limited by the watershed. These zones correspond to differences in the time-of-travel (TOT) of the water moving through the aquifer to the well (Please refer to the Guidance Manual for Class B Public Water Systems for additional information).

The time of travel for contaminants within the water varies and is dependent on the physical and chemical characteristics of each contaminant. The following is a summary of the four protection area zones for wells and the calculated time-of-travel for each:

Table 1. Definition of Zones

Zone	Definition
А	¹ / ₄ the distance for the 2-yr. time-of-travel
В	Less than the 2 year time-of-travel
С	Less Than the 5 year time-of-travel
D	Less than the 10 year time-of-travel

The DWPA for the Paug Vik, Inc. Inlet Salmon PWS was determined using an analytical calculation and

includes Zones A, B, C, and D (See Map A of Appendix A).

INVENTORY OF POTENTIAL AND EXISTING CONTAMINANT SOURCES

The Drinking Water Protection Program has completed an inventory of potential and existing sources of contamination within the Paug Vik, Inc. Inlet Salmon DWPA. This inventory was completed through a search of agency records and other publicly available information. Potential sources of contamination to the drinking water aquifer include a wide range of categories and types. Potential drinking water contaminants are found within agricultural, residential, commercial, and industrial areas, but can also occur within areas that have little or no development.

For the basis of all Class B public water system assessments, three categories of drinking water contaminants were inventoried. They include:

- Bacteria and viruses,
- Nitrates and/or nitrites,
- Volatile organic chemicals.

The sources are displayed on Map C of Appendix C and summarized in Table 1 of Appendix B.

RANKING OF CONTAMINANT RISKS

Once the potential and existing sources of contamination have been identified, they are assigned a ranking according to what type and level of risk they represent. Ranking of contaminant risks for a "potential" or "existing" source of contamination is a function of toxicity and volumes of specific contaminants associated with that source. Rankings include:

- Low,
- Medium,
- High, and
- Very High.

The time-of-travel for contaminants within the water varies and is dependent on the physical and chemical characteristics of each contaminant. Bacteria and Viruses are only inventoried in Zones A and B because of their short life span. Only "Very High" and "High" rankings are inventoried within the outer Zone D due to the probability of contaminant dilution by the time the contaminants get to the well. Tables 2 through 4 in Appendix B contain the ranking of potential and existing sources of contamination with respect to bacteria and viruses, nitrates and/or nitrites, and volatile organic chemicals.

VULNERABILITY OF PAUG VIK, INC. INLET SALMON DRINKING WATER SYSTEM

Vulnerability of a drinking water source to contamination is a combination of two factors:

- Natural susceptibility, and
- Contaminant risks.

Appendix D contains eight charts, which together form the 'Vulnerability Analysis' for a source water assessment for a public drinking water source. Chart 1 analyzes the 'Susceptibility of the Wellhead' to contamination by looking at the construction of the well and its surrounding area. Chart 2 analyzes the 'Susceptibility of the Aquifer' to contamination by looking at the naturally occurring attributes of the water source and influences on the groundwater system that might lead to contamination. Chart 3 analyzes 'Contaminant Risks' for the drinking water source with respect to bacteria and viruses. The 'Contaminant Risks' portion of the analysis considers potential sources of contaminants as well as a review of contamination that has or may have occurred, but has not arrived or been detected at the well. Lastly, Chart 4 contains the 'Vulnerability Analysis for Bacteria and Viruses'. Charts 5 through 8 contain the Contaminant Risks and Vulnerability Analyses for nitrates and nitrites and volatile organic chemicals, respectively.

A score for the Natural Susceptibility is reached by considering the properties of the well and the aquifer.

Susceptibility of the Wellhead (0 – 25 Points) (Chart 1 of Appendix D)

Susceptibility of the Aquifer (0 – 25 Points) (Chart 2 of Appendix D)

Natural Susceptibility (Susceptibility of the Well) (0 – 50 Points)

A ranking is assigned for the Natural Susceptibility according to the point score:

Natural Susceptibility Ratings					
40 to 50 pts	Very High				
30 to < 40 pts High					
20 to < 30 pts Medium					
< 20 pts Low					

The Paug Vik, Inc. Inlet Salmon's water well is in a confined aquifer. Confined aquifers are less susceptible to potential groundwater quality impacts posed by the migration of surface water contaminants downward from the surface. Table 2 shows the Susceptibility scores and ratings for both wells in this PWS.

Table 2. Susceptibility

	Score	Rating
Susceptibility of the Wellhead	5	Low
Susceptibility of the Aquifer	9	Low
Natural Susceptibility	14	Low

Contaminant risks to a drinking water source depend on the type, number or density, and distribution of contaminant sources. This score has been derived from an examination of existing and historical contamination that has been detected at the drinking water source through routine sampling. It also evaluates potential sources of contamination. Flow charts are used to assign a point score, and ratings are assigned in the same way as for the natural susceptibility:

Contaminant Risk Ratings				
40 to 50 pts	Very High			
30 to < 40 pts	High			
20 to < 30 pts	Medium			
< 20 pts	Low			

Table 3 summarizes the Contaminant Risks for each category of drinking water contaminants.

Table 3. Contaminant Risks

Category	Score	Rating
Bacteria and Viruses	40	Very High
Nitrates and/or Nitrites	40	Very High
Volatile Organic Chemica	ls 12	Low

Finally, an overall vulnerability score is assigned for each water system by combining each of the contaminant risk scores with the natural susceptibility score: Natural Susceptibility (0 – 50 points)

Contaminant Risks (0 – 50 points)

Vulnerability of the Drinking Water Source to Contamination (0 – 100).

Again, rankings are assigned according to a point score:

Overall Vulnerability Ratings				
80 to 100 pts	Very High			
60 to < 80 pts	High			
40 to < 60 pts	Medium			
< 40 pts	Low			

Table 4 contains the overall vulnerability scores (0 - 100) and ratings for each of the three categories of drinking water contaminants. Note: scores are rounded off to the nearest five.

Table 4. Overall Vulnerability

Category	Score	Rating
Bacteria and Viruses	55	Medium
Nitrates and Nitrites	55	Medium
Volatile Organic Chemicals	30	Low

Bacteria and Viruses

The contaminant risk for bacteria and viruses is **Very High**. The risk is primarily attributed to the presence of injection wells in Zone A (see Table 2 – Appendix B).

A positive bacteria count has not been reported in recent (within five years) sampling events. Only a small amount of bacteria and viruses are required to endanger public health.

After combining the contaminant risk for bacteria and viruses with the natural susceptibility of the well, the overall vulnerability of the well to contamination is **Medium**.

Nitrates and Nitrites

The contaminant risk for nitrates and nitrites is **Very High**. The risk to this source of public drinking water is attributed to the presence of injection wells in Zone A (see Table 3 – Appendix B). Nitrates are very mobile, moving at approximately the same rate as water. The sampling history for this well indicates that nitrates have not been detected in recent sampling events. Nitrate concentrations in uncontaminated groundwater are typically less than 2 mg/L; therefore, nitrate concentrations above 2 mg/L may be indicative of man-made sources (See Chart 5 - Contaminant Risks for Nitrates and/or Nitrites in Appendix D).

Nitrate levels are often derived from the decomposition of organic matter in soils. After combining the contaminant risk for nitrates and nitrites with the natural susceptibility of the well, the overall vulnerability of the well to nitrate and nitrite contamination is **Medium**.

Volatile Organic Chemicals

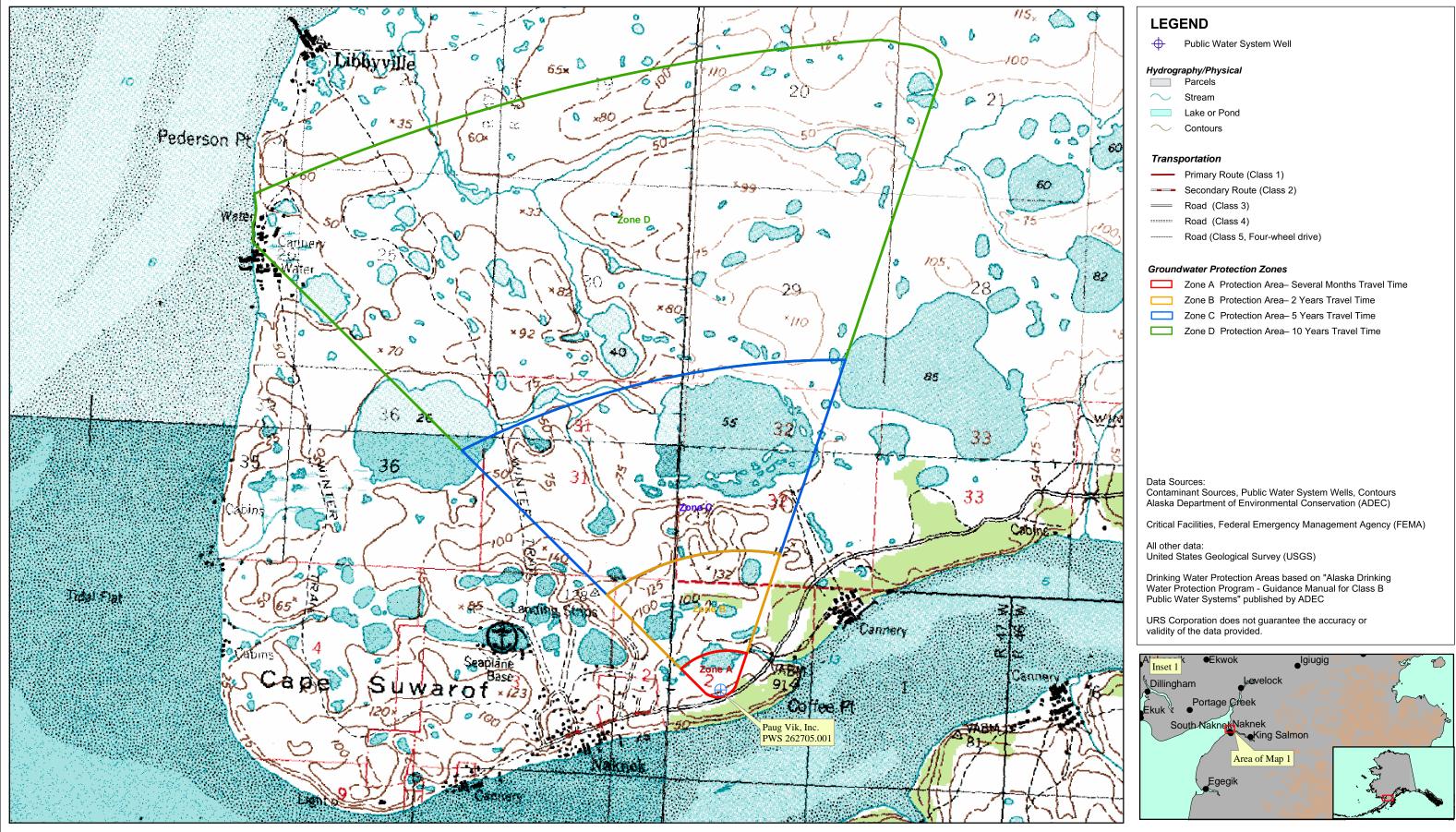
The contaminant risk for volatile organic chemicals is **Low**. The risk is primarily attributed to the presence of an airport in Zone D (see Table 4 – Appendix B).

No recent sampling data was available in ADEC records for Paug Vik, Inc. Inlet Salmon (See Chart 7 – Contaminant Risks for Volatile Organic Chemicals in Appendix D).

After combining the contaminant risk for volatile organic chemicals with the natural susceptibility of the well, the overall vulnerability of the well to contamination is **Low**.

Using the Source Water Assessment

This assessment of contaminant risks can be used as a foundation for local voluntary protection efforts as well as a basis for the continuous efforts on the part of Paug Vik, Inc. Inlet Salmon and the community of Naknek to protect public health. It is anticipated that Source Water Assessments will be updated every five years to reflect any changes in the vulnerability and/or susceptibility of the drinking water source.


REFERENCES

- Alaska Department of Community and Economic Development (ADCED), 2003 [WWW document]. URL: <u>http://www.dced.state.ak.us/cbd/commdb/CF_COMDB.htm</u>
- Alaska Department of Environmental Conservation, Contaminated Sites Database, 2003 [WWW database], URL <u>http://www.state.ak.us/dec/dspar/csites/cs_search.htm</u>
- Alaska Department of Environmental Conservation, Leaking Underground Storage Tank Database, 2003 [WWW database], URL <u>http://www.dec.state.ak.us/spar/stp/ust/search/fac_search.asp</u>
- Alaska Department of Transportation and Public Facilities (ADOT&PF), 1982, Engineering Geology and Soils Report, North Naknek Materials Investigation.
- Freeze, R. A., and Cherry, J.A. 1979, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey
- United States Environmental Protection Agency (EPA), 2002 [WWW document]. URL <u>http://www.epa.gov/safewater/mcl.html</u>.

APPENDIX A

Drinking Water Protection Area Location Map (Map A)

Public Water Well System for PWS #262705.001 Paug Vik, Inc. (former Inlet Salmon, Inc.)

2 ■ Miles 0.25 0.5 1.5

Zone A	Protection Area– Several Months Travel Time
Zone B	Protection Area- 2 Years Travel Time
Zone C	Protection Area- 5 Years Travel Time
Zono D	Protection Area 10 Vears Travel Time

Paug Vik, Inc. PWS 262705.001

Appendix A Map A

APPENDIX B

Contaminant Source Inventory and Risk Rankings (Tables 1-4)

Contaminant Source Inventory for Paug Vik, Inc. Inlet Salmon

PWSID 262705.001

Contaminant Source Type	Contaminant Source ID	CS ID tag	Zone	Map Number	Comments
Injection wells (Class V) Large-Capacity Septic System (Drainfield Disposal Method)	D10	D10-01	А	С	Assume municipal sewer is not available
Seafood processing	N10	N10-01	А	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-01	А	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-02	А	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-03	А	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-04	А	С	
Highways and roads, dirt/gravel	X24	X24-01	А	С	
Water supply wells	W09	W09-01	С	С	1 water supply well in Zone C
Paint sales /service	C32	C32-01	D	С	
Seafood processing	N10	N10-02	D	С	
Tanks, diesel (above ground)	T06	T06-01	D	С	
Tanks, diesel (above ground)	T06	T06-02	D	С	
Tanks, gasoline (above ground)	T10	T10-01	D	С	
Water supply wells	W09	W09-02	D	С	2 water supply wells in Zone D
Airports	X14	X14-01	D	С	
Boat yards and marinas	X15	X15-01	D	С	
Electric power generation (fossil fuels)	X36	X36-01	D	С	

Table 2

Contaminant Source Inventory and Risk Ranking for

Paug Vik, Inc. Inlet Salmon Sources of Bacteria and Viruses

Contaminant Source Type	Contaminant Source ID	CS ID tag	Zone	Risk Ranking for Analysis	Map Number	Comments
Injection wells (Class V) Large-Capacity Septic System (Drainfield Disposal Method)	D10	D10-01	А	High	С	Assume municipal sewer is not available
Seafood processing	N10	N10-01	А	Medium	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-01	А	Medium	С	
Highways and roads, dirt/gravel	X24	X24-01	А	Low	С	
Seafood processing	N10	N10-02	D	Medium	С	

Table 3

Contaminant Source Inventory and Risk Ranking for

Paug Vik, Inc. Inlet Salmon Sources of Nitrates/Nitrites

Contaminant Source Type	Contaminant Source ID	CS ID tag	Zone	Risk Ranking for Analysis	Map Number	Comments
Injection wells (Class V) Large-Capacity Septic System (Drainfield Disposal Method)	D10	D10-01	А	High	С	Assume municipal sewer is not available
Seafood processing	N10	N10-01	А	Low	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-01	А	Low	С	
Highways and roads, dirt/gravel	X24	X24-01	А	Low	С	
Seafood processing	N10	N10-02	D	Low	С	
Airports	X14	X14-01	D	Low	С	

Table 4

Contaminant Source Inventory and Risk Ranking for

Paug Vik, Inc. Inlet Salmon Sources of Volatile Organic Chemicals

Contaminant Source Type	Contaminant Source ID	CS ID tag	Zone	Risk Ranking for Analysis	Map Number	Comments
Injection wells (Class V) Large-Capacity Septic System (Drainfield Disposal Method)	D10	D10-01	А	Low	С	Assume municipal sewer is not available
Tanks, heating oil, nonresidential (aboveground)	T14	T14-01	А	Low	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-02	А	Low	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-03	А	Low	С	
Tanks, heating oil, nonresidential (aboveground)	T14	T14-04	А	Low	С	
Highways and roads, dirt/gravel	X24	X24-01	А	Low	С	
Paint sales /service	C32	C32-01	D	Medium	С	
Tanks, diesel (above ground)	T06	T06-01	D	Medium	С	
Tanks, diesel (above ground)	T06	T06-02	D	Medium	С	
Tanks, gasoline (above ground)	T10	T10-01	D	Medium	С	
Airports	X14	X14-01	D	High	С	
Boat yards and marinas	X15	X15-01	D	Low	С	
Electric power generation (fossil fuels)	X36	X36-01	D	Medium	С	

APPENDIX C

Drinking Water Protection Area and Potential and Existing Contaminant Sources (Map C)

Public Water Well System for PWS #262705.001 Paug Vik, Inc. (former Inlet Salmon, Inc.) Showing Potential and Existing Sources of Contamination

2 Miles

PWS 202703.001

Appendix C Map C

APPENDIX D

Vulnerability Analysis for Public Drinking Water Source (Charts 1-8)

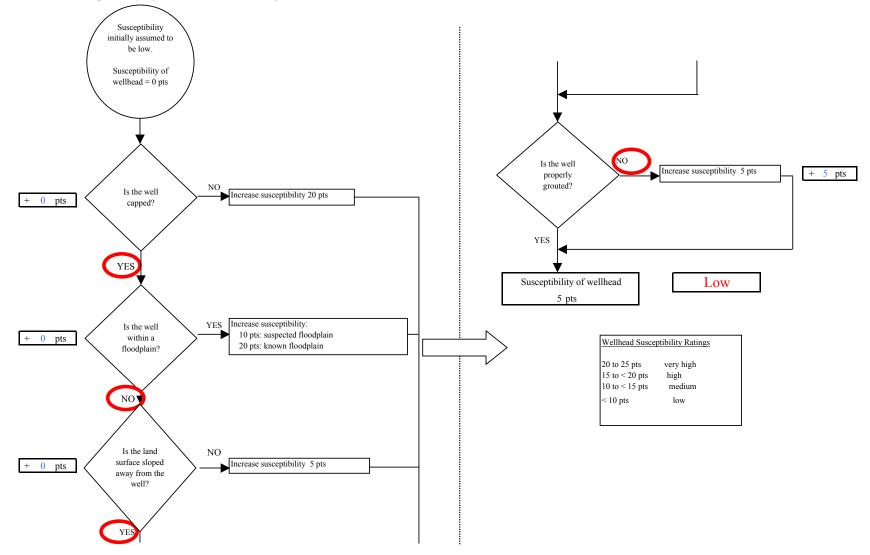


Chart 1. Susceptibility of the wellhead - Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001)

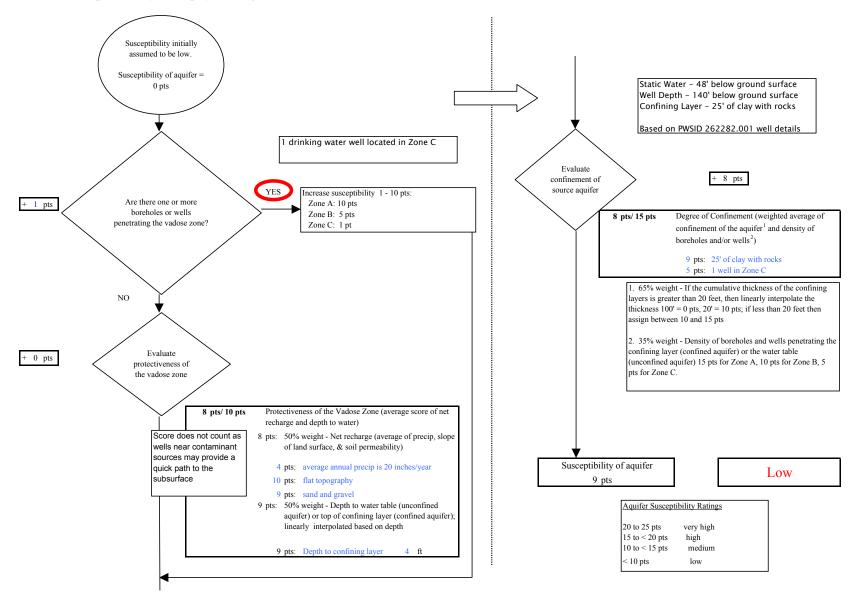
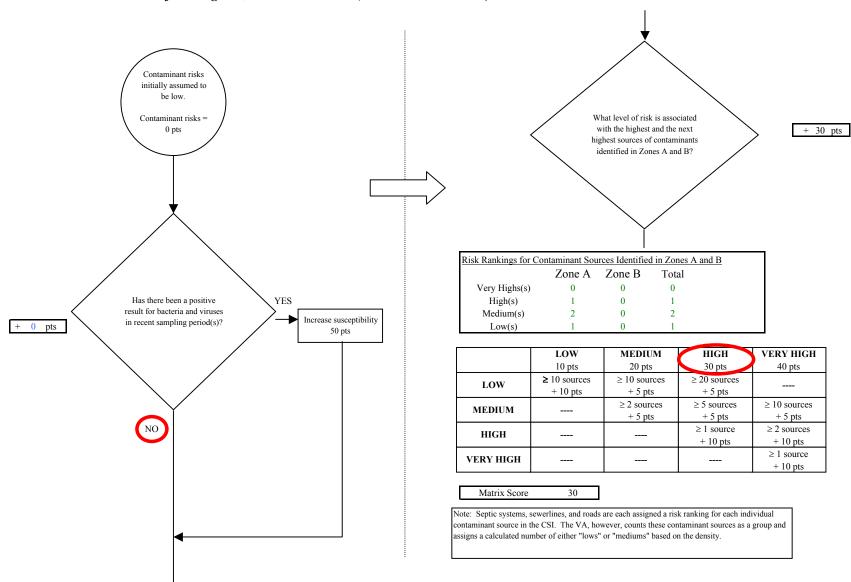



Chart 2. Susceptibility of the aquifer Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001)

Chart 3. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Bacteria & Viruses

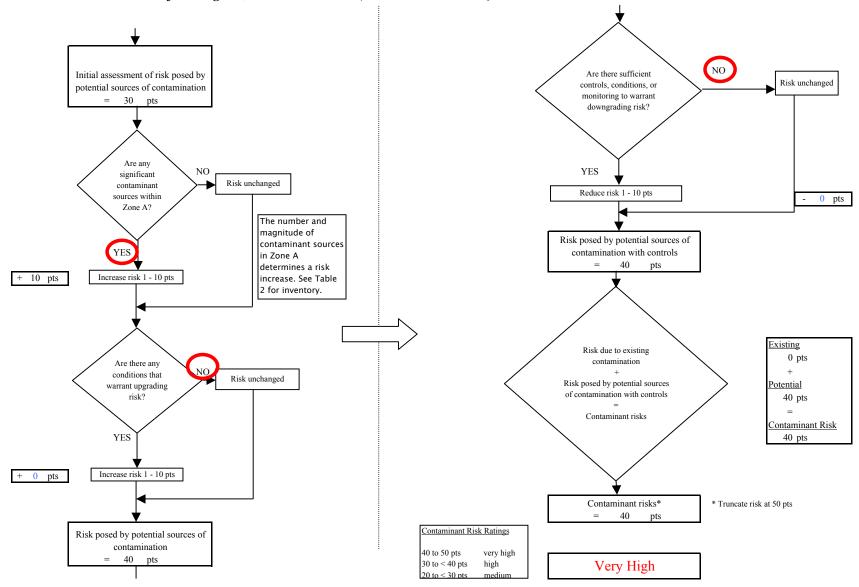


Chart 3. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Bacteria & Viruses

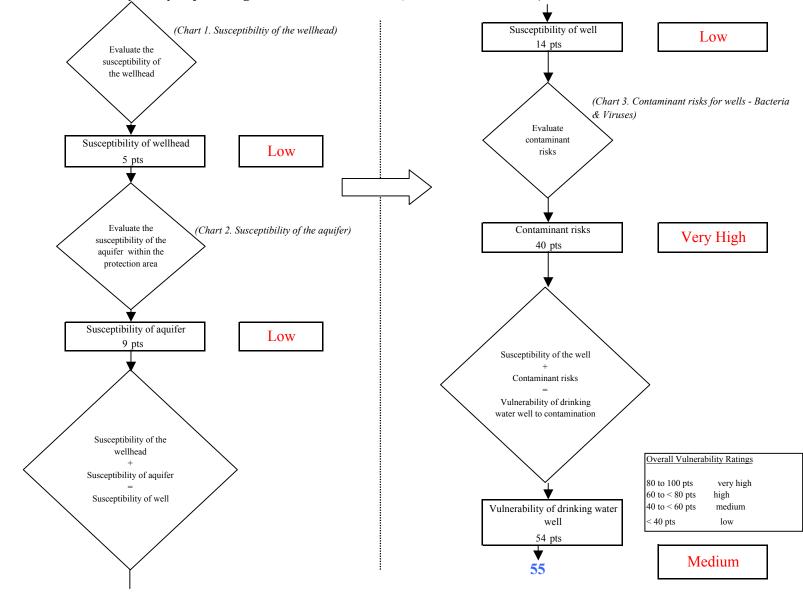


Chart 4. Vulnerability analysis for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Bacteria & Viruses

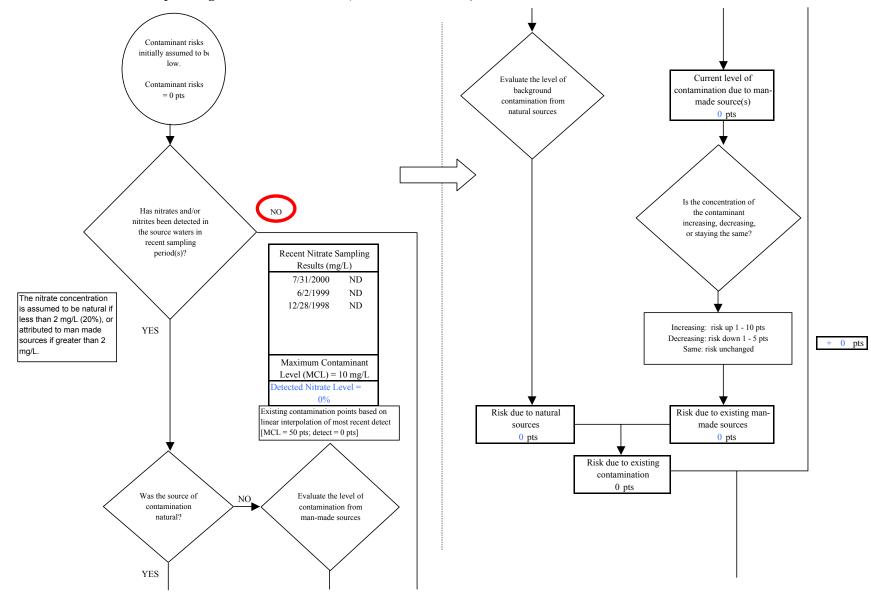


Chart 5. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Nitrates and Nitrites

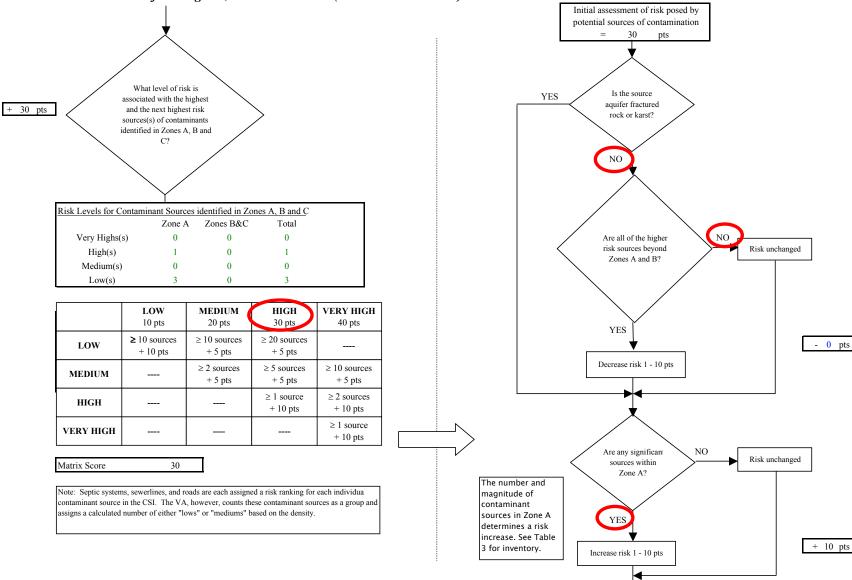


Chart 5. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Nitrates and Nitrites

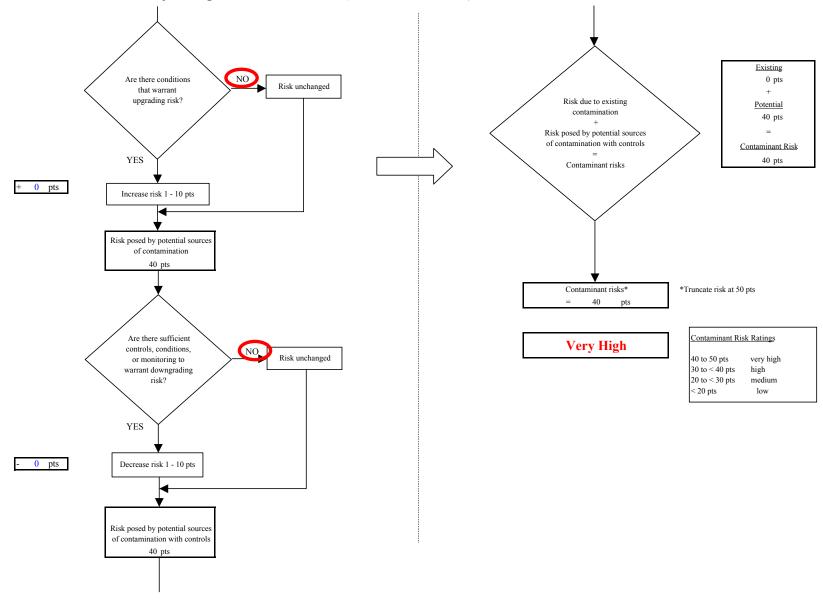


Chart 5. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Nitrates and Nitrites

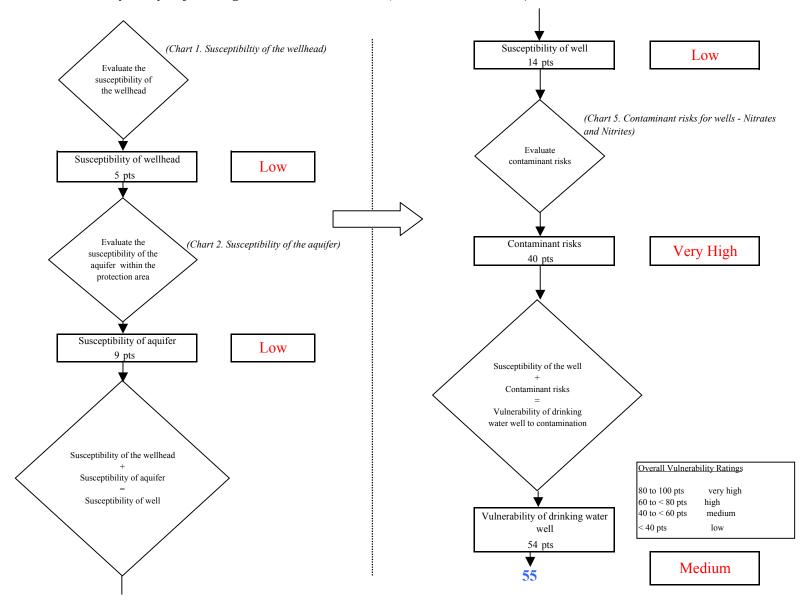


Chart 6. Vulnerability analysis for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Nitrates and Nitrites

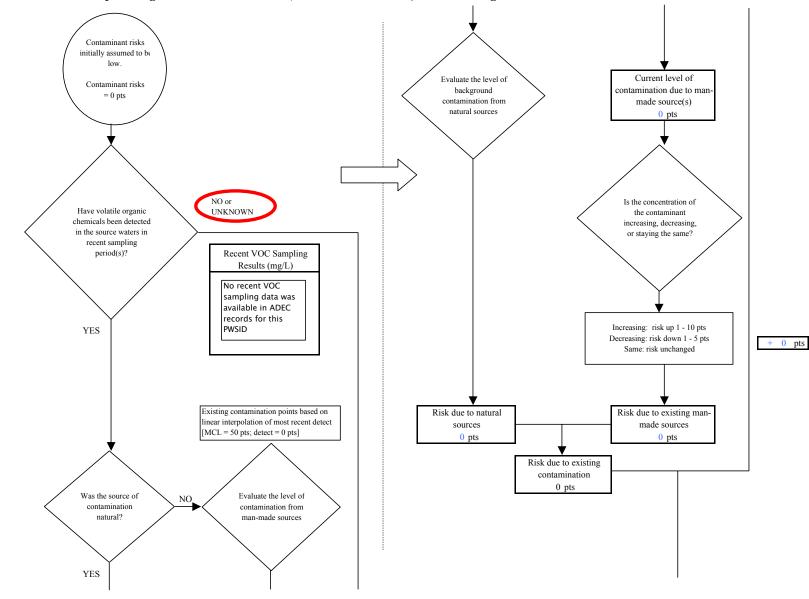


Chart 7. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Volatile Organic Chemicals

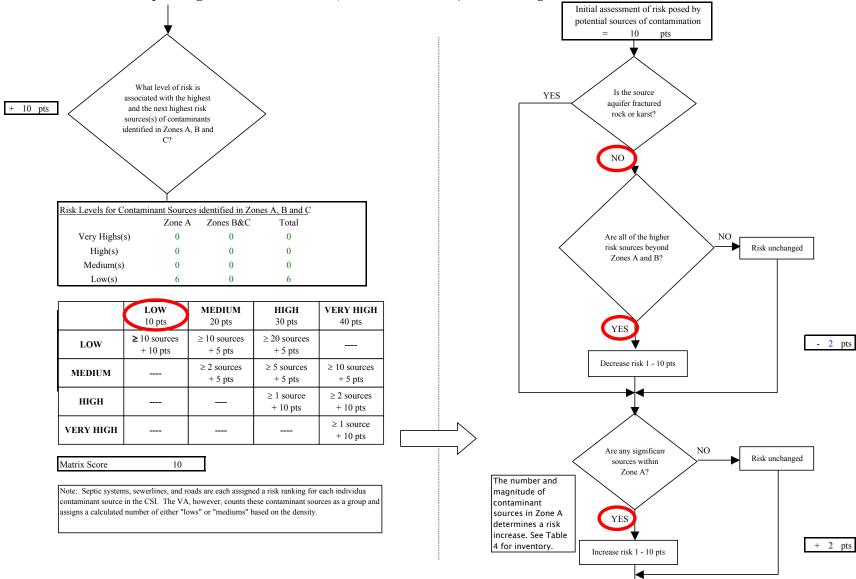


Chart 7. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Volatile Organic Chemicals

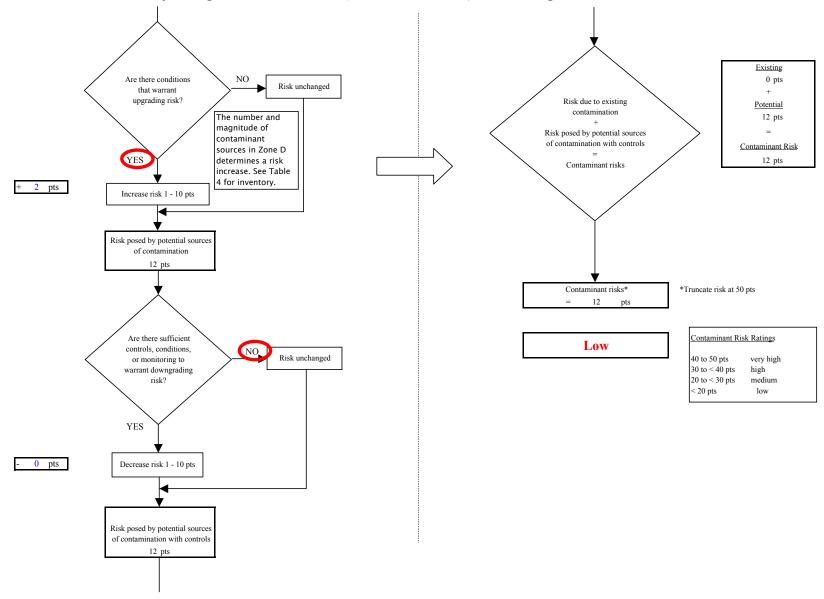


Chart 7. Contaminant risks for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Volatile Organic Chemicals

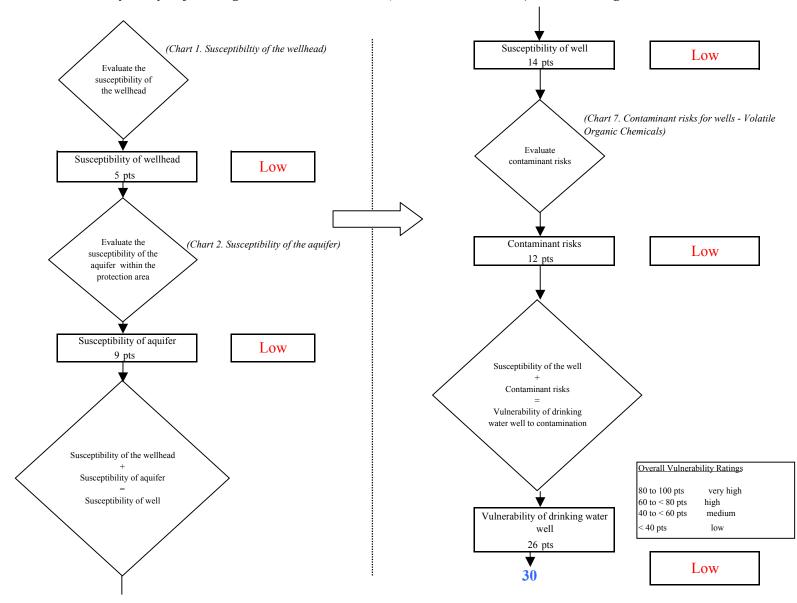


Chart 8. Vulnerability analysis for Paug Vik, Inc. Inlet Salmon (PWS No. 262705.001) - Volatile Organic Chemicals