Effect of Post-Capture Handling on Mortality in Northern Pike

by

John Burr

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used in Division of Sport Fish Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications without definition. All others must be defined in the text at first mention, as well as in the titles or footnotes of tables and in figures or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	sheries
centimeter	cm	All commonly accepted	e.g., Mr., Mrs.,	alternate hypothesis	$\mathrm{H}_{\text {A }}$
deciliter	dL	abbreviations.	a.m., p.m., etc.	base of natural	e
gram	g	All commonly accepted	e.g., Dr., Ph.D.,	logarithm	
hectare	ha	professional titles.	R.N., etc.	catch per unit effort	CPUE
kilogram	kg	and	\&	coefficient of variation	CV
kilometer	km	at	@	common test statistics	F, t, χ^{2}, etc.
liter	L	Compass directions:		confidence interval	C 1.
meter	m	east	E	correlation coefficient	R (multiple)
metric ton	mt	north	N	correlation coefficient	r (simple)
milliliter	ml	south	S	covariance	cov
millimeter	mm	Copyright west	W	degree (angular or temperature)	。
Weights and measures (English)		Corporate suffixes:		degrees of freedom	df
cubic feet per second	$\mathrm{f}^{3} / \mathrm{s}$	Company	Co.	divided by	$\div \text { or / (in }$
foot	ft	Incorporated	Inc.	equals	equations)
gallon	gal	Limited	Ltd.	expected value	E
inch	in	et alii (and other	et al.	fork length	FL
mile	mi	people)		greater than	>
ounce	oz	et cetera (and so forth)	etc.	greater than or equal to	\geq
pound	lb	exempli gratia (for	e.g.,	harvest per unit effort	IIPUE
quart	qt	example)		less than	<
yard	yd	id est (that is)	i.e.,	less than or equal to	\leq
Spell out acre and ton.		latitude or longitude	lat. or long.	logarithm (natural)	In
Time and temperature		monetary symbols (U.S.)	\$, ¢	logarithm (base 10)	log
day	d	months (tables and	Jan,...,Dec	logarithm (specify base)	$\log _{2}$, etc.
degrees Celsius	${ }^{\circ} \mathrm{C}$	figures): first three letters	Jan,...,	mideye-to-fork minute (angular)	MEF
degrees Fahrenheit hour (spell out for 24-hour clock)	${ }^{\circ} \mathrm{F}$	number (before a	\# (e.g., \#10)	multiplied by	x
minute	min	number)		not significant	NS
second		pounds (after a number)	\# (e.g., 10\#)	null hypothesis	H_{0}
Spell out year, month, and week.		registered trademark	(B)	percent	\%
		trademark	TM	probability	P
Physics and chemistry		United States (adjective)	U.S.	probability of a type I error (rejection of the	α
all atomic symbols alternating current	AC	United States of America (noun)	USA	null hypothesis when true)	
ampere	A	U.S. state and District	use two-letter	probability of a type II	β
calorie	cal	of Columbia	abbreviations	error (acceptance of	
direct current	DC	abbreviations	(e.g., AK, DC)	the null hypothesis when false)	
hertz horsepower	Hz			second (angular)	"
hydrogen ion activity	pH			standard deviation	SD
parts per million	ppm			standard error	SE
parts per thousand	ppt, \%o			standard length	SL
volts	V			total length	TL
watts				variance	Var

FISHERY DATA SERIES NO. 98-34

EFFECT OF POST-CAPTURE HANDLING ON MORTALITY IN NORTHERN PIKE

by
John Burr
Division of Sport Fish, Fairbanks

Alaska Department of Fish and Game
Division of Sport Fish, Research and Technical Services
333 Raspberry Road, Anchorage, Alaska, 99518-1599
December 1998

Development and publication of this manuscript were partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under Project F-10-13, Job No. R-3-4(e).

The Fishery Data Series was established in 1987 for the publication of technically oriented results for a single project or a group of closely related projects. Fishery Data Series reports are intended for fishery and other technical professionals. Distribution is to state and local publication distribution centers, libraries and individuals and, on request, to other libraries, agencies, and individuals. This publication has undergone editorial and peer review.

John Burr
Alaska Department of Fish and Game, Division of Sport Fish, Region III, 1300 College Road, Fairbanks, AK 99701-1599,USA

This document should be cited as:
Burr, J. 1998. Effect of post-capture handling on mortality in northern pike. Alaska Department of Fish and Game, Fishery Data Series No. 98-34, Anchorage.

The Alaska Department of Fish and Game administers all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood, or disability. For information on alternative formats available for this and other department publications, contact the department ADA Coordinator at (voice) 907-465-4120, or (telecommunication device for the deaf) 1-800-478-3648.

TABLE OF CONTENTS

Page
LIST OF TABLES ii
LIST OF FIGURES ii
ABSTRACT 1
INTRODUCTION 1
Research Objective 2
METHODS 2
Sampling Design. 2
Data Analysis 5
RESULTS 5
DISCUSSION 6
ACKNOWLEDGMENTS 9
LITERATURE CITED 9

LIST OF TABLES

Table

Page

1. Post capture handling treatments, Nowitna River northern pike study, 1997... 4
2. Number of northern pike captured by treatment group and by time held in pens, Nowitna River, 1997........ 7
3. Length distribution of northern pike captured by treatment group, Nowitna River, 1997 8

LIST OF FIGURES

FigurePage

1. Nowitna River study area 3

Abstract

Northern pike Esox lucius captured with hook and line gear were subjected to one of two handling regimes to assess the effect of catch and release practices on the short term (48 h) mortality of this species. Handling regimes were selected to reflect known angler practices. Northern pike were captured in hoop nets to provide a control for the experiment. After 48 h the only observed mortality was for fish caught in hoop net gear ($0.04, \mathrm{SE}=0.04$).

Key Words: Northern pike, Esox lucius, catch and release, handling mortality.

INTRODUCTION

Current sport fishing regulations for northern pike Esox lucius in many areas of the Arctic-Yukon-Kuskokwim (AYK) Region include length limits requiring that fish of certain sizes be released immediately. The proportion of northern pike released by anglers has increased in recent years throughout the Yukon drainage including the Nowitna River system. Although harvests of northern pike have stabilized or declined in recent years, the number of northern pike released has increased (Mills 1991-1994, Howe et al. 1995-1998).
Northern pike have a reputation among sport anglers as being aggressive, tough game fish. Studies that have investigated the effects of catch and release in northern pike have reported low overall 1 mortality rates (3 to 10\%) (Falk and Gillman 1975, Burkholder 1992). These studies also found that there were no detectable differences in mortality rates between hook (barbed and barbless; single and treble) or lure type. Nearly all of the mortalities observed in these studies were fish that were hooked in the eyes, in the gills,, or deeply hooked (gullet). Pike that were hooked in the mouth or were snagged (except eyes) showed extremely low mortality ($<2 \%$). Each of these studies stressed careful handling of the fish, which is defined in a brochure distributed by the Department of Fish and Game as consisting of:

1. playing and releasing the fish as quickly as possible;
2. keeping the fish in water upon landing it;
3. cradling the fish gently with two hands, one supporting the belly and the other hand just ahead of and underneath the tail section;
4. using wet hands to handle the fish;
5. keeping fingers away from gills; and,
6. removing hooks with long-nosed pliers or cutting the line to deeply-placed hooks.

A concern expressed repeatedly by residents in rural Alaska is the belief that most northern pike released by anglers die as a result of the handling injury associated with catch and release fishing. During a creel survey on the Dall River project, project personnel observed some anglers fishing near the survey station who were not carefully handling all released fish (Burr and James 1996). Because northern pike released following capture comprise an increasing component of the catch, mortality associated with not carefully handling a released northern pike is of concern to fishery managers.

[^0]This study was designed to test the effects of two handling methods on survival of northern pike caught with hook and line gear. The study goal was to quantify the effects of varied handling regimes on the short term mortality (48 h) of released northern pike.

Research ObJective

The project objective for 1997 was to:

1. test the null hypothesis that the proportion of northern pike that die due to harsh treatment is ≤ 0.05 such that $\alpha=0.1$ and power is 0.79 when the true proportion is 0.12 .

METHODS

SAMPLING DESIGN

The handling mortality study in the lower Nowitna River was conducted between 16 and 30 July 1997. This time frame was selected because water temperatures are generally highest during July. Experience with northern pike in other studies has shown that vulnerability to handlinginduced stress increases with increasing water temperatures (M. J. Evenson, Alaska Dept. Fish and Game, Fairbanks, personal communication). The sampling area included the lower 64 km of the Nowitna River and connected off-river habitats (Figure 1).
Northern pike captured for this experiment were obtained with hook and line gear. In addition, a control group of northern pike was captured in hoop nets, a passive gear type that was assumed to be benign. Hoop nets were unbaited and set with seine leads at the mouth of a large slough area.

Hook and line fishing gear consisted of heavy spinning rod and reel fitted with $17-\mathrm{lb}$. test monofilament line. Unbaited artificial lures with either a treble hook or a large single hook were used. Barbs were removed from both hook types as is common practice for catch and release northern pike fishing. Lures consisted of a variety of spinners, spoons and plugs.
Upon landing, the lure type, hooking location, and the occurrence and severity of bleeding was recorded. Fish that were bleeding severely were not subjected to treatment and were not included in the handling experiment. Each northern pike in this experiment was then subjected to one of the two treatments outlined in Table 1. These treatments were selected to reflect the range of handling practices used by the majority of the angling public when they intend to release northern pike. Treatments were applied sequentially and were thereby determined prior to capture of the fish. Each fish was marked with an individually numbered internal anchor tag inserted at the base of the dorsal fin. Northern pike were also marked with a secondary mark identifying treatment, in case of tag loss (Table 1). Following treatment, northern pike were held in an aerated holding tank until they were transported to the holding pens.
Hoop nets were checked at 12-h intervals. Northern pike captured with hoop nets were transported in an aerated holding tank and placed in the holding pens with the fish captured by hook and line.

Captured northern pike were to be held in $1.2 \times 3 \mathrm{~m}$ covered holding pens for 48 h , then released, if in good condition. Fish were placed in a different pen each day of the experiment, to reduce stress from crowding during the holding period. This design avoided losing the entire experiment due to environmental circumstances (e.g. oxygen deprivation, animals, wind, etc.).

Figure 1.-Nowitna River study area.

Table 1.-Post capture handling treatments, Nowitna River northern pike study, 1997.

	Treatment Type		
Activity	I (careful handling)	II (less careful)	III (Control)
use landing net	yes	yes	yes
remove hook while fish	in water	out of water	N/A
fish in air for "photo"	no	hold up (cradle with two hands under head and tail)	no
Total time out of water	0 min	3 min	
Recessitate until upright	yes	no min	no man
Secondary mark	Dorsal Punch	None	

At the time of release, the tag number, secondary mark, and fork length was to be recorded. The sex of all fish mortalities was determined by examination of gonads.

The data file for this study is NPHNDL97.XLS and is archived with RTS.

DATA ANALYSIS

The mortality rate for each treatment was calculated as follows:

$$
\begin{equation*}
\hat{\mathrm{m}}_{\mathrm{i}}=\frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \hat{\mathrm{m}}_{\mathrm{i}}=\text { the mortality rate of fish with treatment } \mathrm{i} \\
& \mathrm{n}_{\mathrm{i}}=\text { the number of fish with treatment } \mathrm{i} \text {; and } \\
& \mathrm{X}_{\mathrm{i}}=\text { the number of fish with treatment } i \text { that die. }
\end{aligned}
$$

The standard error of this rate was estimated by (Zar 1984):

$$
\begin{equation*}
\mathrm{SE}\left[\hat{\mathrm{~m}}_{\mathrm{i}}\right]=\left[\frac{\hat{\mathrm{m}}_{\mathrm{i}}\left(1-\hat{\mathrm{m}}_{\mathrm{i}}\right)}{\left(\mathrm{n}_{\mathrm{i}}-1\right)}\right]^{1 / 2} . \tag{2}
\end{equation*}
$$

The 90% upper bound $\left(\mathrm{UB}_{90}\right)$ was calculated as:

$$
\mathrm{UB}_{90}=\hat{\mathrm{m}}_{\mathrm{i}}+\left(1.28 * \operatorname{SE}\left[\hat{\mathrm{~m}}_{\mathrm{i}}\right]\right)
$$

Only the upper bound was calculated because the worst case scenario (highest level of possible mortality) was of greatest interest.
A chi square test was used to detect differences between treatment groups and between fish captured with hook and line and with hoop nets. Logistic regression was used to investigate the interaction between treatments and time to release from holding pens.

RESULTS

Between July 16 and 27, 1997, a total of 89 northern pike captured with hoop nets and with hook and line gear were used for this experiment. Twenty-eight fish ranging from 522 to $1,010 \mathrm{~mm}$ FL were captured with hoop nets and composed the control group. Thirty-one fish (480-1,025 mm FL) were captured with hook and line gear and were subjected to Treatment I (careful handling). Thirty fish ($458-886 \mathrm{~mm}$ FL) were subjected to Treatment II (less careful handling).

Mortality rates for northern pike held for the prescribed 48 h period were very low. All fish captured with hook and line gear survived. Because no fish died in the two handling treatment
groups during the 48 h holding period, it is concluded that mortality did not differ between treatment groups. Four fish captured with hook and line gear were not used in the experiment because they were bleeding severely. Approximately 4% of the fish captured in hoop nets (control) and were held for 48 h or less died. Seventeen of the northern pike used in this experiment were held for a period of time that could not be precisely determined. This was due to tag loss, missed tag numbers and to escaped fish. Two of the northern pike that died from the hoop nets were in this group (Tables 2, 3).

Lengths of northern pike handled in this experiment ranged from 458 to $1,025 \mathrm{~mm}$ FL (19 - 43 in TL, Table 3). The greatest proportion of these were between 650 and 700 mm FL ($27-29$ in TL). All of the northern pike that died were less than 700 mm FL (29 in TL).

DISCUSSION

Hooking mortality studies of northern pike and other species have been criticized by some concerned anglers because they believe that fish in these studies are treated more gently than normal anglers are likely to handle fish. The goal of this study was to examine the effect of careful versus less careful handling treatments on the short term mortality of northern pike. The results of this study indicate that within the range of handling to which northern pike are likely to be subjected, they are able to sustain hook and release angling.
All mortality of northern pike in this study were for fish less than 700 mm FL . Although sample sizes of larger fish were small, the results indicate that northern pike larger than 700 mm FL are (at a minimum) no more susceptible to hook and release fishing than are smaller fish. This information is important because of the wide spread use of minimum length limits in northern pike fishing regulations with the goal of protecting a portion of a stock.
The project provided useful information that can be applied to discussions of catch and release fishing for northern pike. First, northern pike are able to sustain catch and release fishing practices even with a fairly substantial post capture stress. Secondly, northern pike appear to have a greater chance of surviving when they are released quickly following capture. Finally, this experiment suggests that hook and line capture is at least as benign as other capture techniques.

Table 2.-Number of northern pike captured by treatment group and by time held in pens, Nowitna River, 1997.

	Hours					
Treatment	Held	Total	Number	Rate	SE	UB_{90}
Control	24	1	0	0.00	0.00	0.00
	48	23	1	0.04	0.04	0.10
	Unknown ${ }^{\text {a }}$	4	2	0.50	0.29	0.87
	Total	28	3	0.11	0.06	0.18
Careful	24	4	0	0.00	0.00	0.00
	48	22	0	0.00	0.00	0.00
	Unknown	5	0	0.00	0.00	0.00
	Total	31	0	0.00	0.00	0.00
Less Careful	24	2	0	0.00	0.00	0.00
	48	20	0	0.00	0.00	0.00
	Unknown	8	0	0.00	0.00	0.00
	Total	30	0	0.00	0.00	0.00
All	24	7	0	0.00	0.00	0.00
	48	65	1	0.02	0.02	0.04
	Unknown	17	2	0.12	0.08	0.22
	Total	89	3	0.03	0.02	0.06

a Unknown - tag loss, missed tag numbers, and escaped fish. Three of the "unknown" fish in the less careful treatment group were unaccounted for and are assumed to have escaped. Other fish listed as escaped were observed escaping while emptying pens.

Table 3.-Length distribution of northern pike captured by treatment group, Nowitna River, 1997.

a Mid-point of length category
b Number of fish, number in parentheses are fish that were held for an unknown period of time, see text.
c Proportion
${ }^{\text {d }}$ Number of fish may not sum to total due to missing length data.

ACKNOWLEDGMENTS

Mike Wallendorf helped during the planning process, fieldwork, and data analysis. Additionally, special thanks go to those who helped collect the data: Lem Butler, John Chythlook, Becky Kelleyhouse, Monica McGilvary, Steve Riener, Don Roach, Tim Viavant, Mike Wallendorf, and Klaus Wuttig. The U. S. Fish and Wildlife Service provided partial funding for this study through the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under project F-1013, Job No. and R-3-4(e).

LITERATURE CITED

Burkholder, A. 1992. Mortality of northern pike captured and released with sport fishing gear. Alaska Department of Fish and Game, Fishery Data Series 92-3, Anchorage.

Burr, J. M. and D. James. 1996. Dall River cooperative research project, 1995. Alaska Department of Fish and Game, Fishery Data Series No. 96-34, Anchorage.

Falk, M.R. and F.V. Gillman. 1975. Mortality data for angled Arctic grayling and northern pike from the Great Slave Lake area, Northwest Territories. Data Report Series No: CEN/D-75-1, Resource Management Branch, Central Region, Fisheries and Marine Service, Environment Canada.

Howe, A. L., G. Fidler, and M. J. Mills. 1995. Harvest, catch, and participation in Alaska sport fisheries during 1994. Alaska Department of Fish and Game, Fishery Data Series Number 95-24, Anchorage.

Howe, A. L., G. Fidler, A. E. Bingham, and M. J. Mills. 1996. Harvest, catch, and participation in Alaska sport fisheries during 1995. Alaska Department of Fish and Game, Fishery Data Series Number 96-32, Anchorage.

Howe, A. L., G. Fidler, C. Olnes, A. E. Bingham, and M. J. Mills. 1997. Harvest, catch, and participation in Alaska sport fisheries during 1996. Alaska Department of Fish and Game, Fishery Data Series Number 97-29, Anchorage.

Howe, A. L., G. Fidler, C. Olnes, A. E. Bingham, and M. J. Mills. 1998. Harvest, catch, and participation in Alaska sport fisheries during 1997. Alaska Department of Fish and Game, Fishery Data Series Number 98-25, Anchorage.

Mills, M. J. 1991. Harvest, catch, and participation in Alaska sport fisheries during 1990. Alaska Department of Fish and Game. Fishery Data Series No. 91-58, Anchorage.
Mills, M. J. 1992. Harvest, catch, and participation in Alaska sport fisheries during 1991. Alaska Department of Fish and Game. Fishery Data Series No. 92-40, Anchorage.

Mills, M. J. 1993. Harvest, catch, and participation in Alaska sport fisheries during 1992. Alaska Department of Fish and Game. Fishery Data Series No. 93-42, Anchorage.

Mills, M. J. 1994. Harvest, catch, and participation in Alaska sport fisheries during 1993. Alaska Department of Fish and Game, Fishery Data Series Number 94-28, Anchorage.
Zar, J. 1984. Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

[^0]: ${ }^{1}$ Pooled samples of fish captured with a variety of hook and lure types.

